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Abstract
We present a new algorithm to compute a topologically and geometrically accurate triangulation of an implicit sur-
face. Our approach uses spatial subdivision techniques to decompose a manifold implicit surface into star-shaped
patches and computes a visibilty map for each patch. Based on these maps, we compute a homeomorphic and wa-
tertight triangulation as well as a parameterization of the implicit surface. Our algorithm is general and makes no
assumption about the smoothness of the implicit surface. It can be easily implemented using linear programming,
interval arithmetic, and ray shooting techniques. We highlight its application to many complex implicit models and
boundary evaluation of CSG primitives.
Keywords:contouring, Marching Cubes, set operations, implicit modeling, topology

1. Introduction

Implicit surfaces are used to represent shapes of arbitrary
topology in computer graphics and geometric modeling. As
compared to other surface representations, implicits offer
many advantages in terms of performing geometric operations
like Boolean operations, blending, warping and offsets. Some
early applications of implicit surfaces were the modeling of
blobby shapes and of objects with biological or natural ap-
pearances. Recently, implicit surfaces have been shown to be
useful for surface reconstruction, point-based modeling, and
simulation.

In this paper, we address the problem of polygonizing an
implicit surface. Our goal is to develop reliable techniques
that preserve the topology of the implicit surface and com-
pute a geometrically accurate polygonization. Topology of the
implicit surface contains information about its connected com-
ponents and genus. Many geometric operations like Boolean
operations can result in a shape whose topology is very dif-
ferent from that of the primitives. It is important to capture
all the topological features for CAD, medical and molecu-
lar modeling applications. Implicits are also used to recon-
struct topologically accurate continuous surfaces from point
clouds. These surfaces are defined as weighted combinations
or blends of basis functions and have been applied to datasets
consisting of millions of points. However, computing a topo-
logically reliable polygonization of these complex implicit
surfaces can be a challenge. Other applications of polygoniza-
tion arise in mathematical visualization, where we want to ac-
curately display the shape of complex surfaces.

The implicit surface polygonization problem has
been studied for more than two decades. Prior meth-

Figure 1: Polygonization of a complex MPU model:The right im-
age shows a complex MPU model, Filigree, which has genus 65 and
many topological features. This implicit was defined using 514K point
samples by blending quadric surfaces using B-splines weights. The
left image shows that previous spatial subdivision techniques may not
compute an accurate polygonization, when the parameter used to se-
lect the grid size is not adequate. Our algorithm, based on Visibil-
ity mapping, generates an accurate polygonization of this model, as
shown in the image on the right, in about 4 minutes.

ods can be classified into spatial subdivision techniques
[WMW86, Blo88, HW90], scalar field isosurface reconstruc-
tion [LC87, KBSS01, JLSW02], and algorithms based on
Morse theory [SH97]. Most applications use some combi-
nation of spatial subdivision and isosurface reconstruction.
These algorithms are implemented using uniform or adaptive
grids, and can handle complex models. In practice, their
accuracy varies as a function of the grid resolution and the
coordinate system used for spatial subdivision. As a result,
current spatial subdivision techniques may not provide rigor-
ous guarantees on the topology of the reconstructed surface.
On the other hand, polygonization algorithms based on Morse
theory and critical point analysis can provide topological and
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geometric guarantees for smooth surfaces. However, these
algorithms have been limited to relatively simple surfaces and
do not extend to Boolean combinations.

Main Results: We present a new algorithm to polygonize
implicit surfaces. Our approach is restricted to compact, man-
ifold surfaces that can be represented as the zero set of a con-
tinuous function. We compute a topologically accurate poly-
gonization of the implicit surface and construct a homeomor-
phism, i.e. a continuous bijection with a continuous inverse,
between the implicit surface and the polygonal approximation.
This homeomorphism is evaluated by computing ray intersec-
tions with the implicit surface.

Our algorithm uses spatial subdivision techniques along
with interval arithmetic to decompose the implicit surface into
surface patches. We ensure that each patch satisfies thestar-
shapedproperty, i.e. there exists a guard in space that can ‘see’
all the points on the patch. We use this property to compute
a visibility map that projects each point on the patch to the
boundary of the grid cell. Our algorithm computes a triangu-
lation of the image of the visibility map on the boundary of
the grid cell. Finally, these triangles are back-projected using
the inverse of the visibility map to compute a homeomorphic
triangulation of the patch. We ensure continuity between ad-
jacent patches and generate a watertight polygonization of the
overall surface. Some of the mainfeaturesof our algorithm
are:

Generality: Our algorithm is applicable to a broad class
of implicits. These include zero sets of elementary func-
tions, blends of locally fit smooth functions such as Multi-
ple Partition-of-Unity (MPUs), Moving Least Squares (MLS),
and Boolean combinations.

Reliable Polygonization:Given a manifold surface, our al-
gorithm ensures that the polygonized approximation is topo-
logically equivalent to the implicit surface. We also satisfy a
two-sided Hausdorff bound between the original model and
the polygonal approximation. Moreover, we do not need to
perform any crack patching to handle adaptive grids.

Complex Models:Our approach can handle complex implicit
surfaces that arise from point-cloud reconstruction algorithms
or Boolean combinations. We use techniques based on spatial
subdivision and voxelization to accelerate the computation.

Parameterization: Our algorithm computes a piecewisestar-
shaped parameterizationof the implicit surface. Furthermore,
the homeomorphism between the implicit surface and our
polygonal approximation can be combined with mesh param-
eterization algorithms to compute a global parameterization of
the implicit surface.

Quality of Polygonization: Star-shaped parameterization is a
special case of spherical parameterization. This property can
be exploited to generate a triangulation with good aspect ratios
using the method proposed by Praun and Hoppe [PH03].

