
Topology Preserving Isosurface Extraction for Geometry
Processing

Gokul Varadhan1, Shankar Krishnan2, TVN Sriram1, and Dinesh Manocha1

1Department of Computer Science, University of North Carolina, Chapel Hill, U.S.A
2AT&T Labs - Research, Florham Park, New Jersey, U.S.A

http://gamma.cs.unc.edu/recons

ABSTRACT
We address the problem of computing a topology preserving
isosurface from a volumetric grid using Marching Cubes for
geometry processing applications. We present a novel adap-
tive subdivision algorithm to generate a volumetric grid.
Our algorithm ensures that every grid cell satisfies certain
sampling criteria. We show that these sampling criteria
are sufficient to ensure that the isosurface extracted from
the grid using Marching Cubes is topologically equivalent
to the exact isosurface: both the exact isosurface and the
extracted isosurface have the same genus and connectivity.
We use our algorithm for accurate boundary evaluation of
Boolean combinations of polyhedra and low degree algebraic
primitives, Minkowski sum computation, model simplifica-
tion, and remeshing. The running time of our algorithm
varies between a few seconds for simple models composed
of a few thousand triangles and tens of seconds for complex
polyhedral models represented using hundreds of thousands
of triangles.

1. INTRODUCTION
Implicit surface representations have become increasingly

common in computer graphics and geometric modeling. This
representation uses a function f : Rd → R to represent a
closed surface S. The function f : Rd → R is known as the
implicit function or the scalar field. S is the set of points
p where f(p) = 0; S is referred to as an implicit surface or
an isosurface. A commonly used scalar field is the signed
distance field. The signed distance field D : Rd → R is a
continuous function that at a point p measures the distance
between p and S. This value is positive or negative de-
pending on whether the point lies outside or inside S. The
distance can be defined under any reasonable norm (e.g.,
Euclidean, max-norm).

A common way of representing a scalar field is to dis-
cretize the continuous scalar field into discrete samples – to
compute the value of the scalar field at the vertices of a
volumetric grid. We refer to this step as a sampling of the
scalar field. The grid is an approximate representation of the
scalar field; the accuracy of the approximate representation
depends on the rate of sampling – the resolution of the grid.
An explicit boundary representation of the implicit surface
can be obtained by extracting the zero-level isosurface using

3A preliminary version of this work appeared in the second
European Symposium on Geometry Processing 2004 [1].

Marching Cubes (MC) [2] or any of its variants [3–5]. We
refer to these isosurface extraction algorithms collectively as
MC-like algorithms. The output of an MC-like algorithm is
an approximation – usually a polygonal approximation – of
the implicit surface. We refer to this step as reconstruction
of the implicit surface.

Compared to other surface representations (e.g. para-
metric surfaces), implicit surface representations are easy to
use to perform geometric operations like union, intersection,
difference, blending, and warping. Specifically, they map
Boolean operations into simple minimum/maximum opera-
tions on the scalar fields of the primitives. Suppose we have
two primitives P1 and P2 with scalar fields f1 and f2. Then
we have

p ∈ ∂(P1 ∪ P2) ⇐⇒ min(f1(p), f2(p)) = 0

p ∈ ∂(P1 ∩ P2) ⇐⇒ max(f1(p), f2(p)) = 0

p ∈ ∂(P1 \ P2) ⇐⇒ max(f1(p),−f2(p)) = 0

where ∂P denotes the boundary of P. Because of the above
property, implicit representations are frequently used to per-
form Boolean operations. They have been used for numerous
applications including geometric modeling, volume render-
ing, morphing, path planning, swept volume computation,
and sculpting digital characters [3, 4, 6–11].

Our goal is to exploit the desirable properties of implicit
surface representations for geometric computations such as
Boolean operations (i.e. union, intersection and difference),
Minkowski sum computation, simplification, and remeshing.
In each case, we wish to obtain an accurate polygonal ap-
proximation of the boundary of the final solid. Let E denote
this boundary. We represent E implicitly – as an isosurface
of a scalar field. This scalar field is obtained by performing
minimum/maximum operations over the scalar fields defined
for the primitives. At a broad level, our approach performs
three main steps.

1. Sampling: Generate a volumetric grid and compute
a scalar field (e.g, a signed distance field) at its corner
grid points.

2. Operation: For each geometric operation (union or
intersection), perform an analogous operation (e.g.,
min/max) on the scalar fields of the primitives. At
the end of this step, the scalar values at the grid points
define a sampled scalar field for E .

3. Reconstruction: Perform isosurface extraction using

(a) Union (b) Sampling and Operation (c) Reconstruction

Figure 1: Sampling and reconstruction: This figure shows how to perform a union operation using the sampling
and and reconstruction approach. The sampling step generates a volumetric grid (shown as a uniform grid). At
each grid point, it computes a signed distance to the boundaries of each of the two primitives, P and Q. Next,
a minimum operation is performed on the two signed distances. This generates another distance field on which
the reconstruction is performed using an MC-like algorithm. The rightmost figure shows the reconstruction,
which is an approximation to the union.

an MC-like algorithm to obtain a polygonal approxi-
mation A of E .

This approach is illustrated in Fig. 1. We will refer to E as
the exact isosurface and A as the extracted isosurface or the
reconstructed isosurface.

Figure 2: Accuracy problems with MC-like meth-
ods: This figure highlights the errors that can be
present in the output when MC-like methods are used
to reconstruct surfaces with thin features. The left
image shows the “gun model” of the Bradley Fight-
ing Vehicle, which is generated using 8 Boolean opera-
tions. The right image shows the output of a MC-like
algorithm (dual contouring) on a distance field sam-
pled on a uniform 64 × 64 × 64 grid. The output has
many artifacts such as unwanted holes and extrane-
ous handles.

Two important advantages of the above approach are sim-

plicity and efficiency. Each step is easy to implement. A
uniform grid or an adaptive grid (e.g. octree) may be cho-
sen. Geometric operations such as union or intersection are
cheap – we only need to perform simple min/max opera-
tions on the corresponding scalar fields. Isosurface extrac-
tion is also reasonably straightforward: MC-like algorithms
are both simple and fast. Many public domain implementa-
tions of MC-like algorithms [12] are available.

Challenges/Issues: The above approach produces an ap-
proximation A to the final surface E . The accuracy of the
approximation mainly depends on the resolution of the un-
derlying grid. Insufficient grid resolution can result in a poor
approximation. This occurs especially if E has small com-
ponents, thin sheets, or needle-shaped features. A may suffer
from various kinds of errors: small components or handles
present in E may not be captured in A. The process of re-
construction may also introduce “extraneous topology”, i.e.,
Amay have unwanted additional components or undesirable
handles that were not present in E . Fig. 2 shows an example
of such a situation.

The above problems occur on account of inadequate res-
olution of the grid. Therefore, to alleviate these problems,
many applications generate samples on a fine grid. However,
the use of fine grid can result in three problems. First, there
may still be no guarantees on the accuracy of A. Second,
a fine grid increases the storage overhead and the recon-
structed surface can have a high number of polygonal prim-
itives. Finally, it is computationally expensive to use a fine
grid. Recent work on adaptive grid generation and subdivi-
sion algorithms overcomes some of these problems [10, 13].
However, none of these algorithms give rigorous guarantees

on the accuracy of A.

Goals: Our goal is to ensure an accurate approximation by
providing geometric and topological guarantees on A. In
particular, we wish to ensure that A has a bounded two-
sided Hausdorff error, and is topologically equivalent to E .
The Hausdorff error measures the surface deviation between
A and E ; bounding this error is important to ensure a geo-
metrically close approximation.

Preserving topology is also important in many applica-
tions. In CAD, topological features such as tunnels often
correspond to distinguishing characteristics of the model.
The geometric models used to represent the organs in med-
ical datasets often consist of handles. Retaining these topo-
logical features can be necessary in order to preserve the
anatomical structure of the organ, which can be crucial for
visualization and analysis. Apart from capturing important
features present in E , guaranteeing topology is important
for another reason. An algorithm that preserves topology
avoids the introduction of extraneous topology; its output
does not have unwanted additional components or handles,
and is immune from the kinds of errors shown in Fig. 2.

Main Contributions: We present a novel approach to
compute a topology preserving isosurface using an MC-like
algorithm for geometry processing applications. We present
conservative sampling criteria such that if every cell in the
volumetric grid satisfies the criteria, then the extracted iso-
surface will have the same topology as the exact isosurface.
We present an adaptive subdivision algorithm to generate a
volumetric grid such that every grid cell satisfies the sam-
pling criteria. We present efficient computational techniques
to verify the sampling criteria during grid generation. Our
algorithm can easily perform these computations on poly-
hedra, algebraic or parametric primitives and their Boolean
combinations. Furthermore, we extend the adaptive subdi-
vision algorithm to also bound the Hausdorff distance be-
tween the exact isosurface and the extracted isosurface. This
ensures that the extracted isosurface is geometrically close
to the exact isosurface.

We have used our algorithm to perform accurate bound-
ary evaluation of Boolean combinations of polyhedral and
low degree algebraic primitives, model simplification, and
remeshing of complex models. In each case, we compute a
topology preserving polygonal approximation of the bound-
ary of the final solid. The running time of our algorithm
varies between a few seconds for simple models consisting of
thousands of triangles and tens of seconds on complex prim-
itives represented using hundreds of thousands of triangles
on a Pentium IV PC.

Some novel aspects of our work include:

• Conservative sampling criteria for the volumetric grid
such that the topology of the isosurface is preserved.

• An efficient adaptive subdivision algorithm to generate
an octree satisfying the sampling criteria.

• Efficient and accurate algorithms for boundary evalu-
ation of solids defined by Boolean operations.

• A fast algorithm to compute topology preserving sim-
plification and remeshing of a complex polygonal model.

As compared to prior work, the main benefits of our algo-
rithm are its speed, simplicity, and accuracy. It not only
offers the simplicity and efficiency of MC-like reconstruc-
tion, but also the ability to guarantee the topology of the
extracted isosurface.
Organization: The rest of our paper is organized as fol-
lows. Section 2 gives a brief overview of previous work on
isosurface extraction. Section 3 introduces the notation and
definitions used in the rest of the paper. Section 4 presents
an overview of the MC-like methods and analyzes the er-
rors in their output that can be caused due to inadequate
resolution of the grid. In Section 5, we present a sampling
condition on the volumetric grid to ensure topology preser-
vation. In Section 6, we present an adaptive subdivision
algorithm to generate a volumetric grid satisfying the sam-
pling condition. In Section 7, we present a simple technique
to guarantee a tight geometric error bound on the approxi-
mation. Section 8 disusses a few issues that arise when per-
forming isosurface extraction on adaptive grids. In Section
9, we present techniques to improve the performance of the
algorithm. Section 10 discusses the performance of the al-
gorithm. Section 11 describes the implementation of the al-
gorithm, and presents three different applications: Boolean
operations, simplification, and remeshing. Section 12 ana-
lyzes the behavior of the adaptive subdivision algorithm and
presents conditions for its termination. Section 13 discusses
degenerate cases for our algorithm. Section 14 discuss lim-
itations of our approach. Sections 15 and 16 conclude the
paper and present directions for future work.

2. PRIOR WORK ON ISOSURFACE EXTRAC-
TION

Given a continuous scalar field f : Rd → R and a scalar
value s, the isosurface with isovalue s is the set, {x ∈
Rd | f(x = s}, of points with identical scalar value s. Iso-
surface extraction refers to the process of constructing a
(usually piecewise linear) approximation to the isosurface.
In this section, we focus only on isosurface extraction in R3.
Even this topic has been extensively studied, and we do not
attempt to survey the entire literature on this topic. We
refer the reader to [14,15] for additional pointers.

The problem of isosurface extraction originated in two
disparate domains – volumetric visualization and implicit
modeling. We start by giving a brief overview of isosurface
extraction methods in volumetric visualization and implicit
modeling (Sections 2.1 and 2.2). Next we describe March-
ing Cubes [2] – the most popular method for isosurface ex-
traction – and many of its variants (Section 2.3). Then we
discuss various topological considerations during isosurface
extraction (Section 2.4). We discuss a number of isosurface
extraction methods that provide some form of topological
guarantees on their output.

2.1 Volumetric Visualization
In volumetric visualization, isosurface extraction was used

as a tool to visualize volumetric datasets acquired experi-
mentally, e.g., medical datasets obtained using magentic res-
onance imaging (MRI), Computed Tomography (CT) [2,16–
19]. Isosurface extraction was used to visualize the boundary
of some important feature – typically, an anatomical organ.

The boundary corresponds to a region of constant value in
the volumetric data. Volumetric datasets are also gener-
ated during scientific simulations in computational compu-
tational fluid dynamics (CFD) [20] and molecular dynam-
ics [21]. Isosurface extraction was used to expose contours of
constant value for understanding the structure of the scalar
field. These contours isolate surfaces of interest, focusing
attention on important features in the data such as material
boundaries and shock waves.

2.2 Implicit Modeling
Implicit modeling became popular because of the simplic-

ity and versatility of implicit representations in performing
a wide variety of geometric operations. Many operations
such as Boolean operations, offsetting, blending, warping,
and sweep can be expressed elegantly using implicit repre-
sentations [6,8,22–25]. Because of these advantages, implicit
modeling techniques have been used by a large number of
applications including geometric modeling [3, 4, 9–11], vol-
ume rendering [26], surface reconstruction [27–29], remesh-
ing [3, 30], swept volume computation [31], animation [6],
and sculpting digital characters [10]. Despite the above ad-
vantages of the implicit representation, many applications
such as graphical rendering, collision detection, dynamic
simulation, and model verification use an explicit represen-
tation such as a polygonal mesh representation. Isosurface
extraction techniques are used to convert implicit surfaces
to an “explicit form”, i.e., a polygonal mesh approximat-
ing the implicit surface. Wyvill et al. [6] developed one of
the early isosurface extraction methods for polygonizing im-
plicit surfaces. Bloomenthal [7] developed another method
that adaptively sampled the implicit function by surround-
ing the implicit surface by an octree. Subsequently, a large
number of methods were developed for polygonizing implicit
surfaces [3–5,10,32–41].

2.3 Marching Cubes
The Marching Cubes algorithm (MC), proposed by Lorensen

and Cline [2], is a standard method to extract an isosurface
from a volumetric dataset with scalar values. It performs re-
construction by extracting surfaces separately in every cell
in a volumetric cubic grid. The algorithm iterates through
all cells in the grid, hence the term marching cubes. Since
each of the 8 vertices of the cubic cell can be either positive
or negative, there are 28 = 256 possible sign configurations.
Lorenson & Cline used symmetries between different sign
configurations to reduce them to 15 basic cases. They stored
each of these cases in a look-up table, and used it to find the
polygonal approximation of the isosurface in a given cell.

The original Marching Cubes algorithm examined all cells
in the data set even though typically the isosurface intersects
only a small subset of the cells. Wilhelms and Gelder [42]
estimated that MC spent between 30% and 70% of the total
time examining empty cells that do not intersect the iso-
surface. A tremendous amount of research has focused on
reducing the number of cells visited while constructing an
isosurface [42–45].

Another drawback of the original MC algorithm was that
it generated an excessively large number of triangles to rep-
resent the isosurface. To overcome this drawback, many

methods were developed for performing isosurface extrac-
tion adaptively using hierarchies such as octrees or k-D trees
[4, 7, 13,32,33,46–48].

A large number of variants of MC have also been devel-
oped that suggest alternative ways of reconstructing the iso-
surface within the cell [3–5,10,38,40,41,49].

Implicit surfaces defined in terms of Boolean operations
usually have sharp edges or corners. When MC is used for
polygonizing such implicit surfaces, the output usually has
aliasing artifacts in the vicinity of the sharp features. Re-
cently, a few extensions have been proposed that can re-
construct sharp features and reduce aliasing artifacts in the
reconstructed model [3–5,37].

2.4 Topological Considerations in Isosurface
Extraction

2.4.1 Topological Ambiguity
In the original Marching Cubes algorithm, some of the

base cases were ambiguous. Given a face of a cube with two
diagonally opposite corners above the surface, and the other
two below the surface, some of the basic cases assumed that
the higher corners fell inside the same connected component
of the surface, while others assumed that they did not. Since
each face of a cube was shared with an adjacent cube, it was
possible to generate surfaces with holes by accident. This
was noted by Durst [50], and many solutions were proposed
[51–53].

The above algorithms deal with the problem of extracting
a surface from a fixed volumetric data set. The continu-
ous scalar field is not available for resampling. Since the
scalar values are available only on the vertices of the cell,
they model the scalar field in the interior of the cell. For
example, the algorithms by [53–55] model the scalar field
as a trilinear function that interpolates the scalar values at
the vertices of the cell. Then they extract a surface that
is topologically equivalent to the isosurface of the trilinear
function. However, due to inadequate resolution of the data
set, the trilinear function may not be an accurate model of
the continuous scalar field. Hence the output of these algo-
rithms need not be topologically equivalent to the isosurface
of the continuous scalar field.

2.4.2 Topology Control and Simplification
Many volumetric approaches have used topological prop-

erties for generating an isosurface without additional han-
dles or cavities from scanned data sets [30, 56, 57]. Often
the input data contains noise due to the scanning process.
During isosurface extraction, the inaccuracies in the input
data result in a surface whose genus is much higher than the
actual surface. In many applications, the topological type
of the object under consideration is known beforehand, e.g.,
the cortex of a human brain is always homeomorphic to a
sphere [57]. These methods exploit such a priori knowledge
to eliminate unwanted handles that arise from the noise.

2.4.3 Topology Preserving Implicit Surface Polygo-
nization

Few methods based on Morse theory [35,36,39] can guar-
antee a topology preserving polygonization of implicit sur-
faces. These methods assume that the implicit surface is

smooth and require computation of all the critical points of
the implicit surface.

Snyder [58] and Plantinga and Vegter [59] have presented
adaptive subdivision methods for computing a isotopic ap-
proximation of an implicit curve/surface. These methods
check whether the implicit curve/surface is locally parametriz-
able with respect to one of the axes of the cell. If a cell fails
the condition, it is subdivided and the algorithm is recur-
sively applied to the subdivided cells.

All the above methods assumes that the implicit surface
is smooth. It is not clear how to apply them to perform
Boolean combinations where the final surface is not smooth
and whose topology can be very different from those of the
input primitives.

3. NOTATION AND PRELIMINARIES
Input

We assume that the exact surface E is obtained by per-
forming Boolean operations (union, intersection, difference,
complement) on a set of primitives in R3. The input to our
algorithm is a Boolean expression and a set Γ = {P1, . . . ,Pn}
of primitives.

We assume that each primitive Pi is a closed 2-manifold,
and is either a polyhedral or an algebraic object. We assume
each Pi bounds a solid, which we denote as P̃i. The Boolean
operations are performed on the solids P̃i, which yields a
final solid Ẽ . The exact surface is the boundary of Ẽ and is
denoted as E . We assume that E is a closed 2-manifold.

Output
The output of our algorithm is a polygonal approximation
A to the exact surface E .

Notation
We introduce the notation used in the rest of this paper.

• Lower case bold letters such as p, q refer to points
in R3. Upper case letters such as P,Q,P1 refer to
geometric primitives. We assume that each primitive
is a closed manifold. Each primitive bounds a solid,
which we will refer to as the primitive solid, and
denote it as P̃ .

• Boolean operations are defined on primitive solids. P̃1∪
P̃2, P̃1 ∩ P̃2, P̃1 \ P̃2 denote union, intersection, and

difference operations on P̃1 and P̃2 respectively.

Let S̃ denote a solid defined by Boolean operations.
By a slight abuse of notation, we will use S̃ to also
refer to the Boolean expression of the solid, which
is the expression that defines S̃ in terms of Boolean
operations over a set of primitive solids, e.g., S̃ = P̃1∪
P̃2. A Boolean expression of a surface S is defined as
the Boolean expression of the corresponding solid S̃.

• The abbreviation w.r.t means with respect to.

• ∂S, S, int S, and cl S respectively denote the bound-
ary, complement, interior and closure of a set S.

• Let d ≥ 1 be an integer. Let o be the origin of Rd.
Sd−1 and Bd denote the (d − 1)-dimensional sphere

and d-dimensional ball respectively. They are defined
as:

Sd−1 = {x ∈ Rd | |xo| = 1}
Bd = {x ∈ Rd | |xo| < 1}

Also define the 0-ball B0 = {o}.

• Our algorithm uses a volumetric grid in R3. Unless
otherwise stated, the grid is assumed to be an octree
[60]. The letter C will refer to a single grid cell. When
referring to the cell as a geometric primitive, we will
refer to it as a voxel. The boundary of a cell consists
of faces, edges, and vertices. A cube-shaped grid cell
consists of one voxel, six faces, twelve edges, and eight
vertices. All of them are assumed to be closed sets.
The symbols ϑ, f , e, and v will refer, respectively, to
a voxel, a face, an edge, and a vertex.

Let c be an edge/face/voxel of a cell C. The size of c,
denoted as ‖c‖, is the maximum distance between any
two vertices in c. The size of C, denoted as ‖C‖, is
the size of its voxel. The width of c is the minimum
distance between any two vertices in c. The width of
C is the width of its voxel.

• By a restriction of a set S w.r.t another set T , we mean
S ∩ T , which is denoted as ST . In particular, we will
use the following notation frequently.

The restrictions of E w.r.t a cell C, voxel ϑ, a face
f , or an edge e are denoted as EC , Eϑ, Ef , and Ee

respectively. Similarly, we can define AC , Aϑ, Af ,
and Ae. The restriction w.r.t the cell is defined as the
restriction w.r.t the voxel of the cell.

• A homeomorphism is a continuous bijective map-
ping with a continuous inverse [61]. Two objects P
and Q are topologically equivalent if there exists
a homeomorphism H : P → Q. We denote this as
P ≈ Q.

We will call an object P a topological disk if P ≈ Bd

for d > 0.

An object is d-manifold if every point has a neigh-
borhood that is topologically equivalent to Rd.