There exist prior implicit surface polygonization algorithms
that provide topological guarantees. However, all of these al-

gorithms assume a smooth implicit surface. As a result, they
are not applicable to surfaces defined using Boolean opera-
tions. To the best of our knowledge, our algorithm is the first
topology preserving polygonization algorithm that can handle
Boolean operations. We have applied our algorithm to poly-
gonize MPU surfaces generated using point cloud reconstruc-
tion algorithms, algebraic surfaces, and boundary evaluation
of CSG models.

Organization: The rest of the paper is organized in the fol-
lowing manner. Section2 presents our polygonization algo-
rithm based on visibility mapping. We show that our algorithm
computes a topologically and geometrically accurate polygo-
nization in Section3. We describe our spatial subdivision al-
gorithm based on star-shaped decomposition in Section4. We
highlight the performance of our algorithm on different bench-
marks in Section5 and compare it with prior approaches in
Section6. Finally, we highlight some of its limitations in Sec-
tion 7.

2. Implicit Surface Polygonization

Our algorithm uses a divide-and-conquer approach, subdivid-
ing the implicit surface into patches. In this section, we present
our algorithm to polygonize each patch independently and to
generate a watertight triangulation of the implicit surface. We
first present our notation and define visibility mapping based
on the star-shaped property.

2.1. Notation and Terminology

We use lower case bold letters such asp,q to refer to points
in R3. The notationpq denotes the line segment between the
two pointsp andq. The notation(p1, . . . ,pn) denotes then-
sided polygon whose vertices are the pointsp1, . . . ,pn. Let
I : R3 → R denote the implicit function; our goal is to com-
pute a triangulation of its zero set. In practice,I could rep-
resent a function of the formf (x,y,z). Furthermore, we allow
CSG combinations of simple closed-form functions or other
procedural models that can be expressed as elementary func-
tions or weighted combination of simple elementary functions
(e.g. blends, MPUs and MLS surfaces). With a slight abuse of
notation, we will also useI to denote the implicit surface;
we assume thatI is a manifold. Our algorithm computes a
topology-preserving polygonal approximatioñI of the im-
plicit surfaceI . We construct a homeomorphismH between
I andĨ .

Our algorithm uses a volumetric grid that has convex poly-
hedral cells. In the rest of the paper, for the sake of simplicity,
we will assume that all the cells are cube-shaped. When refer-
ring to the cell as a geometric primitive, we will refer to it as
a voxel. The boundary of a cell consists of faces, edges, and
vertices and each of these is represented as a closed set. We
use the symbolsϑ , f , e, andv to refer a voxel, a face, an edge,
and a vertex, respectively.

We use the symbol∂S to denote the boundary of a setS.
By a restriction of a setS with respect to another setT, we
meanS∩T, which we denote asST . Typically,S is a 2D man-
ifold surface andT may correspond to a voxel or a face. The
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Figure 2: Fig. (a) shows that each pointx on a star-shaped surfaceI can be mapped onto the the unit cube (or the unit sphere) using the visibility
mapφ (or h). Fig. (b) highlights the three steps of our algorithm: Forward projection that projects the star-shaped surface to the voxel boundary,
image triangulation which triangulates the image on the voxel boundary, and backward projection, where the triangulation on the boundary is
back-projected to compute triangulation of the implicit surface. We only show a subset of the triangles on the surface.

restriction operator has higher precedence over the boundary
operator, i.e.∂ST = ∂ (ST).

2.2. Visibility Mapping

In this subsection, we introduce visibility mapping and use it
to polygonize implicit surfaces. We first present the intuition
behind our algorithm. Let us assume that the implicit surface
I is star-shaped. A surface isstar-shapedif there exists a
point in R3 (called a guard) that can ‘see’ every point on the
surface. In essence, the star-shaped property of a surface cap-
tures its visibility. We exploit the fact that a star-shaped sur-
faceI has a star-shaped parametrization, a special case of
spherical parameterization. Without loss of generality, we as-
sume that the origin is the guard ofI . There exists a one-to-
one maph : I → S2 that maps each point onI to a point on
the unit sphereS2. This function is expressed as:h(x) = x

‖x‖2
,

where‖‖2 denotes the Euclidean norm. The maph() is the
spherical projection operation. See Fig.2(a). Note that ifI is
a closed star-shaped surface thenh is a bijection and we can
mapI to S2 and vice-versa. In practice, we consider a map-
ping functionφ : I → C2 that mapsI to the unit cubeC2:
φ(x) = x

‖x‖∞
where‖ . ‖∞ denotes the max-norm. Likeh, φ is

also a bijective mapping. We refer toφ as thevisibility map.
See Fig.2(a). The visibility map can be thought of as a per-
spective projection operation onto the unit cube. It provides
a simple method for triangulatingI : we first triangulate the
boundary ofC2 and then map these triangles toI usingφ−1.
Sinceφ is a bijection,φ−1 is well-defined. This yields a trian-
gulation ofI . Evaluating the visibility mapφ (or its inverse
φ−1) is simple: it reduces to shooting a ray from the guard and
computing intersection of the ray with the boundary ofC2 ( or
with I ).

We extend the above idea to the case of a general implicit
surface by adopting a divide-and-conquer approach. Concep-
tually, we decomposeI into a set of star-shaped patches and
polygonize each star-shaped patch using the visibility maps
for that patch. Note that we compute a different map for each
patch. In practice, we do not compute such a star-shaped de-
composition explicitly but rather use spatial subdivision tech-

φ(x)
x

I

oI

1C 2C

Figure 3: 2D implicit curve approximation using our algorithm:
The figure shows the 2D visibility grid for an implicit curveI . The
portion ofI in cell C1 is star-shaped property with respect to guard
O. By projecting this portion onto the boundary of the cellC1, we
compute a one-to-one onto mappingφ between any pointx onI and
its projectionφ(x)on the boundary of the cell. We use this mapping
to compute a homeomorphic polyline approximation ofI within C1.
The cellC2 is generated after an additional level of quadtree subdivi-
sion; the portion ofI in C2 is also star-shaped.

niques (see Section4). We also ensure that there is conti-
nuity between the polygonization of neighboring star-shaped
patches. This results in a continuous water-tight triangulation
of I .