A manifold is connected if for any two points on the
manifold, there exists a path between them in the set.
If two points p ∈ S and q ∈ S are connected in a set

S, we denote this as p
S←→ q.

A manifold is said to be simply connected if any
simple closed curve on the manifold can be shrunk to
a point continuously in the set.

• Let d(p, q) denote the distance (in a suitable met-
ric) between two points p,q ∈ Rn. Unless explicitly
stated, the metric is assumed to be Euclidean. Given
a set Q, we define the distance between a point p and
Q as follows:

d(p,Q) = min{d(p, q) | q ∈ Q}

The diameter of a set P is defined as:

diam(P) = max{d(p1, p2) | p1, p2 ∈ P}

(a) Unreliable Detection (b) Unreliable Reconstruction

Figure 3: Errors in MC-like reconstruction: When the isosurface has complicated features, MC-like methods
are unreliable, and may produce inaccurate output. Fig. (a) shows three cases where the isosurface intersects
the cell, but the MC-like methods cannot detect the presence of the isosurface with the cell. In these cases,
MC-like methods produce no output within the cell. Fig. (b) shows a case where they output a polygon, but they
do not reconstruct the surface component in the interior of the cell.

The one-sided Hausdorff distance between two sets P
and Q is defined as follows:

h(P,Q) = max{min d(p,Q) | p ∈ P}

Note that the above definition is not symmetric, i.e.,
h(P,Q) is not necessarily equal to h(Q,P). h(P,Q)
and h(Q,P) are also referred to as the forward and
backward Hausdorff distances respectively. The two-
sided Hausdorff distance is defined as:

H(P,Q) = max(h(P,Q), h(Q,P))

4. RELIABILITY OF MC-LIKE RECONSTRUC-
TION

4.1 Overview of Marching Cubes
We give a brief overview of the original Marching Cubes

algorithm [2]. Given a continuous scalar field, f : R3 → R
and a scalar value s, an isosurface with isovalue s is the set,
{p | f(p) = s}, of points with identical scalar value s. In
the following discussion, we will assume that the isovalue s
is zero. Marching Cubes (MC) is a simple method for gener-
ating a polygonal reconstruction A of an isosurface E in R3.
The input to MC is a volumetric cubic grid with a scalar
value at each grid vertex. MC performs reconstruction by
extracting surfaces separately in every grid cell. The algo-
rithm iterates through all grid cells, hence the term march-
ing cubes. The algorithm operates on a single grid cell C to
produce a polygonal approximation AC of EC .

1. Classification: Classify each vertex of C as inside or
outside E . We refer to this inside/outside classifica-
tion as the sign of the vertex. The sign of a point p
is defined as the sign of the scalar value f(p). The
signs at the 8 vertices of C define a sign configuration
(s1, . . . , s8) where si is 1 if the ith vertex is positive
and 0 otherwise, i = 1, . . . , 8.

2. Detection: Test if E intersects C, i.e., if EC = E∩C 6=
∅. This test is performed by checking if C exhibits a

sign change, i.e., not all the vertices of C have the
same sign. In this case, proceed to Step 3. On the
other hand, if all the grid vertices of C have the same
sign, then assume that EC = ∅ and do not perform a
reconstruction within C.

3. Reconstruction:

• For each edge of C whose endpoints have different
signs, estimate an edge point by linear interpola-
tion of the scalar field along the edge.

• Use the edge points enumerated in Step 2 to con-
struct one or more polygonal facets separating the
vertices with different signs. This is done as per
the sign configuration of C. Since each of the 8
vertices of a cube can be either positive or nega-
tive, there are 28 = 256 possible sign configura-
tions. Lorenson & Cline [2] used symmetries be-
tween different sign configurations to reduce them
to 15 basic cases. They stored each of these cases
in a look-up table, and used them to find AC .

The union of AC over all the grid cells produces the recon-
structed isosurface A.

In recent years, a large number of MC-like algorithms have
been developed [3–5, 49] . All of them follow the same gen-
eral approach outlined above.

4.2 Geometric and Topological Errors
MC-like methods rely on the sign configuration of a cell

C for two tasks: (a) to detect the isosurface, i.e., if EC 6= ∅
and (b) to reconstruct EC – the portion of the isosurface
within the cell. The reliance on sign configuration is merely
a heuristic and not a fool-proof test.

There can be two kinds of problems:

• Unreliable Detection: MC-like methods may wrongly
assume that E does not intersect C and perform no re-
construction within C (Fig. 3(a)).

• Unreliable Reconstruction: MC-like methods pro-
duce AC by indexing into a lookup table using the sign

(a) Geometric Error

(b) Topological Error

Figure 4: This figure shows 2D examples where MC-
like methods produce output with geometric and topo-
logical errors. In Fig (a), a feature present at the top
of E has not been captured in A. In Fig (b) A does
not capture all the components present in E

configuration of C. The sign configuration of C may
not adequately capture EC . As a result, AC may be a
poor approximation to EC (Fig. 3(b)).

The above two problems can lead to both geometric errors
and topological errors in A. We discuss each of them sepa-
rately.

4.2.1 Geometric Errors
The inability of MC-like methods to detect E reliably can

lead to a large geometric error in A. See Fig. 4(a). One
way of measuring the geometric error of A is to compute
the Hausdorff distance between E and A. For a definition of
Hausdorff distance, see Sec. 3. From now on, we will assume
that the geometric (or Hausdorff) error of A is equal to the
two-sided Hausdorff distance H(A, E).

While it is possible for MC-like methods to guarantee
a bound on the one-sided Hausdorff distance h(A, E), this
guarantee is applicable only one-way: They do not bound
the backward distance h(E ,A); there can be points on E
that are far from A. See Fig. 4(a). Thus the geometric
error H(A, E) can be quite large; consequently, A can be a
poor approximation to E .

4.2.2 Topological Errors
The problems of unreliable detection and unreliable re-

construction can cause topological errors in A. Due to un-
reliable detection, MC-like methods may miss small surface

components or handles present in E . As a result, these fea-
tures may not be captured in A. See Fig. 4(b).

Due to the problem of unreliable reconstruction, the topol-
ogy of AC in a cell C may not match the topology of EC .
This can introduce “extraneous topology” in A, i.e., A may
have unwanted additional components or undesirable han-
dles that were not present in E (Fig. 2).

4.2.3 Sampling Issues
The above geometric and topological errors occur due to

insufficient resolution of the volumetric grid. These errors
could be avoided by choosing a grid with a sufficiently high
resolution. The main question that arises is how much reso-
lution is sufficient to ensure an accurate approximation. Our
goal is to come up with a condition for what constitutes a
sufficient resolution of the volumetric grid.

Our overall approach proceeds by sampling and recon-
struction. In any approach based on sampling and recon-
struction, the key to an accurate output is to ensure that
the sampling satisfies the requirements of the reconstruc-
tion. The nature of requirements depend on the reconstruc-
tion method. To ensure accuracy of MC-like reconstruction
methods, we impose the following requirements on the sam-
pling.

We require that the every cell in the volumetric grid must
satisfy two requirements:

1. Reliable Detection: EC 6= ∅ if and only if C exhibits
a sign change.

2. Reliable Reconstruction: EC ≈ AC ≈ B2.

Failure to satisfy the above requirement implies an insuffi-
cient rate of sampling for MC-like reconstruction methods,
which can cause both geometric and topological errors in A.
We avoid these errors by using a sampling condition that
enforces the requirement. We present this condition in the
following section.

5. SAMPLING CONDITION
We present a sampling condition that ensures accuracy

during isosurface extraction. If the volumetric grid satis-
fies the sampling condition, then we can apply an MC-like
method to obtain an approximation A with a bounded two-
sided Hausdorff error and same topology as E .

We first address the issue of ensuring that MC-like meth-
ods preserve topology during isosurface extraction. We defer
the problem of bounding the geometric error to Sec. 7. We
can achieve our goal of topology preservation by making sure
that the requirements of MC-like methods are satisfied, i.e.,
E should intersect a grid cell C in a simple manner, and
should have a simple topology within C. In particular, we
ensure that EC is a topological disk. We present a simple
condition to ensure this property. Then we show that this
condition is sufficient – if the every cell in the volumetric
grid satisfies this condition, then an MC-like method can be
reliably applied to the grid to obtain a topologically correct
approximation.

Our sampling condition consists of two geometric crite-
ria: complex cell criterion and star-shaped criterion. For
these criteria to be well defined, we require that the iso-
surface intersect the grid cells in a non-degenerate manner.

Figure 5: Grazing Contact: This figure shows (in
2D) two instances of an isosurface touching the
boundary of a grid cell. Our algorithm requires that
all the grid cells satisfy a non-degeneracy condition
that prohibits such contacts.

We present the non-degeneracy requirement followed by the
sampling criteria.

5.1 Non-Degeneracy Condition
We require that the isosurface should not graze the bound-

ary of the cell. See Fig. 5. To avoid such situations, we re-
quire that the grid cells satisfy a non-degeneracy condition.

Edelsbrunner & Shah [62] presented a condition for non-
degeneracy in context of Delaunay triangulation. We use
their condition to define a non-degenerate intersection of E
and a grid cell C. Let c denote a voxel, face, or edge of C.
We say E intersects c generically if

1. E ∩ c = ∅ or

2. E ∩ (int c) = relative int(E ∩ c) and E ∩ c has the right
dimension where the right dimension for a voxel, a
face, and an edge is 2, 1, and 0 respectively.

DEFINITION 1 A cell is non-degenerate if E inter-
sects each of its voxel, faces, and edges generically.

5.2 Complex Cell Criterion
We define a voxel (face) of a grid cell to be complex if

it intersects E and the grid vertices belonging to the voxel
(face) do not exhibit a sign change (see Figs. 6(a) & 6(b)).
An edge of the grid cell is said to be complex if E intersects
the edge more than once (see Fig. 6(c)).

MC-like methods that operate on cubical grid cells cannot
handle certain sign combinations in a topologically reliable
manner. There are two types of ambiguity — face ambiguity
and voxel ambiguity [51]. When the signs at the vertices of a
single face alternate during counterclockwise (or clockwise)
traversal, the resulting configuration is a face ambiguity. A
voxel ambiguity results when any pair of diagonally opposite
vertices have one sign while the other vertices have a differ-
ent sign (see Fig. 6(d)). We refer to both face ambiguity
and voxel ambiguity as an ambiguous sign configuration.

DEFINITION 2 1. Complex cell: A non-degenerate
cell is complex if it has a complex voxel, complex face,
complex edge, or an ambiguous sign configuration.

2. Complex cell criterion (C2) : A non-degenerate
cell C satisfies C2 if C is not complex.

Figure 7: Star-shaped Primitive The figure shows a
star-shaped primitive and its kernel (shaded region in
the middle). P is a guard of the kernel.

Intuitively, the complex cell criterion ensures that E in-
tersects C in a simple manner most of the times. However,
this criterion by itself is not sufficient. There are cases where
a C may not be complex, but EC may have a complicated
topology (see Figs. 6(e) & 6(f)). In such cases, AC will be
a poor approximation to EC . In Fig. 6(e), MC-like methods
miss the surface component present in the interior of the
cell1. Similarly in Fig. 6(f), MC-like methods will not re-
construct the handle present in E . We avoid such situations
by enforcing a star-shaped criterion within all the grid cells.