2.3. Polygonization within a Cell

Our algorithm uses spatial subdivision techniques like octree
decomposition to generate a grid that satisfies certain visibility
properties. We call a volumetric gridG a visibility grid if it
satisfies the following conditions:

1. Every voxelϑ in G , I ∩ϑ is star-shaped with respect to
(w.r.t) some pointoϑ in ϑ . We call the pointoϑ a guard of
ϑ .

2. Every facef in G , I ∩ f is star-shaped w.r.t some pointof
in f . We call the pointof a guard off .

The visibility grid enforces the star-shaped property within ev-
ery voxel and face of the grid. Our algorithm requires that that
I intersect the cells in the visibility grid in a non-degenerate
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Figure 4: Image triangulation: The two figures show two different
cases of image triangulation of a facef depending on whether the
guardof of face f belongs tof + or not. In each case, we compute a

triangulation f̃ + of f +.

manner, i.e.,I should not tangentially intersect any of the
voxels, faces, or edges of the grid.

Let us considerIϑ = I ∩ϑ , the restriction ofI to the
voxel ϑ of a cell.Iϑ is star-shaped and has a guardoϑ that
lies insideϑ . Without loss of generality, we assume thatoϑ

lies insideI . Our algorithm can be easily extended to han-
dle the symmetric case whenoϑ lies outsideI . Our overall
approach consists of three main steps:

1. Forward projection: We define a mapφϑ : Iϑ →Dϑ that
projects each point onIϑ to a portionDϑ of the boundary
of the voxel. We refer toφϑ as theforward visibility map
andDϑ as theimageof the forward visibility map.

2. Image triangulation: We triangulateDϑ to compute a tri-
angulationD̃ϑ .

3. Backward projection: We backproject the triangles iñDϑ

to obtain a triangulationĨϑ of I . The backward projec-
tion is achieved using a map̃φϑ : D̃ϑ → Ĩϑ , which is de-
fined using the inverse of the forward visibility map. We
refer toφ̃ϑ as thebackward visibility map.

We now explain each of the above three steps in more detail.
Fig. 3 illustrate our algorithm for a 2D planar curve.

2.3.1. Forward Projection

We define a functionτϑ : Iϑ → ∂ϑ that mapsIϑ to the
boundary of the voxel (see Fig.2).

τϑ (x) = oϑ + ‖ ϑ ‖ φ(x−oϑ ),

where‖ ϑ ‖ denotes half of the length of voxelϑ . It fol-
lows that τϑ is a 1-1 map. In general, ifI intersects the
boundary of the voxel,τϑ will not be an onto function. Let
Dϑ = τϑ (Iϑ ) denote the range ofτϑ , as shown in Fig.
2(b). In the rest of the paper, we will refer to the bijection
φϑ : Iϑ →Dϑ , whereφϑ (x) = τϑ (x). φϑ is theforward vis-
ibility map andDϑ is its image. Furthermore,φϑ (x) can be
evaluated by shooting a ray fromoϑ in the direction ofx and
computing the intersection of the ray with the boundary of the
voxel.

2.3.2. Triangulating the Image

Our goal is to compute a triangulation ofDϑ . We need to en-
sureC0 continuity between the triangulations ofI between
adjacent voxels. We utilize the fact thatDϑ consists of points
on the boundary ofϑ that are not visible to the guard ofϑ ,

i.e. the ray from the guard to such a point must intersectI .
The star-shaped property ensures that such a point must nec-
essarily lie outsideI . We use this property to expressDϑ in
terms of faces ofϑ . Let fi , i = 1, . . . ,6, denote the faces ofϑ .
Let f +

i be the set of points infi that lie outsideI , i.e.,

f +
i = {x | x ∈ fi ,I (x) > 0}.

Dϑ is given by:Dϑ =
⋃6

i=1 f +
i , as shown in Fig.2. Therefore

the problem of triangulatingDϑ reduces to triangulating each
f +
i , which is a portion of facefi .

It suffices to triangulate justminimal faces; a facef is mini-
mal if no face in the grid is a strict subset off . A non-minimal
face is a union of a set of minimal faces. We now present our
algorithm to triangulatef + for a minimal facef in the visibil-
ity grid. We do not computef + explicitly; rather, we take ad-
vantage of the star-shaped property, i.e.,I ∩ f is star-shaped
w.r.t a pointof ∈ f . We define a visibility mapping in 2D to
compute this triangulation. Our approach again performs three
main steps:

1. Forward projection: We define a 2D forward visibility
mapφ f : I f → D f , which projectsI f onto a portion of
∂ f . This visibility map is defined on a 2D domain and is
similar toφϑ . D f , the image ofφ f , is a polyline.

2. Image triangulation: Divide D f into a set of line seg-
ments as explained below.

3. Backward projection: Backproject the line segments to
obtain a ‘triangulatioñf + of f +.

We consider two separate cases based on whether or notof
belongs tof +:

Case 1: of ∈ f +

First we computeD f , the image ofφ f . In this case,D f con-
sists of those points in∂ f that lie insideI . Therefore,D f
can be computed by finding the intersections points between
I and the edges off . These intersection points together with
the vertices off partition∂ f into two sets of line segments. A
subsetL1 of these line segments belong toD f . LetL2 denote
the remainder of line segments.