5.3 Star-shaped Criterion
We begin by defining the star-shaped property. We con-

sider a few cases:

1. Let S be a d-dimensional nonempty subset of Rd. The
set Kernel(S) consists of all s ∈ S such that for any
x ∈ S, we have sx ⊆ S. Set S is star-shaped if
Kernel(S) 6= ∅. We call a point belonging to Kernel(S)
a guard of S. Intuitively, a guard can see every point
within a star-shaped primitive. See Fig. 7.

2. Let S be a (d− 1)-dimensional closed manifold in Rd.
The set Kernel(S) consists of all o ∈ Rd such that for
any x ∈ S we have ox ∩ S = {x}. S is star-shaped
if Kernel(S) 6= ∅. A point belonging to Kernel(S) is
a guard of S. We assume that E is a 2-manifold in
R3. Therefore we use this definition when we say E is
star-shaped.

3. Next we define the star-shaped property for a cell. We
say E is star-shaped with respect to (w.r.t) a voxel ϑ if
there exists a point o ∈ R3 such that for any x ∈ Eϑ =
E ∩ϑ we have ox∩Eϑ = {x}. Point o is a guard of Eϑ.
We note that it is not required to lie within the voxel.
This makes the condition less restrictive.
Consider a face f . We treat Ef = E ∩ f as a curve in
R2. Let Πf denote the plane containing f . We say E is
star-shaped w.r.t f if there exists a point o ∈ Πf such
that for any x ∈ Ef , we have ox ∩ Ef = {x}. Point o
is a guard of Ef . We define E to be star-shaped w.r.t a
cell if it is star-shaped w.r.t the cell’s voxel, and each
of its faces.

DEFINITION 3 Star-shaped criterion (CF) : A cell
C satisfies CF if E is star-shaped w.r.t C.

1We cannot detect the presence of the internal surface com-
ponent and reconstruct it independently because we do not
have an explicit representation of E .

Figure 6: Complex cell and Star-shaped Test Cases: This figure shows the different cases corresponding to the
complex cell and star-shaped test. Figs (a), (b), (c) and (d) show cases of complex voxel, complex face, complex
edge, and topological ambiguity. The white and black circles denote positive and negative grid points respectively.
Fig. (e) shows the case where the isosurface is not star-shaped w.r.t a voxel. In Fig (f), the restriction of the
isosurface to the right face of the cell is not star-shaped.

The surface is star-shaped w.r.t the cell in Figs. 6(a), (b),
(c). On the other hand, Figs. 6(e) & 6(f) show cases where
the surface is not star-shaped w.r.t a voxel or a face of the
cell.

5.4 Topology Preserving Isosurface Extraction

DEFINITION 4 A cell C satisfies C2F if

1. EC = ∅ or

2. (a) C is non-degenerate,

(b) C satisfies C2, and

(c) C satisfies CF.

3. If C satisfies C2F, we refer to it as a C2F-cell.

We now present our main result on topology-preserving
isosurface extraction: If all the grid cells are C2F-cells, then
MC-like algorithms extract an approximationA that has the
same topology as E . In order to prove this result, we first
show that the intersection of E with a voxel, face, or edge
is homeomorphic to a disk in the right dimension (provided
the intersection is non-empty). This property is then used
to establish topological equivalence. We begin by defining
the properties of MC-like methods.

5.4.1 Properties of MC-like Reconstruction Methods
Recall that A is a piece-wise linear approximation of E

obtained by performing isosurface extraction using an MC-
like method. We require that the MC-like method satisfy
the following properties:

Property 1: The signs of the scalar field at all the grid ver-
tices are preserved during isosurface extraction; every grid
vertex has an identical sign w.r.t both E and A.

This property is satisfied by the original Marching Cubes
algorithm [2] and most of its extensions [3, 49]. However,
there are a few methods such as Dual Contouring [4] that
may not satisfy the property. We propose an extension to
the Dual Contouring algorithm that satisfies the property
(Sec. 8).

Property 2: Let c be an edge, face, or voxel of a cell C
such that c exhibits a sign change, i.e., not all the vertices
of c have the same sign. If C is a C2F-cell then

Ac ≈ Bk

(a) (b)

Figure 8: Intersection Curves: Fig. (a) supports
proof of Lemma 2. It shows a grid cell face f and
the intersection of E with f . The figure shows the in-
tersection curve consisting of two curve components,
one of which is closed. As a result, it is not star-
shaped. Fig. (b) shows the case where the curve has
two boundary curves. This results in a face ambigu-
ity.

where k is 0, 1, or 2 depending on whether c is an edge, face,
or a voxel.

Consider an edge e that exhibits a sign change. MC-like
algorithms output one intersection point along e. Therefore,
we have Ae ≈ B0.

Let c be a face or voxel of a C2F-cell cell. The sign config-
urations for which MC-like reconstruction is not a topologi-
cal disk are topologically ambiguous. Because C2F-cells, by
definition, are not topologically ambiguous, the remaining
sign configurations always result in a reconstruction such
that Ac ≈ Bk. This is a property of MC-like reconstruction
methods.

5.4.2 Proof of Topology Preserving Reconstruction

LEMMA 1 Let e be an edge of a C2F-cell such that Ee 6= ∅.
Then

(i) Ee ≈ B0

(ii) Ae ≈ B0

Proof:
(i) Because Ee 6= ∅, edge e intersects E . There has to be
exactly one intersection point: otherwise e will be complex.
Therefore, Ee ≈ B0.

(ii) Because e is not complex and intersects E , e will exhibit
a sign change. By Property 2, we have Ae ≈ B0.

2

DEFINITION 5 • A set P ⊆ S is a component of
surface S if P is connected and there exists no point

p ∈ P such that p
S←→ q for some point q ∈ S \ P.

• We call a component P a component with bound-
ary if it has a nonempty boundary. Otherwise, we call
P a closed component.

Similar definitions also hold in 2D for components of curves.

LEMMA 2 Let f be a face of a C2F-cell such that Ef 6= ∅.
Then

(i) Ef ≈ B1

(ii) Af ≈ B1

Proof: (i) We will show that Ef is a curve component with
boundary, or in short, a boundary curve. Ef can have no
closed component. We prove this by contradiction. Suppose
Ef has a closed component. Then Ef cannot have any other
curve component because it will contradict the fact that Ef

is star-shaped w.r.t f (see Fig. 8(a)). But if Ef is a single
closed component, then f is a complex face. Therefore, Ef

cannot have any closed components.
This means that Ef consists of a set of boundary curves.

We will show that there exists only one boundary curve. We
will prove this by contradiction. Suppose that Ef has mul-
tiple boundary curves. The complex edge criterion ensures
that a boundary curve intersects exactly two edges of the
face f . It also ensures that two boundary curves cannot in-
tersect the same edge. Therefore, Ef can have at most two
boundary curves, each intersecting two edges of f . However,
this results in a face ambiguity (see Fig. 8(b)). Hence, Ef

can have only a single boundary curve. This means Ef ≈ B1.

(ii) f intersects Ẽ . Because f is not complex, it must exhibit
a sign change. By Property 2, we have Af ≈ B1.

2

LEMMA 3 Let ϑ be a voxel of a C2F-cell such that Eϑ 6= ∅.
Then

(i) Eϑ ≈ B2

(ii) Aϑ ≈ B2

Proof: (i) We prove that Eϑ cannot contain any closed
component. Similar to the proof of Lemma 2, the presence
of a closed component would imply that either the primitive
is not star-shaped w.r.t. ϑ, or ϑ is a complex voxel.

We now prove that Eϑ has at most one surface component
with a boundary and is connected. The boundary of each

surface component corresponds to a boundary curve on the
faces of the cell. From the result of Lemma 2, each face
contains only one boundary curve. Furthermore, the com-
plex face and complex edge criteria preclude the boundary
curve from intersecting one or two faces. Therefore, each
boundary curve intersects at least three faces. Since each
face can have at most one boundary curve, Eϑ cannot have
more than two surface components. The only way there can
be two surface components is if two diagonally opposite cell
vertices are inside the primitive while the others are outside
(see Fig. 6(d)). This is the case of a voxel ambiguity. There-
fore, Eϑ has at most one surface component with a boundary
and is connected.

To show that Eϑ is a topological disk, we show that Eϑ is
a simply connected surface. Suppose that Eϑ is not simply
connected. This means that Eϑ has two or more boundaries.
The remainder of the proof is similar to the above argument.
Existence of two boundaries results in a voxel ambiguity.
Therefore, Eϑ is simply connected. This proves that Eϑ is a
topological disk. This concludes the proof.

(ii) ϑ intersects Ẽ . Because ϑ is not complex, it must exhibit
a sign change. By Property 2, we have Aϑ ≈ B2.

2

THEOREM 1 If all the grid cells are C2F-cells, then

E ≈ A

Proof: Lemmas 1, 2, and 3 establish that the restrictions
of E and A to the edges, faces, and voxels of the grid are
homeomorphic to each other. This fact can be used to con-
struct a homeomorphism H between E and A inductively.
We first define H on the edges, then faces, and finally voxels
of the grid.

Edge Case: Consider an edge e of the grid that intersects
E . According to Lemma 1, e intersects both E and A once.
Let p and q be the intersection of e with E and A respec-
tively. We define He(p) = q. In this manner, we define
homeomorphism on the edges of the grid.

Face Case: Consider a face f of the grid such that Ef 6= ∅.
According to Lemma 2, both Ef ≈ B1 and Af ≈ B1. There-
fore, there exists a homeomorphism between Ef and Af .
However, for our purpose, any homeomorphism does not
suffice. We need to define a homeomorphism is consistent
with the homeomorphisms defined on the edges of face f .

The complex edge criterion ensures that Ef must intersect
two edges bounding the face. Let e1 and e2 be the two
edges. E intersects e1 and e2 at intersection points p1 and
p2, where p1 = Ee1 , and p2 = Ee2 . By Lemma 1, A also
intersects e1 and e2 at intersection points q1 and q2, where
q1 = Ae1 , and q2 = Ae2 . See Fig. 9.

Because Ef ≈ B1, there exists a homeomorphism H1 :
[0, 1] → Ef such that H1(0) = p1 and H1(1) = p2. Simi-
larly, there exists a homeomorphism H2 : [0, 1] → Af such
that H2(0) = q1 and H2(1) = q2. Define a face homeomor-
phism Hf : Ef → Af as Hf = H2 ◦ H−1

1 (Fig. 9).

Figure 9: Face Homeomorphism: This figure shows
how to construct a homeomorphism between Ef and
Af on a face f . The homeomorphism is given by H2 ◦
H−1

1 .

Note that Hf is consistent with the homeomorphisms de-
fined on the edges bounding the face. For example, we have

Hf (Ee1) = Hf (p1)

= H2 ◦ H−1
1 (p1)

= H2(0)

= q1

= Ae1

Voxel Case: Consider a voxel ϑ of the grid and let Eϑ 6= ∅.
Let f1, . . . , fk denote the cell faces that intersect Eϑ. Our
goal is to define a voxel homeomorphism Hϑ between Eϑ

and Aϑ that is consistent with the face homeomorphisms
Hfi , i = 1, . . . , k.
Eϑ is bounded by a set Ef1 , . . . , Efk of boundary curves. Eϑ

also intersects k edges of the cell. Let {p1, . . . ,pk} denote
the set of intersection points along the edges. According
to Lemma 3, we have Eϑ ≈ B2. Therefore, there exists
a homeomorphism H1 : Eϑ → B2. Let H1(pi) = ai and
H1(Efi) = li, , i = 1, . . . , k. The points a1, . . . ,ak belong to
∂B2 = S1, and partition S1 into k arcs l1, . . . , lk. See Fig.
10.

Similar arguments hold for Aϑ. Aϑ intersects the same
set of cell faces and cell edges as Eϑ. Aϑ is bounded by a
set Af1 , . . . ,Afk of boundary curves. Aϑ intersects the cell
edges giving rise to a set {q1, . . . ,qk} of intersection points.
Since Aϑ ≈ B2, there exists a homeomorphism H2 : Aϑ →
B2. Let H2(qi) = bi and H2(Afi) = mi, , i = 1, . . . , k. The
points b1, . . . ,bk belong to S1, and partition S1 into k arcs
m1, . . . , mk (Fig. 10).

It is possible to construct a homeomorphism H3 : S1 → S1

that maps li to mi. We can use an argument similar to the
one in the Face Case to construct a homeomorphism Hi

3

between li and mi that maps ai to bi and ai+1 to bi+1. H3

is then defined as an extension of Hi
3, i = 1, . . . , k; H3(x) =

Hi
3(x) if x ∈ li

Figure 10: Voxel Homeomorphism: This figure
shows how to construct a homeomorphism between Eϑ

and Aϑ in a voxel ϑ. The homeomorphism is given by
H−1

2 ◦ H4 ◦ H1.

We can then extend H3 to define a homeomorphism H4 :
B2 → B2. H4 is defined as follows:

H4(0) = 0

H4(x) = ‖x‖2 ∗ H3(x/‖x‖2),x ∈ B2, ‖x‖2 > 0

Since H4 is an extension of H3, it also maps li to mi.
We are now ready to define a homeomorphism Hϑ be-

tween Eϑ and Aϑ. Define Hϑ = H−1
2 ◦ H4 ◦ H1. Hϑ is a

homeomorphism between Eϑ and Aϑ. See Fig. 10. Note
that it is consistent with the homeomorphisms defined on
the faces of the cell. In particular, we have

Hϑ(Efi) = H−1
2 ◦ H4 ◦ H1(Efi)

= H−1
2 ◦ H4(li)

= H−1
2 (mi)

= Afi

We define the homeomorphism H : E → A in terms of the
homemorphisms defined on the edges, faces, and voxels of
the grid.

H(x) = Hϑ(x) if x belongs to a voxel ϑ

= Hf (x) if x belongs to a face f

= He(x) if x belongs to an edge e

2

The above proof assumes that the reconstructed isosur-
face in two adjacent cells matches along the common face
shared by the two cells. While the original Marching Cubes
algorithm ensures this property for uniform grids, apply-
ing the algorithm to an adaptive grid violates the property,
resulting in cracks in the reconstructed isosurface. Several
extensions have been proposed to rectify this problem [4,46].
We assume that one of these algorithms is used for recon-
struction in our applications. We will address this issue in
more detail in Sec. 8.

In the above proofs, we showed that E restricted to a cell
is a topological disk in the right dimension. This topological
disk property is then used to establish topological equiva-
lence of E and A. This property is similar to the topological
ball property proposed by Edelsbrunner & Shah [62]. They
used the topological ball property to ensure topology preser-
vation in the context of Delaunay triangulation. While our
approach shares the goal of topology preservation, it is dif-
ferent in that it is geared towards MC-like reconstruction
methods. The novelty of our overall approach lies in the use
of two simple criteria – complex cell and star-shaped criteria
– to guarantee topology preserving MC-like reconstruction.

6. TOPOLOGY PRESERVING SAMPLING
In this section, we provide adaptive subdivision criteria to

generate a grid such that each grid cell is a C2F-cell. Our
sampling algorithm performs two tests on each grid cell. The
first test checks if a cell satisfies C2 using a cell intersection
query (Sec. 6.1). The second test checks if a cell satisfies
CF using a star-shaped query (Sec. 6.2). If the grid cell fails
to satisfy either of the two tests, the cell is subdivided and
the two tests are recursively applied to the children cells. If
the grid cell satisfies both the tests, the cell is returned as a
leaf node in the octree grid. Fig. 11 shows a 2D illustration
of the adaptive subdivision.

We first describe computational techniques for polyhedral
models and their Boolean combinations, and later extend
them to non-linear primitives. We also discuss details of the
adaptive subdivision algorithm.

6.1 Cell Intersection Query
The objective of cell intersection query is to test if E in-

tersects the cell. Specifically, we need to test if E intersects
a voxel, a face, or an edge of a cell. We refer to these three
tests collectively as cell intersection queries, and individually
as voxel, face, and edge intersection query.

6.1.1 Interval Arithmetic
One technique for performing the cell intersection query is

using interval arithmetic. Early work on interval arithmetic
was done by Moore [63]. Since then, it has been widely used
in a large number of domains including computer graph-
ics [58]. Interval arithmetic is a general technique that is
applicable to a wide variety of primitives. It is well suited
to non-linear primitives. It also extends easily to higher di-
mensions. An overview of interval arithmetic is given in [58].

Given a primitive P defined by an algebraic function f :
R3 → R = 0, we can write an interval form f of the function.
Then we can use f to answer the cell intersection query.
We take advantage of the fact that each edge/face/voxel
corresponds to a product of intervals.

Consider a voxel ϑ of an axis-aligned grid. ϑ corresponds
to a product of intervals defined by two diametrically op-
posite vertices of the voxel. Let vi, i = 0, . . . , 7 denote
the vertices of the voxel. Let vi = (vi.x, vi.y, vi.z). Let
si = vi.x + vi.y + vi.z. Given a set {a1, . . . , an}, ai ∈ R, i =
1, . . . , n, let argmini ai return k if ak = mini ai. arg max is

Figure 12: Voxel Intersection Test: We use the l∞
distance (indicated by the dotted red cube) to perform
a voxel-intersection test. The isosurface intersects
the voxel if and only if l∞ distance between the center
of the voxel (o) and the isosurface is less than half
the voxel size.

defined similarly. Let

p = vk where k = arg min
i

si

q = vl where l = arg max
i

si

The voxel ϑ corresponds to a product of intervals Iϑ =
[p.x,q.x]× [p.y,q.y]× [p.z,q.z].

We can test if the boundary of P intersects ϑ by evaluating
f on Iϑ. We use the following fact:

ϑ intersects the boundary of P if 0 ∈ f(Iϑ)

Interval arithmetic can also handle voxels that are not axis-
aligned by applying a rigid transformation to Iϑ before eval-
uating f .

The conservativeness of interval arithmetic makes the above
intersection test conservative: While the test is guaranteed
to be satisfied by a voxel that intersects the surface, it may
also be satisfied by some voxels that do not actually intersect
the surface. This does not, however, affect the correctness
of our algorithm.

6.1.2 Max-Norm Distance Computation
Another technique to answer the cell intersection query

relies on max-norm distance computation [64]. It is efficient
in practice, and is well suited to polyhedral and low degree
non-linear primitives. Under the max-norm, the distance
between two points p and q (in 3 dimensions) is denoted as
D∞(p,q) and is defined as

D∞(p,q) = max
i
|pi − qi|, i = 1, 2, . . . , 3

We can extend this definition for distance between a point
p and a set Q in R3.

D∞(p,Q) = min
q∈Q

D∞(p,q) (1)

The iso-distance ball, i.e., the set of points at a constant
distance from the origin, under max-norm is a cube; so it
is a natural metric for cubical cells. The above definition
can be extended to cuboids by defining a suitably weighted
version of the max-norm along different dimensions.

(a) 2D Example (b) Correct Topology (c) Bounded Geometric
Error

Figure 11: Adaptive Subdivision: This figure is a 2D illustration of our adaptive subdivision algorithm. Fig.
(a) shows a volumetric grid generated by applying the sampling condition. Fig. (b) shows a topology preserving
approximation obtained by applying an MC-like method to the volumetric grid. Fig. (c) shows an approximation
with a bounded geometric error (see Sec. 7). Our algorithm performs adaptive subdivision until the isosurface
within each cell is a topological disk. We ensure this condition by testing whether a cell is complex and if the
isosurface is star-shaped with respect to the cell. In this figure, cell ABCD was subdivided because it corresponds
to a complex voxel, cells AEFG and FNCP were subdivided because the isosurface within the cell was not star-
shaped and FKLM was subdivided because of topological ambiguity. Edge IJ is complex; as a result, cells AHIJ
and JIQG are subdivided.

For a closed primitive, we use a signed version of the dis-
tance. Let Q denote the boundary of the closed primitive
and let Q̃ be the solid bounded by Q. We define the signed
max-norm distance Ds

∞(p,Q) as follows:

Ds
∞(p,Q) = sign(p,Q) ∗min

q∈Q
D∞(p,q) (2)

where

sign(p,Q) = −1 if p ∈ Q̃
= 1 otherwise

We use max-norm distance computation to check whether
E intersects a voxel of the cell. We use the fact that a
voxel intersects the surface if and only if its unsigned three-
dimensional max-norm (l∞) distance from the center of the
voxel is less than half the size of the cell. This is shown in
Fig. 12. It is formally stated as the following lemma:

LEMMA 4 Voxel Intersection Test Given a voxel ϑ,

Eϑ 6= ∅ ⇔ |Ds
∞(o, E)| = D∞(o, E) ≤ l/2

where o and l are the center and width of ϑ respectively.

Similarly, the face intersection test for a face f can be per-
formed by computing two-dimensional max-norm distance
between the center of f and Ef . In this manner, we can use
max-norm distance to perform the cell intersection query.
We can efficiently compute max-norm distance for a wide
variety of geometric primitives [64].

Boolean Expression
When E is defined by a Boolean expression involving a

number of primitives, it is difficult to compute the signed dis-

tance Ds
∞(p, E) because we do not have an explicit bound-

ary representation of E . Instead, we compute an estimate
D̃s
∞(p, E) of the signed max-norm distance.
The Boolean operations on the primitives define a solid

whose boundary is E . Let Ẽ denote this solid. We per-
form a case analysis on Ẽ to define D̃s

∞(p, E). We note that

D̃s
∞(p, E) is an estimate of the signed max-norm distance;

hence it is also signed.

1. Ẽ is a primitive solid P̃. Let P denote the boundary
of P̃. We have

D̃s
∞(p, E) = Ds

∞(p,P)

2. Ẽ is a union of two solids: Ẽ = Ẽ1 ∪ Ẽ2.