1. For each edge, ab ∈ L1, output a triangle
(of ,φ

−1
f (a),φ−1

f (b)).
2. For each edgeab∈L2, output a triangle(of ,a,b).

This is illustrated in Fig.4. The union of all the triangles gen-
erated by these steps is the triangulatioñf + of f +. We eval-
uateφ

−1
f by shooting a ray fromof and computing the inter-

section of the ray withI .

Case 2: of /∈ f +

As in Case 1, we first compute a set of line segments,L1,
which belong toD f . In this case,D f consists of those points
in ∂ f that lie outsideI . For each edgeab ∈ L1, we out-
put a quadrilateral(a,b,φ−1

f (b),φ−1
f (a)). We triangulate each

quadrilateral using one of its diagonals. This quadrilateral may
degenerate into a triangle if eithera or b corresponds to an in-
tersection point betweenI and∂ f (Fig. 4). The union of all
the triangles generated above is the triangulationf̃ + of f +.
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Image Retriangulation: A finer triangulation f̃ + can be ob-
tained by refining the initial triangulation off +. This can be
computed in two ways: (a) by subdividing the line segments
in L1 andL2 or (b) by subdividing the triangles iñf +.

2.3.3. Backward Projection

We use the method presented above to triangulatef + for each
face f of the cell. We represent this triangulation ofDϑ as

D̃ϑ : D̃ϑ =
⋃6

i=1 f̃ +
i . Each triangle inD̃ϑ has the property that

all its vertices belong toDϑ . Therefore any pointx ∈ D̃ϑ can
be expressed in terms of barycentric coordinates:

x = ua+vb+wc,

u,v,w≥ 0, u+v+w = 1, a,b,c∈Dϑ .

We define a map̃φϑ : D̃ϑ → R3:

φ̃ϑ (x) = uφ
−1
ϑ

(a)+vφ
−1
ϑ

(b)+wφ
−1
ϑ

(c).

Sincea,b, andc belong toDϑ , φ
−1
ϑ

(a),φ−1
ϑ

(b), andφ
−1
ϑ

(c)
are well-defined. We refer tõφϑ as thebackward visibility
map. In essence, the backward map back-projects the trian-
gles inD̃ϑ by using the inverse of the forward visibility map
φϑ and barycentric coordinates. The backward projection pro-
duces the approximationĨϑ = φ̃ϑ (D̃ϑ ) in the voxel. The
overall approximationĨ corresponds to the union of the ap-
proximations within the individual voxels:

Ĩ = ∪ϑ Ĩϑ

The resulting approximationĨ is a continuous, watertight
polygonal surface.

2.4. Continuity

The approximationĨ hasC0 continuity. This follows from
the fact that the approximation within two adjacent voxels
“match” along the common face. Consider two voxelsϑi , ϑ j
that share a facef , i.e., ϑi ∩ϑ j = f . Then the images of the
forward visibility maps ofϑi andϑ j are identical along face
f . Our image triangulation procedure also maintains this prop-
erty. Therefore, we haveDϑi

∩ f = Dϑ j
∩ f and D̃ϑi

∩ f =

D̃ϑ j
∩ f . Since the approximations̃Iϑi

andĨϑ j
are obtained

by backprojectingD̃ϑi
andD̃ϑ j

, these approximations ‘match’

along f , i.e.,∂ (Ĩϑi
)∩ f = ∂ (Ĩϑ j

)∩ f . The following lemma
is used to formally prove the continuity:

LEMMA 1 Let ϑi andϑ j be two adjacent voxels that share

a face f , i.e.,ϑi ∩ϑ j = f . Then∂ (Ĩϑi
)∩ f = ∂ (Ĩϑ j

)∩ f .

We note that the same formulation also applies to adaptive
grids.

3. Accuracy of Polygonization

In this section, we analyze topological properties of our poly-
gonization algorithm. We also extend the polygonization algo-
rithm to improve its accuracy and compute a parameterization.

3.1. Topology Preservation

Our goal is to prove thatĨ is topologically equivalent toI .
In particular, we show that there exists a homeomorphism be-
tweenĨ andI . Our proof follows the following outline:

1. We define alocal mapHϑ : Iϑ → Ĩϑ in each voxelϑ . We
show thatHϑ is a bijection. Furthermore, we prove that the
local maps of two adjacent voxels match each other along
the common face. We combine these local maps to obtain a
homeomorphismH : I → Ĩ , and thereby establish topo-
logical equivalence betweenI andĨ .

2. The local mapHϑ is a composition of three bijections:

a. The forward visibility mapφϑ .
b. The image transfer map: For each facef , we define a

mapδ f : f + → f̃ + that maps the imagef + on facef to

its triangulationf̃ +. We refer toδ f as theimage transfer
mapof f . By combining the image transfer maps of the
faces, we obtain an image transfer mapδϑ : Dϑ → D̃ϑ

for the voxel.
c. The backward visibility map̃φϑ .

The local mapHϑ is equal toφ̃ϑ ◦δϑ ◦φϑ .

We state the main results of topological equivalence. The
proofs of all these lemmas and the theorem are presented in
the appendix. We first state the properties of the image trans-
fer map of a face and voxel.

LEMMA 2 Given a face f in the visibility grid, there exists

a bijectionδ f : f + → f̃ +.

LEMMA 3 Given a voxelϑ in the visibility grid, there exists
a bijectionδϑ : Dϑ → D̃ϑ .

SinceHϑ is a composition of bijective mappings, it is a bi-
jection. See Appendix. This fact combined with the fact that
our approximation generates aC0 mesh can be used to arrive
at the following main result (proof of result is in [VKZM06]
and the supplementary material provided with this paper):

THEOREM 1 I is homeomorphic toĨ (I ≈ Ĩ ).