D̃s
∞(p, E) = min(D̃s

∞(p, E1), D̃s
∞(p, E2))

3. Ẽ is an intersection of two solids: Ẽ = Ẽ1 ∩ Ẽ2.

D̃s
∞(p, E) = max(D̃s

∞(p, E1), D̃s
∞(p, E2))

4. Ẽ is the complement of a solid: Ẽ = Ẽ1.

D̃s
∞(p, E) = −D̃s

∞(p, E1)

We use D̃s
∞ to perform the voxel intersection test. D̃s

∞
may not be equal to the actual signed distance Ds

∞ at some
points. However, its absolute value is always less than the
absolute value of Ds

∞. This is stated in the following lemma.

LEMMA 5

|D̃s
∞(p, E)| < |Ds

∞(p, E)|

We skip the proof. It follows directly from the definition of
D̃s
∞.

2
While the above property makes the voxel intersection test

conservative, it preserves its correctness: If a voxel intersects
E , we take it into account. On the other hand, we may also
take into account some voxels that do not intersect E . While
this may result in some unnecessary computation, it does
not affect the correctness of the algorithm.

A similar technique can also be used to perform interval
arithmetic on Boolean combinations of primitives. Given
a voxel ϑ, we first apply interval arithmetic to each of the
primitives, and then perform min/max operations on the
resulting intervals. This produces an interval IE,ϑ for E . We
then check if 0 ∈ IE,ϑ to test whether E intersects ϑ.

Edge Intersection Query
We use directed distances [3] to answer the edge intersec-

tion query. The directed distance between a point p and a
primitive Q along a unit vector ~v is the distance to the clos-
est point on the primitive along ~v. It is denoted as D~v(p,Q)
and is defined as:

S = {q ∈ Q | ∃λ > 0 such that q− p = λ~v}(3)

D~v(p,Q) = min{d(p,q) | q ∈ S} if S 6= ∅ (4)

= ∞ otherwise

Our edge intersection test is based on the following prop-
erty: If an edge ab intersects E , then the directed distance
at a along the direction vector ~ab is less than the length of
the vector ~ab. Based on this fact, we define an edge ab to
be intersecting if

D−→
ab

(a, E) < d(a,b).

Kobbelt et al. [3] have presented computational techniques
for computing directed distance for a wide variety of geomet-
ric primitives. If E is defined as a Boolean expression, then
we can compute a conservative estimate D̃~v of the directed
distance in a manner similar to the max-norm distance.

6.2 Star-shaped Query
The computation of the exact kernel of an orientable poly-

hedral primitive reduces to the intersection of halfspaces de-
termined by the tangent planes of the faces of the primitive.
Using the point-hyperplane duality, this is equivalent to con-
vex hull computation. In R3, for a polyhedral surface with
n facets, this can be performed in O(n log n) [65]. How-
ever, to test if a primitive is star-shaped, it suffices to check
if the kernel is empty or not. We refer to this test as the
star-shaped query.

For the sake of simplicity, we first consider the star-shaped
query for polyhedral primitives. We discuss extension to
non-linear primitives in Section 6.4. For a polyhedral prim-
itive, testing for a non-empty kernel reduces to linear pro-
gramming (LP) [66]. If p is a point belonging to the kernel,
then each face of the polyhedron with centroid c and out-
ward normal n defines the linear constraint n · (c− p) > 0
on p. As a result, the kernel is non-empty if the set of con-
straints admits a feasible solution for p. In fixed dimensions,
LPs can be solved in linear time, and a number of efficient
public domain implementations are available [67,68].

6.2.1 Boolean Expression

Figure 13: Star-shaped test for Boolean Combina-
tion: If two star-shaped primitives S1 and S2 are star-
shaped w.r.t a common point, i.e. Kernel(S1) overlaps
with Kernel(S2), then both S1∪S2 and S1∩S2 are star-
shaped.

Algorithm 1 Adaptive Subdivision(C)
Input: Grid cell C associated with a Boolean expression
ẼC .
Output: An adaptive subdivision of C such that any MC-
like algorithm generates topologically correct output.

if C can be disregarded by cell culling (Sec. 9.1) then
return

end if
if C satisfies complex cell and star-shaped tests then

return
end if
Subdivide C into children cells Ci, i = 1, . . . , k
for i = 1 to k do

Perform expression simplification w.r.t Ci: ẼC
Ci−→ ẼCi

(Sec. 9.2)
Adaptive Subdivision(Ci)

end for

When E is defined by a Boolean expression involving a
number of primitives, a sufficient condition for the star-
shapedness of E is that the intersection of all the primi-
tive kernels is non-empty. If S1 and S2 are two star-shaped
primitives with a common guard, then S1 � S2 is also star-
shaped where � denotes a Boolean operation such as union
and intersection. This is because

Kernel(S1) ∩Kernel(S2) ⊆ Kernel(S1 � S2)

See Fig. 13.
For polyhedral primitives, we check for the above con-

dition by combining the linear constraints defined by the
individual primitives and testing for feasibility by solving
the resulting LP. The difference operation can be rewritten
as an intersection by inverting the linear constraints of the
negated primitive.

We note here that the above condition is sufficient, but
not necessary. We do not perform an exact test as we do
not have an explicit representation of E .

6.3 Adaptive Subdivision Algorithm
We start with a single grid cell that is guaranteed to bound
E . We perform two tests, complex cell test and star-shaped

test, to decide whether to subdivide a grid cell. We now
describe each of these tests.

6.3.1 Complex Cell Test
To check whether a cell is complex, we perform the fol-

lowing tests:

• Complex Voxel/Face: We use the cell intersection
query to check whether E intersects a voxel or face
of the cell. If E intersects the voxel (face), then we
determine if the voxel (face) is complex by checking
for a sign change at the cell vertices. If E does not
intersect the voxel (face), then the voxel (face) is not
considered complex.

• Complex Edge: We use directed distances [3] to test
if an edge is complex. An edge is complex if the sum
of the directed distances (along the edge) from the two
endpoints of the edge is less than the edge length.

• Ambiguity: We use the signs at the grid vertices to
resolve cases corresponding to face and voxel ambigu-
ity (see Fig. 8(b) and Fig. 6(d)).

If any of these tests results in the affirmative, the cell is
complex, and we subdivide it and apply the algorithm re-
cursively to the new cells. See Fig. 11. Alg. 1 shows the
pseudo-code of our algorithm.

6.3.2 Star-shaped Test
Linear programming (LP) is used to test for the star-

shapedness of a polyhedral primitive. As described earlier in
this section, E described by a single primitive or implicitly
by a collection of primitives can be conservatively checked
for the star-shaped property. We need to perform two tests
on each cell C – (a) star-shaped w.r.t voxel of C, and (b)
star-shaped w.r.t. each face of C.

For each polyhedral primitive, we consider only those faces
of the polyhedron that intersect the voxel. This set of faces
defines the constraints for an LP in R3, whose solution an-
swers the test (a). For each face of the cell, we consider those
faces of the polyhedron that intersect it. These faces result
in a collection of piecewise linear segments on the face of the
cell. Solving a similar LP defined by these linear curves in
R2 answers test (b). When there are multiple primitives in-
tersecting the cell, we combine the linear constraints arising
from each primitive and then solve the resulting LP. Since
we are only dealing with linear programs in two and three
dimensions, a dual formulation of constraints and objective
function is much more efficient in practice. We use such a
formulation to perform the star-shaped test.

If either of these tests turns out to be negative, we subdi-
vide the cell. Fig. 11 illustrates the working of the algorithm
on a 2D example.

6.4 Star-shaped Query for Non-linear Primi-
tives

In the previous subsections, we presented methods for per-
forming the complex cell and star-shaped tests. We used
interval arithmetic and max-norm distance computation for
the complex cell test. Both of these methods are applicable
to a wide class of geometric primitives. On the other hand,

(a) (b)

Figure 14: Star-shaped test on curved primitives:
Fig. (a) shows the candidate point selection. The
black curve is the curved primitive, while the red
points form a discretized approximation. The same
color scheme is used for the respective kernels. The
linear program is set up so that if an approximate ker-
nel exists, the objective function δ is optimized near
its center. Fig. (b) shows the kernel membership
test. After choosing candidate point p, we use in-
terval arithmetic to perform the test. Given a cell
C, we compute an initial voxelization V of the prim-
itive and use the intervals generated by each of the
voxels inside C in the interval arithmetic step. Since
the voxels closely approximate the primitive, the per-
formance of the membership test is significantly im-
proved.

our method for the star-shaped query using linear program-
ming was restricted to polyhedral primitives.

In this section, we describe a method to extend this com-
putation to non-linear primitives. It is well-known that the
kernel for non-linear closed primitives like parametric and
algebraic surfaces can be computed by finding the intersec-
tion of the tangent planes at points on the surface with zero
Gaussian curvature [69]. However, this approach involves
solving a system of high degree equations and curve tracing,
which is computationally intensive. Therefore, the applica-
bility of this approach is limited.

We describe a method that avoids exact kernel computa-
tion. As previously observed, the star-shaped query reduces
to testing whether the kernel is empty or not. Therefore,
all we need is a point that is witness to the actual kernel.
We describe a simple method to conservatively perform this
test. This method proceeds by selecting a candidate point
that lies in the interior of an approximate kernel of a dis-
cretized version of the primitive. This point is computed by
linear programming. We check if the candidate point be-
longs to the kernel of the curved primitive by using interval
arithmetic. In this section, we provide the details of the
candidate point selection and kernel membership test.

6.4.1 Candidate Point Selection
We start with a discretization of the curved primitive.

We compute a set of sample points pi, i = 1, . . . , n on the
curved surface. Let the unit outward normal at pi be ni.

These sample points define a set of linear constraints on
the kernel. The constraints are of the form ni

T x ≤ di =
ni

T pi, i = 1, . . . , n. We add a new slack variable δ to each
of the constraints - ni

T x + δ ≤ di subject to δ > 0. We
set the objective function to maximize δ. Intuitively, the
modified constraints can be viewed as a family of parallel
planes (planes moving away from the normal) defining a
kernel parameterized by δ. As δ increases, the kernel shrinks.
If the original constraints define a valid kernel, the maximum
value of δ for the new constraints is reached at a point that
is maximally interior in the kernel (see Fig. 14(a)). Further,
the maximum δ value also gives a lower bound on the volume
of the approximate kernel, and hence an indication of the
existence of a non-empty exact kernel.

6.4.2 Kernel Membership Test using Interval Arith-
metic

The candidate point computed above will lie inside the ex-
act kernel (if non-empty) provided we computed a sufficient
number of sample points (pi’s) on the curved surface. In
general, we do not know how many such points are needed;
so we choose a fixed number of points. To ensure correct-
ness, we need to check if the candidate point is actually a
witness to the exact kernel. Such a witness p would satisfy
n(x)T (x− p) > 0, for all points x on the primitive where
n(x) is the normal to the surface at x. For an algebraic
surface f(x, y, z) = 0, the expression becomes 5fT (x− p).
We can derive a similar expression for parametric surfaces.

Consider a closed algebraic surface f(x) = 0 and a point
p. The expression defining the kernel membership test is
Γ(f,p) : 5fT (x− p) subject to the condition that f(x) =
0. Consider the case of a quadric surface, where f() is given
by xT Ax. In this case, the expression for the gradient is
Ax. Therefore, Γ(f,p) = (x − p)T Ax = −pT Ax, since
xT Ax = 0. In this special case, the expression to be tested
is a linear expression.

Given such an expression and an axis-aligned cell, we need
to verify if it is positive inside the cell. We use interval arith-
metic to perform this test reliably on the interval determined
by the cell. If the expression turns out to be positive inside
the cell, p is a witness to the exact kernel and we stop sub-
division. Otherwise, the cell is subdivided and the tests are
repeated on each child cell.

The above approach is conservative and may result in
some unnecessary subdivision. The main benefit of this
method is that it is similar in flavor to the test for poly-
hedral primitives, and this makes it efficient. This approach
requires an explicit expression for the normal field of the
surface. This is a reasonable assumption because such ex-
pressions are available for the class of surfaces representable
in algebraic or rational parametric form [70].

The performance of interval arithmetic depends on the
degree of the expression and the tightness of the interval
used. If the cells are big, interval arithmetic can return
false negatives. This is primarily due to the fact that we
are unable to impose the restriction that x should satisfy
f(x) = 0. Furthermore, if p lies inside the interval box on
which we perform the evaluation using interval arithmetic,
Γ(f,p) will never be positive. We alleviate these problems
as follows:

• We do not impose the restriction that p be inside the
grid cell. This gives us candidate points that are usu-
ally far away from the grid cell.

• Along with a discretization of the original primitive,
we can also precompute a voxelization. Given a grid
cell, we find voxels that intersect the cell and test
for Γ(f,p)’s sign in each of the voxel intervals (see
Fig. 14(b)). If all the tests return a positive sign, the
point is a valid witness to the kernel. The motivation
to perform the voxelization is to generate intervals that
are as close to the original surface as possible. This
also serves the purpose of significantly improving the
performance of the interval arithmetic step.

The combination of these two steps eliminates most of the
problems mentioned earlier, and avoids unnecessary subdi-
vision.

7. GEOMETRIC ERROR BOUND
We extend our adaptive subdivision algorithm to generate
A with a bounded geometric error. We define the geometric
error as the two-sided Hausdorff distance H(A, E), which
we call the Hausdorff error. For a definition of Hausdorff
distance, see Sec. 3.

We describe a simple extension to the adaptive subdivi-
sion algorithm that bounds the Hausdorff error. We exploit
the fact that E is a subset of the boundaries of a set of prim-
itives. We bound the Hausdorff distance between A and the
boundaries of these primitives. Assume that we are given
an error tolerance ε > 0. Let Γ = {P1, . . . ,Pn} denote the
set of primitives that define E . We augment the subdivision
algorithm with the following criterion:

DEFINITION 6 Hausdorff criterion (Cε) : Given an
ε > 0, a cell C satisfies Cε if

H(AC ,Pi,C) < ε ∀ Pi ∈ Γ such that Pi,C 6= ∅

where Pi,C = Pi ∩ C is the restriction of Pi to C.

If every grid cell bounding E satisfies Cε, then the Hausdorff
error of A is also bounded by ε.

THEOREM 2 If all the grid cells satisfy Cε, then

H(A, E) < ε

We combine Cε with C2 and CF to define the following sam-
pling condition:

DEFINITION 7 A cell C satisfies C2Fε if C satisfies both
C2F and Cε.

If we apply C2Fε during adaptive subdivision, then we ob-
tain a reconstruction A with a bounded two-sided Hausdorff
error as well as correct topology. See Fig. 11(c).

We compute an upper bound δ on H(AC ,Pi,C), and check
if δ is less than ε. The diameter of the cell diam(C) serves as
a trivial upper bound. Hence a simple subdivision criterion
is to subdivide a cell if its diameter is greater than ε. Using
diam(C) as an upper bound can be overly conservative: It

may result in excessive subdivision for small values of ε. This
is because the diameter of the cell is a loose upper bound on
the Hausdorff distance between AC and Pi,C . It is possible
to obtain a tighter upper bound in the case where all the
primitives Pi are polyhedral. Since the output of Marching
Cubes AC is polygonal, the problem reduces to bounding
the Hausdorff distance between two polygonal objects.

Hausdorff distance computation between polygonal ob-
jects is a well studied problem. Aspert et al. [71] and Guthe
et al. [72] propose efficient techniques for estimating the
Hausdorff distance. We provide a brief description of these
techniques. Let P and Q denote two polygonal objects
whose Hausdorff distance needs to be computed. We will
focus on computing the forward distance h(P,Q); the back-
ward distance can be computed similarly. For a fixed point
p ∈ P, it is relatively easy to calculate the distance d(p,Q).
However, the goal is to obtain the maximum over all points
p ∈ P, which is difficult in practice. The above techniques
resort to sampling in order to estimate h(P,Q). Each poly-
gon of P is sampled, and the distance between each sample
and Q is computed. The maximum over these distances
provides an estimate of the Hausdorff distance.

We can use similar techniques to compute an upper bound
δ on h(P,Q). We use the error tolerance ε to determine the
sampling density; we recursively subdivide the polygons in
P such that each polygon has a diameter less than or equal
to ε/2. The vertices of the resulting polygons provide the
set S of samples. Let τ = maxs∈S d(s,Q) and δ = τ + ε/2.
We can show that δ is an upper bound on h(P,Q). The
proof is as follows.

Consider any point p ∈ P. Let r be any vertex of the
polygon containing p. Since every polygon has a diameter
less than or equal to ε/2, we have d(p, r) ≤ ε/2. Since
r belongs to the set S of samples used in estimating the
Hausdorff distance, we have d(r, Q) ≤ τ . Let q be the point
on Q that is closest to r; in other words d(r,Q) = d(r,q).
Then by triangle inequality, it follows:

d(p,q) ≤ d(p, r) + d(r,q) ≤ ε/2 + τ = δ

This implies that d(p,Q) ≤ δ. Since this is true for any
arbitrary point p ∈ P, it follows that h(P,Q) ≤ δ.

We can use the above technique to compute upper bounds
on both forward and backward Hausdorff distances between
AC and Pi,C . Let δi

1 and δi
2 denote the upper bounds on

h(AC ,Pi,C) and h(Pi,C ,AC), respectively. The maximum
δi = max(δi

1, δ
i
2) is an upper bound on the two-sided dis-

tance H(AC ,Pi,C). Let δC = maxi δi. We can use δC as a
threshold during adaptive subdivision: we check if δC > ε
and in that case, subdivide cell C. Using δC , rather than
the cell diameter, can alleviate the problem of excessive sub-
division.

The above technique is applicable only to polygonal prim-
itives. In case of non-linear primitives, it is harder to bound
the Hausdorff distance. One possible solution relies on com-
puting Sleve to the non-linear primitive [73]. Sleve is a pair
of matched triangulations that sandwiches a surface. We
can exploit the fact that the two triangulations enclose the
non-linear surface to compute an upper bound on the Haus-
dorff distance. Consider a surface P whose Sleve consists
of triangulations Ps

1 and Ps
2 . If both H(A,Ps

1) < ε and

Figure 15: Isosurface Extraction on Adaptive Grids:
This figure shows a cell at a coarse resolution sharing
a face ABCD with 4 cells at a finer resolution. Ap-
plying Marching Cubes to these grid cells results in a
reconstruction that does not match along the common
face ABCD.

H(A,Ps
2) < ε, then we have H(A,P) < ε. We can compute

the distance between A and the two triangulations using the
techniques described for polygonal objects.

8. ISOSURFACE EXTRACTION ON ADAP-
TIVE GRIDS

The adaptive subdivision algorithm generates an adap-
tive volumetric grid on which we perform isosurface extrac-
tion. Applying the original Marching Cubes algorithm [2]
to an adaptive grid can result in cracks in the reconstructed
isosurface. A crack occurs when the reconstructed isosur-
face in two adjacent cells at different resolutions does not
match along a shared face (see Fig. 15). This becomes an
issue when defining a homeomorphism between E and A.
One solution this problem is to employ crack patching [46].
Crack patching modifies the extracted isosurface within the
larger cell to match the extracted surface within the smaller
cell. In this way, we ensure that our approximation A is
C0 continuous. Crack patching maintains the property that
A restricted to the edges, faces, and voxel of the cell is a
topological disk. As a result, we can still define a homeo-
morphism between E and A, and the topological equivalence
result holds.

A better alternative is to use dual methods such as Dual
Contouring [4] for isosurface extraction. An important ad-
vantage of these methods is that they can handle adap-
tive grids easily, and can produce a reconstructed isosurface
without any cracks. We provide a brief description of the
Dual Contouring algorithm. See Fig. 16 for a 2D example.
It operates on a grid in two steps. First, for each cell that
exhibits a sign change across the edges, this method exam-
ines the set of intersection points and generates a vertex (per

(a) 2D Example

(b) Dual Contouring

(c) Modified Dual
Contouring

Figure 16: 2D Modified Dual Contouring: This fig-
ure illustrates the working of the Dual Contouring
algorithm on an adaptive grid in 2D. Fig. (a) shows
(in 2D) an isosurface E (black curve). Fig. (b) shows
the output A1 (brown curve) of Dual Contouring al-
gorithm. A1 violates a requirement of our algorithm –
it does not intersect the same set of edges as E. For
example, while E intersects edge BG, A1 does not.
Therefore, we apply a modification to the Dual Con-
touring algorithm to enforce this requirement. The
output A2 of this algorithm, shown in Fig. (c), satis-
fies the requirement.

cell) such that a quadratic error function is minimized. We
refer to this vertex as the error-minimizing vertex. Second,
for each edge that exhibits a sign change, the contouring
method connects the error-minimizing vertices of the cells
sharing the edge. In 2D grids, each edge is shared by two
cells; hence the method outputs a line segment connecting
the error-minimizing vertices of the two adjacent cells shar-
ing the edge. In 3D uniform grids, each edge is shared by
four cells; hence the method outputs a quad for each edge.
In 3D adaptive grids, some of the edges in the grid may be
shared by three cells; for such edges, the method outputs a
triangle.

We use Dual Contouring for isosurface extraction. How-
ever, we cannot apply Dual Contouring directly – this is
because the Dual Contouring does not satisfy Property 1
in Section 5.4.1. Property 1 states that the reconstructed
isosurface A must intersect each edge, face, or voxel that ex-
hibits a sign change. However, when applied to an adaptive
grid, Dual Contouring may not satisfy this property. For
example, in Fig. 16(b), edge BG exhibits a sign change, but

(a) 3D Example

(b) Dual Contouring

(c) Modified Dual
Contouring

Figure 17: 3D Modified Dual Contouring: This fig-
ure illustrates the working of the Dual Contouring
algorithm on an adaptive grid in 3D. Fig. (a) shows
a portion of an isosurface E intersecting an edge e.
Fig. (b) shows the output A1 of Dual Contouring al-
gorithm. However, A1 violates a requirement that it
should intersect the same set of edges as E. While
E intersects edge e, A1 does not. Therefore, we use
a modified Dual Contouring algorithm that enforces
this requirement. The output A2 of this algorithm,
shown in Fig. (c), satisfies the requirement.

does not intersect A.
We correct this problem using a simple modification to

the dual contouring method. We insert an additional in-
tersection point along edge BG and connect it to the error-
minimizing vertices of the adjacent cells. This is shown in
Fig. 16(c). With this simple modification, both E and A
exhibit identical sign configurations for every cell.