Evaluating the Homeomorphism: Our formulation of the
homeomorphism is constructive. We can evaluateH and its
inverse using ray-shooting. Consider a pointx ∈I . Let x be-
long to a voxelϑ . ThenH (x) = Hϑ (x). Recall thatHϑ is a
composition of three bijections: (a) the forward visibility map
φϑ , (b) δϑ , and (c) the backward visibility map̃φϑ . Each of
the three bijections can be evaluated by ray-shooting. There-
fore, computingHϑ (x) also reduces to ray-shooting. We use
this property in Section3.5 to compute a parameterization of
the implicit surfaces.

3.2. Geometric Accuracy

We extend our algorithm to generate a polygonizationĨ with
a bounded Hausdorff error. Given anyε > 0, our algorithm
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outputsĨ such that the two-sided Hausdorff distance between
Ĩ andI is less thanε. One way to bound this error is to re-
quire that all the grid cells in the volumetric grid be smaller
thanε. However, this can incur a huge penalty in the perfor-
mance as a large number of star-shaped tests would need to be
performed (Section4). Rather, we boundI by a set of vox-
els of sizeε and check ifĨ is contained by this set of voxels.
Such a voxelization is precomputed for the implicit surface
using interval arithmetic (see Section4.3).

WhenI is defined in terms of Boolean operations over a
set of primitives, we exploit the fact that the boundary ofI
is a subset of the union of boundaries of the primitives. Con-
sider a voxelϑ that is intersected byn primitives,S1, . . . ,Sn.
In this case, we check if the Hausdorff distance betweenĨϑ

andSi ∩ϑ is less thanε for eachi = 1, . . . ,n. This provides
a sufficient condition under which the Hausdorff distance be-
tweenĨ andI is also bounded byε. A different technique
for bounding Hausdorff error is presented in [AAB02].

3.3. Quality of Polygonization

We can also generate a triangulation with good aspect
ratios by using the remeshing techniques proposed by
[PH03, THCM04]. Each patch in our case has astar-shaped
parameterization, which is a special case of spherical parame-
terization – a property that is utilized by these remeshing tech-
niques. We can use these techniques to guide the image trian-
gulation step of our algorithm (Section2.3.2). Since the image
triangulation is done on the faces of the grid, we automatically
ensure continuity across adjacent voxels.

3.4. Sharp Features

We use a technique similar to Dual contouring [JLSW02] to
obtain an accurate polygonization near sharp features. For
each triangle inĨ , we use the normals at the three vertices to
estimate aminimizing vertexas described in [JLSW02]. Then
we output a dual polygonal mesh by combining the minimiz-
ing vertices of adjacent triangles: each triangle iñI corre-
sponds to a vertex in the dual mesh, an edge inĨ corresponds
to a dual edge, and a vertex iñI corresponds to a polygon in
the dual mesh. By triangulating these polygons, we obtain a
triangulation that can capture sharp features.

3.5. Parameterization

A star-shaped surface can be parameterized using spherical
coordinates, i.e. latitude and longitude. Both the original im-
plicit surfaceI and our approximationĨ consist of star-
shaped patches, denoted asIϑ andĨϑ . As a result, our al-
gorithm automatically computes a piecewise star-shaped pa-
rameterization ofI .

Our algorithm can also compute a global parameterization
of implicit surfaces. In general, computing a good parame-
terization of implicit surfaces is a difficult problem [Ped95],
In contrast, there exist a host of techniques to parameterize
polygonal meshes [FH05]. Our algorithm reduces the prob-
lem of implicit surface parameterization to a mesh parameter-

Chair Decocube

Diagonal Tanglecube

Figure 5: Polygonization of algebraic surfaces:Our algo-
rithm is able to compute reliable polygonization of these high
genus algebraic surfaces. The running time is about 10 sec for
these surface, except for Decocube that takes about 52 sec-
onds.

ization problem. We exploit the fact that our algorithm con-
structs a homeomorphismH : I → Ĩ between the implicit
surface and our polygonal approximation. Furthermore,H
can be evaluated by ray-shooting. Therefore, by computing
a mesh parameterizationµ : X → Ĩ , we obtain an implicit
surface parameterizationλ : X →I , whereλ = H −1 ◦µ.

4. Spatial Subdivision

Our polygonization algorithm assumes that each patch of the
implicit surface restricted to a voxel/face of a cell is star-
shaped. In this section, we present our spatial subdivision al-
gorithm to decompose the space into a visibility grid with
respect toI . We perform an octree subdivision and check
whether the portion ofI restricted to a voxelϑ , i.e. Iϑ , is
star-shaped. A similar test is also performed on the faces of
each cell.

In general, a star-shaped surface does not have a unique
guard. The set of all guards is called thekernel. Thus the sur-
face is star shaped if its kernel is non-empty. For polygonal
meshes, testing whether the kernel is non-empty can be per-
formed efficiently using linear programming. However, it is
hard to perform the kernel test exactly for non-linear prim-
itives. We perform a conservative test using linear program-
ming and interval arithmetic for many types of implicit sur-
faces, by extending the approach described by Varadhanet al.
[VKSM04]. Our algorithm is based on two oracles:

• O1: Given a voxelϑ and a parametern, this oracle returns
n points insideϑ , which lie onI . It returns an error code
if Iϑ = /0. As long as the surface passes through a cell,
this oracle can be implemented by generating line segments
uniformly inside the cell and look for intersections with the
surface. The generation of line segments is done by 3 sets
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(a) Vase Lion (b) Chisel (c) Knot

Figure 6: Polygonization of complex MPU models: The figure shows three MPU models:Vase Lionwith 200K points,Chiselwith
142K points and andKnot with 28K points.

of two-plane parameterization of the rays as described in
Levoy et al. [LH96]. As the density of samples in each
plane is increased, we get more line segments to intersect
the surface.
Computing the intersection of the line segments with the
surface reduces to a ray shooting problem. Implicit surfaces
like MPU implicits [OBA∗03] are defined as the zero set
of a convex combination of quadric surfaces. Dealing with
quadric surfaces is fairly well studied in the literature. Fur-
ther, techniques to compute roots of high-degree univariate
polynomials have matured over the last decade and many
efficient and reliable numerical algorithms exist [Bin96].

• O2: Given a pointp on I , this oracle returns the unit nor-
mal vector toI at p. This is basically gradient computa-
tion.

Our method initially estimates a point inside the cell that is
likely to be a point in the exact kernel (if one exists). Once we
have a witness point in the kernel, we use interval arithmetic to
determine if the point obtained is indeed a witness to the exact
kernel. If the interval arithmetic test is positive, we can guar-
antee that the surface is star-shaped. Otherwise, we subdivide
the voxel until the condition is satisfied.

4.1. Kernel Witness Computation

We start by invoking oracleO1 to generate a set of points
inside the voxel. We use a simple heuristic to decide the
number of points. IfV is the volume of the voxel, we gen-
eratem = cV2/3 points (roughly proportional to the surface
area) with an appropriate constantc. Let the point set be
Q = {q1,q2, . . . ,qm}. We then invoke oracleO2 to compute
the unit normal vector on each of the points obtained from the
first step. Let the normal vector at pointqi be ni . We define
m linear constraints corresponding to halfspaces supported by
the tangent planes ((qi −x)Tni > 0,x ∈ R3). We also include
the six linear constraints defining the faces of the cell. We
solve for the feasibility of the linear program to determine a
witness.

We choose a point that is roughly in the center of the ap-
proximate kernel. To find this point, we augment the linear
program by adding a slack variableδ to each of the constraints
- (qi −x)Tni + δ > 0. We also set the objective function to
maximize δ . This heuristic relies on the fact that asm in-
creases, the kernel computed with linear programming con-
verges to the true kernel. It relies on the following fact: Con-
sider anε-sampling of the implicit surface using the isophotic
metric (Euclidean distance + arc length on Gaussian sphere)
[PSH∗04]. Then the kernel boundary computed using the sam-
ples will approximate the true kernel boundary (in terms of
Hausdorff error) to within a monotonic function ofε.

It can be seen that the kernel monotonically shrinks (in
terms of set containment) with increasing number of sampled
points. The point most interior in the kernel is also the most
stable to perturbations in the linear constraints. Hence, if the
true surface is star-shaped, this point is likely to be (heuristi-
cally) the best candidate for being a guard. Let the point com-
puted using linear programming bep. We need to verify ifp
is actually a witness to the exact kernel. Such a witness would
satisfy 0/∈ (x−p)Tn(x), for all pointsx on the primitive in-
side the voxel wheren(x) is the normal to the surface atx.

4.2. Application to Implicit Surfaces

The algorithm described above is applicable to all surfaces, as
long as the oracles are available. As a result, our approach is
general. However, if surfaces have a certain structure in terms
of their description, we take advantage of that to provide more
efficient interval tests. Many implicits are represented as zero
set of anelementary function, i.e. built from a finite combi-
nation of constant functions, field operations algebraic, expo-
nential, and logarithmic functions and their inverses under re-
peated compositions. For such surfaces, the normal vector at
a point can be defined by the gradient function which are el-
ementary functions themselves. This allows us to define our
star-shaped condition.

MPU Implicits: Many surface reconstruction algorithms use
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Figure 7: CAD model: This CAD model consists of 14 solids de-
signed using a total of 84 Boolean operations on cones and cylinders.
Our algorithm took on an average of 15 secs to compute the boundary
of each solid.

MPU implicits to define an approximate implicit surface for
a given set of points with normals [OBA∗03]. Inside localized
regions of space, the set of points inside an octree voxel define
a local shape function (a quadric function). The MPU implicit
is defined as

I (x) = ∑i wi(x)Qi(x)
∑i wi(x)

, (1)

where the weight functionswi(x) are defined as quadratic B-
splines for each octree voxel andQi(x) is a local quadric sur-
face based on the points inside the voxel. Based on this defini-
tion, we express the gradient function off (x) as

∇I (x) = ∑i(wi(x)∇Qi(x)+Qi(x)∇wi(x))
∑ j w j (x)

(2)

This expression is plugged into the interval test given a can-
didate kernel point. Since the interval test is a sign test, we
eliminate the denominator since it is a positive weight func-
tion.

Moving Least Squares (MLS): Moving Least Squares are
commonly used to render point-set surfaces and can be used
to generate a topology preserving reconstruction of point sam-
ples, under certain conditions [Ame04, Kol05].

We use the formulation of Kolluri [Kol05] in the following
discussion. LetSbe the input point set. Let the unit normal at
point si ∈ Sbeni . According to Kolluri [Kol05], the MLS is
the zero set of

I (x) =
∑si∈SWi(x)((x−si)Tni)

∑sj∈SWj (x)
, (3)

whereWi(x) = e−‖x−si‖2/ε2
/Ai . Ai is the number of samples

inside a ball of radiusε centered atsi .

The implicit surface, defined above, is star-shaped with re-
spect to a pointp if (x−p)T∇I(x) > 0. Let the cardinality of
setS bek. Let N be the 3× k matrix whoseith column isni ,
W be thek×1 vector whoseith element isWi(x) andSbe the
k×3 matrix whoseith row is (x−si)T . Then the star-shaped
test boils down to evaluating the interval expression

tr(NW(x−p)T)−2tr(STNW(x−p)TS)/ε
2, (4)

tr() is the matrix trace function. The first term of the expres-
sion is a 3×3 matrix and the 2nd term is ak×k matrix.

Figure 8: Star-shaped test on implicit surfaces: The left fig-
ure shows the candidate point selection. The red points are a
result of implementing oracleO1. The right figure shows the
kernel membership test. Given a cell C, we compute an ini-
tial voxelization V of the primitive and use the intervals in V
during the interval arithmetic step.

4.3. Interval Arithmetic and Termination

The main advantage of using interval arithmetic is that all our
computations are validated and once it terminates we can be
sure that the surface is divided into star-shaped pieces. In this
section, we will discuss issues of termination with our inter-
val arithmetic approach. Our subdivision algorithm terminates
when one of the following interval conditions are satisfied:

1. The star-shaped condition is satisfied, i.e. 0/∈
(x−p)T∇I (x)

2. The cell does not contain the implicit surface, i.e. 0/∈I (x)

For manifolds, cells far away from the surface will satisfy
condition 2 and we terminate the subdivision. For smooth sur-
faces (C1 orC2), the gradient function will be away from zero
sufficiently close to the surface and hence condition 1 will be
satisfied after finite number of subdivisions.

There are two conditions under which our interval test, as
described, will not be satisfied.

• If the candidate kernel witness pointp lies inside the cell,
(x−p) vanishes.

• If the medial axis of the surface lies inside the cell, the gra-
dient of the implicit surface vanishes.

We alleviate these problems by precomputing a dense vox-
elization of the implicit surface as shown in Fig.8(b). The
motivation to perform the voxelization is to generate a set of
intervals that are as close to the implicit surface as possible.
While computing the kernel witness point, we ensure that it
lies outside the intervals in the voxelization. Given a grid cell,
we find the intervals that intersect the cell and perform the in-
terval test on each of the intervals. If the test on each of the
intervals does not contain zero, the candidate point is a valid
witness to the kernel and we terminate the subdivision. For
smooth surfaces, the medial axis is separated from the sur-
face (local feature size is strictly positive) and the sufficiently
dense voxelization will not include the medial axis inside the
intervals.

The only case that is left is when the cell contains a part of
the surface that has a singularity (condition 1 above is not sat-
isfied because gradient function is zero on the surface). In this
case, interval arithmetic will not terminate. In our implemen-
tation, once the cells are roughly the size of the intervals we
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Bloomenthal Boissonnat & Oudot Our algorithm

Filigree 380 519 241
Chisel 47 79 58

Vase-lion 205 13,582 234

Chair 1.0 ? 10.6
Tanglecube 0.35 17.6 11
Decocube 1.89 ? 52
Diagonal 0.93 9.0 9.1

Table 1: Performance comparison: This table compares the perfor-
mance of our algorithm with Bloomenthal’s algorithm and the algo-
rithm by Boissonnat & Oudot for various models. All the timings are
in seconds. The question mark indicates cases for which we were not
able to successfully run the algorithm.

stop the subdivision process and resort only to linear program-
ming to test for the star-shaped property. While this does not
provide a rigorous guarantee, this heuristic will work unless
we are dealing with highly pathological cases.

The performance of interval arithmetic depends on the
number of false negatives which results in unnecessary sub-
division. The precomputed voxelization serves the purpose of
significantly improving the performance.

4.4. Boolean Combinations

We use the star-shaped property to perform the test on Boolean
combinations of primitives. We use a conservative test based
on the following property: ifS1 andS2 are two star-shaped
primitives with a common guard, thenS1�S2 is also star-
shaped where� denotes a Boolean operation such as union
and intersection. This is because

Kernel(S1)∩Kernel(S2)⊆ Kernel(S1�S2)

The above test reduces the star-shaped test for a Boolean com-
bination to star-shaped tests on the individual primitives. We
can test whether the individual primitives are star-shaped w.r.t
a common guard by using linear programming and interval
arithmetic techniques as discussed earlier in the section. There
are two important advantages of the above test. First, this test
can be performed without an explicit representation of the
final solid corresponding to the Boolean operation. Second,
this test does not require the final surface to be smooth; this
is crucial because Boolean operations typically generate non-
smooth surfaces with sharp features. Fig.7 shows application
of our algorithm to Boolean operations.

5. Implementation and Performance

Our algorithm uses three basic components: (a) linear pro-
gramming to verify if a a polyhedral primitive or a set of points
samples satisfy the star-shaped test, (b) interval arithmetic to
check whether a curved primitive intersects a cell and if it sat-
isfies the star-shaped test, and (c) ray shooting to evaluate the
forward and backward visibility maps, image transfer map,
and the homeomorphism. Each of these three components are
relatively simple to implement. Moreover, there exist public
domain packages for many of these components, e.g.,QSOPT
for linear programming.

We have tested our algorithms on three kinds of bench-

(a) Implicit Surface

(b) MC-like Polygonization

(c) Visibility Mapping Based Polygonization

Figure 9: This figure compares our algorithm with MC-like algo-
rithms for a set of cell configurations. The top row of figures show
different cell configurations; the middle row shows polygonization
obtained using an MC-like algorithm; the bottom row shows poly-
gonization produced by our algorithm. In some cases, MC-like algo-
rithms generate no surface output.

marks: MPU-based reconstruction [OBA∗03] of point cloud,
polygonization of algebraic surfaces, and CSG models. Figs.
1, 5, 6, and7 highlight our results on these benchmarks. Ta-
ble 1 shows a performance comparison with Bloomenthal’s
algorithm [Blo88] and the algorithm by Boissonnat & Oudot
[BO05]. While our algorithm is somewhat slower than Bloo-
menthal’s algorithm, it has the advantage that it provides guar-
antees on the accuracy of the output. Compared to Boissonnat
& Oudot’s algorithm, which also provides guarantees, our al-
gorithm is significantly faster and more scalable to complex
models.

6. Comparison with Prior Methods

In this section, we compare and contrast features of our algo-
rithm with prior techniques to polygonize implicit surfaces.

6.1. Isosurface Extraction Methods

One of the commonly used approaches for isosurface
extraction is Marching Cubes (MC) and its extensions
[LC87, KBSS01, JLSW02]. We refer to these algorithms col-
lectively as MC-like algorithms. The input to MC-like algo-
rithms is a sampled scalar field obtained by discretizing the
continuous implicit function upto a certain resolution. How-
ever, the main issue in these approaches is generating the
scalar field at an appropriate resolution such that the recon-
structed surface is accurate. An inadequate grid resolution
may result in an inaccurate output when the implicit surface
hassmall components, thin sheets, or needle-shaped features,
as shown in Fig.9.

Assume that the subdivision algorithm has computed a
guard within each cell in Fig.9. It is possible that the subdivi-
sion algorithm may need to generate sub-intervals within the
cell to reliably compute the guard. Once such a guard has been
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computed, our polygonization algorithm can reliably handle
all these cases as shown in Fig.9.

Topological ambiguity: Many solutions have been proposed
to fix topological ambiguities that can arise in some cases of
the original MC algorithm [WG90, CGMS00]. In some case,
these algorithms can provide topological guarantees by as-
suming some type of interpolation, e.g., trilinar interpolation,
on the sampled scalar field. These topological ambiguity han-
dling algorithms do not address the issues of generating a grid
with adequate resolution to provide global topological guar-
antees with respect to the original implicit surface.

Topology preserving sampling:Varadhan et al. [VKSM04]
presented an adaptive grid generation algorithm such that the
final surface reconstructed using MC has the same topology as
the implicit surface. However, this algorithm is rather conser-
vative and uses much stronger criteria for sample generation.
Moreover, our polygonization algorithm can explicitly com-
pute the homeomorphism and compute a parameterization of
the implicit surface.

6.2. Spatial Subdivision Methods

Spatial subdivision techniques have been
widely used to polygonize implicit surfaces
[Blo88, Vel90, HW90, SFYC96, JLSW02, WGG99, AG01].
These algorithms either generate a uniform grid, octree or a
kd-tree, or perform tetrahedral-based polygonization. These
algorithms can also handle non-manifold implicit surfaces
[BF95]. However, to the best of our knowledge, these spatial
subdivision algorithms do not provide topological guarantees
on the final polygonization. Few algorithms such as [KB89]
choose to visualize implicit surfaces by ray-tracing rather than
polygonization, but these are complementary to our work.

6.3. Topology Preserving Polygonization

Some algorithms can guarantee a topology pre-
serving polygonization of implicit surfaces
[BNO96, SH97, BCSV04, vOW04]. These algorithms
assumes aC2 continuous implicit surface. Under this assump-
tion, these algorithms attempt to isolate the critical points.
They do not apply to Boolean operations wherein the critical
points corresponding to the final solid are unknown.

We have demonstrated the application of the meshing al-
gorithm described in [BO05] in Table 1. It can only handle
smooth surfaces and can not deal with Boolean operations.
It is significantly slower than our algorithm and can not deal
with very complex inputs.

6.4. Interval Arithmetic

Synder [Sny92] presented an adaptive subdivision method for
computing a topologically accurate polygonal approximation
of an implicit curve/surface. This method keeps subdividing
cells until a parameterizability criterion is satisfied This pa-
rameterizability criterion would not be satisfied if the implicit
surface has a sharp feature, e.g., in the case of a surface de-
rived from a Boolean operation. Furthermore, the computa-
tional techniques presented in Snyder’s paper to verify the pa-

rameterizability criterion are not applicable to Boolean opera-
tions.

Plantinga and Vegter [PV04] present a similar method for
implicit surface polygonization. The condition of Plantinga
and Vegter imposes the constraint that the gradient of the im-
plicit function should not vary by more thanπ/2. As a result,
it is applicable to only smooth surfaces and cannot handle ob-
jects defined by Boolean operations.

7. Limitations

Our approach has a few limitations. We assume that the im-
plicit surface is a manifold. Our interval arithmetic based star-
shaped decomposition algorithm can be conservative in prac-
tice. Furthermore, the star-shaped test can generate a high
number of sub-intervals in order to compute a guard inside
a voxel. Our algorithm cannot handle cases where the implicit
surface has singularities such as self-intersections or tangen-
tial intersections.

8. Conclusion and Future Work

We present a new algorithm to polygonizing implicit surfaces
based on star-shaped decomposition. We compute a visibility
mapping for each star-shaped patch within the cell and use
these maps to compute a polygonization that is homeomor-
phic to the original surface. Our algorithm is relatively simple
to implement and not prone to robustness problems or crack
patching that arise in other techniques based on adaptive sub-
division. We demonstrate the performance of our algorithm on
many complex benchmarks, including non-smooth surfaces,
and compute a watertight polygonization. In terms of per-
formance, our algorithm is considerably faster than previous
methods that can provide rigorous guarantees on the topology
and can handle complex models. However, our current imple-
mentation is not fast enough for interactive applications.

There are many avenues for future work. We would like
to extend our approach to handle non-manifold surfaces. We
would like to compute a global parameterization of implicit
surface that can give bounds on distortion. It may be useful to
develop point-reconstruction algorithms for non-smooth sur-
faces based on the MLS formulation [Kol05] and generate a
topology preserving polygonization using our approach. An-
other challenge is to faithfully reconstruct all the sharp fea-
tures in the input. Finally, we would like to improve the per-
formance of our algorithm for real-time implicit modeling.
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