A similar modification works in 3D. See Fig. 17. It shows
an edge e that intersects E . The dual contouring method
outputs a triangle that may not satisfy Property 1. We
circumvent this problem by inserting an additional vertex v
on e and generating a triangle fan around v. See Fig. 17(c).
In order to satisfy Property 1, merely inserting v may not
be enough: we also insert additional vertices on the faces
that are adjacent to e. This is shown in Fig. 17(c).

With the above modification, we ensure that Dual Con-
touring preserves the sign configuration of the cell. It main-
tains the property that A restricted to the edges, faces, and
voxel of the cell is a topological disk. As a result, the topo-
logical equivalence between E and A holds.

The above modification may increase the number of tri-
angles in the reconstructed isosurface. However, the modifi-
cations need to be applied only when Property 1 is violated.
Therefore, we can first check whether Property 1 fails, and
only then apply the modification. Since typically such a vi-
olation occurs only in a small number of cells, the increase

in the number of triangles is not substantial.

9. SPEEDUP TECHNIQUES
In this section we present two speedup techniques that

improve the efficiency of the adaptive subdivision algorithm.
Together, they improve the overall performance significantly.

9.1 Cell Culling
Since our objective is to approximate E , it is sufficient to

process only those cells that intersect E . Based on this fact,
we classify the cells in the grid into two types:

DEFINITION 8 A cell C is a boundary cell if EC 6= ∅,
and a non-boundary cell otherwise.

We need to apply the sampling condition to only the bound-
ary cells. While application of the sampling condition to a
non-boundary cell preserves correctness of the algorithm, it
is undesirable because it adds an unnecessary overhead to
the algorithm. We reduce this overhead by using a tech-
nique called cell culling. Cell culling enables the adaptive
subdivision algorithm to disregard non-boundary cells and
improves the overall performance considerably.

Figure 18: Cell Culling: This figure shows a case
where Ẽ is defined as a union of two solids, Ẽ = Ẽ1 ∪
Ẽ2. The gray shaded region shows the union. Since
C1 is contained within Ẽ1, it is contained within the
union and is a non-boundary cell. Therefore, C1 can
be disregarded. Similarly, C2 can also be disregarded.
On the other hand, cell C3 is a boundary cell and
needs to be taken into account.

Let Ẽ denote the solid enclosed by E . We disregard a cell
C if it is either completely inside or completely outside Ẽ .
This is the main idea behind cell culling. Fig. 18 shows an
example of cell culling where Ẽ is defined as a union of two
solids, Ẽ = Ẽ1 ∪ Ẽ2.

Cell culling is based on the voxel intersection test (Lem.
4). We use the following property: If the signed max-norm
distance to E at the center of a cell C is greater than half the
voxel size, then we can disregard C as it is guaranteed not to
intersect E . As explained in Sec. 6.1, we do not compute the
exact signed distance Ds

∞ to E ; it is sufficient to compute a
conservative estimate D̃s

∞ of the distance. Lemma 5 ensures
that the absolute value of D̃s

∞ is less than the absolute value
of Ds

∞. Therefore, we can use D̃s
∞ to perform cell culling

while preserving correctness. The condition for cell culling
is as follows:

Cell Culling Condition: Let C be a cell with center o
and length l.

If |D̃s
∞(o, E)| > l/2 then C is a non-boundary cell.

We show an application of this condition to cell C1 in the
union example (Fig. 18). Let d1 and d2 denote the signed
max-norm distances from o to E1 and E2 respectively. Since
cell C1 lies completely within Ẽ1, we have d1 < −l/2. This
implies:

D̃s
∞(o, E) = min(d1, d2) < −l/2

=⇒ |D̃s
∞(o, E)| > l/2

Therefore C1 satisfies the condition for cell culling and we
can rule out C1 from further consideration. Similarly, we can
employ cell culling for intersection and difference operations.
It can also be used for a sequence of Boolean operations.

Cell culling is conservative: While every cell discarded by
cell culling is a non-boundary cell, the converse is not true –
it may not eliminate all the non-boundary cells. This is be-
cause we use a conservative estimate D̃s

∞ of the signed max-
norm distance. Due to conservativeness of cell culling, we
may unnecessarily process some non-boundary cells; how-
ever, this does not affect the correctness of the algorithm.

9.2 Expression Simplification
The adaptive subdivision algorithm processes each cell in

the grid independently. Within a cell C, it needs to consider
only EC – the portion of E that is contained within C. It
may be possible to define EC by simplifying the Boolean
expression of E . This is the main idea behind expression
simplification.
Ẽ denotes the solid enclosed by E . By a slight abuse of

notation, we will use Ẽ to also refer to the Boolean expression
associated with the solid Ẽ .

Consider the case of a union Ẽ = Ẽ1 ∪ Ẽ2, as shown in
Fig. 19(a). Because cell C lies completely outside Ẽ2, C

is not influenced by Ẽ2. Consequently, we can simplify the
Boolean expression by getting rid of Ẽ2 from the expression.
This produces a simplified expression Ẽ1 for cell C. We
refer to this step as expression simplification. It can also be
used for intersection and difference operations as well as a
sequence of Boolean operations. See Figs. 19(b), 19(c).

In order to simplify an expression of Ẽ w.r.t a cell C, we
need to determine if C lies completely outside or completely
inside the solids corresponding to the sub-expressions of Ẽ .
For example, in the case of a union Ẽ = Ẽ1 ∪ Ẽ2, we need
to test if C is completely outside Ẽ1 or Ẽ2. We perform
these tests using max-norm distance computation. Given a
primitive P and a cell C, we use the following conditions:

If D̃s
∞(o,P) > l/2 then C lies completely outside P̃

If D̃s
∞(o,P) < −l/2 then C lies completely inside P̃

where o and l are the center and length of cell C respectively.
Below we provide the conditions for expression simplifi-

cation. We provide a condition for each Boolean operation:

union, intersection, difference, and complement. A C−→ B
denotes a simplification of a Boolean expression A into an
expression B in cell C.

(a) Union (b) Intersection (c) Difference

Figure 19: Expression Simplification: Figs. (a), (b), & (c) shows examples of expression simplification for
union, intersection, and difference operations respectively. In each figure, the gray shaded region shows the final
solid obtained by performing the Boolean operation.

1. Union: Ẽ = Ẽ1 ∪ Ẽ2
We can simplify an expression involving union opera-
tion when C lies completely outside either Ẽ1 or Ẽ2.

If D̃s
∞(o, E1) > l/2 then Ẽ1 ∪ Ẽ2

C−→ Ẽ2

If D̃s
∞(o, E2) > l/2 then Ẽ1 ∪ Ẽ2

C−→ Ẽ1

2. Intersection: Ẽ = Ẽ1 ∩ Ẽ2
We can simplify an expression involving intersection
operation when C lies completely inside either Ẽ1 or
Ẽ2.

If D̃s
∞(o, E1) < −l/2 then Ẽ1 ∩ Ẽ2

C−→ Ẽ2

If D̃s
∞(o, E2) < −l/2 then Ẽ1 ∩ Ẽ2

C−→ Ẽ1

3. Difference: Ẽ = Ẽ1 \ Ẽ2
We can simplify an expression involving difference op-
eration in either of two cases: (1) C lies completely

inside Ẽ1; (2) C lies completely outside Ẽ2.

If D̃s
∞(o, E1) < −l/2 then Ẽ1 \ Ẽ2

C−→ Ẽ2

If D̃s
∞(o, E2) > l/2 then Ẽ1 \ Ẽ2

C−→ Ẽ1

4. Complement: Ẽ = Ẽ1
We can simplify a complement of an expression Ẽ1 by
simplifying Ẽ1.

If Ẽ1
C−→ Ẽ2 then Ẽ1

C−→ Ẽ2

Fig. 19 shows several examples of expression simplification.
We perform expression simplification in a top-down man-

ner during adaptive subdivision. With every cell C, we
maintain the corresponding Boolean expression ẼC . The
root cell of subdivision is associated with the original Boolean
expression Ẽ . Each time we subdivide a cell C into a set of
children cells Ci, i = 1, . . . , k, we simplify ẼC w.r.t the chil-
dren cells, i.e.,

ẼC
Ci−→ ẼCi

This gives us a Boolean expression ẼCi for each child cell Ci.
Alg. 1 shows pseudo-code for the complete adaptive sub-

divison algorithm including expression simplification. Ex-
pression simplification can reduce the original Boolean ex-
pression considerably. As the adaptive subdivision progresses,
the expressions corresponding to the subdivided cells be-
come progressively simpler. Typically, the simplified expres-
sion requires only a small number of Boolean operations.
This improves the performance of the overall algorithm con-
siderably.

Consider a situation where Ẽ is expressed as a union of a
high number of primitives Ẽ = ∪iP̃i. For a cell C we can sim-
plify Ẽ by eliminating all the primitives that lie completely
outside C. Typically the resulting simplified Boolean ex-
pression has only a small number of primitives. This type
of union operation arises frequently in many other problems
such as Minkowski sum and swept volume computation.

10. PERFORMANCE
In this section, we analyze the performance of our algo-

rithm. The total time taken by the algorithm is the sum of
the times taken by the sampling and reconstruction steps.

• Sampling: This is the dominant step of our algo-
rithm. The total time taken by this step is given by
TS =

∑
C∈G T (C) where G denotes the volumetric grid

and T (C) is the time spent on a single cell C. We will
provide a bound on T (C) below.

• Reconstruction: MC-like methods spend O(1) time
on each cell of the grid. Therefore, the time complexity
of this step is O(N) where N is the number of cells in
the grid.

We analyze the cell complexity, T(C), the time taken to
process a single grid cell C. T (C) is the sum of the time
taken by the complex cell and star-shaped tests. Below we
bound the time taken by each test separately. We begin by
analyzing the time complexity of the two tests on a single
primitive. We consider two cases – depending on whether
the primitive is polyhedral or algebraic.

10.0.1 Polyhedral Primitive
Consider a polyhedral primitive with n polygons. We de-

fine the size of the primitive to be n.

• Complex Cell Test: The complex cell test requires
two types of computations:

– Sign query: Determining the sign of a point
takes O(n) time.

– Cell intersection: This requires directed dis-
tance and max-norm distance computation. Each
of them takes O(n) time.

• Star-shaped test: For a polyhedral primitive, the
star-shaped test reduces to linear programming. We
combine the linear constraints defined by each poly-
gon of the primitive, and solve the resulting linear pro-
gram. This step takes O(n) expected time.

10.0.2 Algebraic Primitive
We assume an algebraic primitive with a fixed degree.

• Complex Cell Test:

– Sign query: Computing a sign for an algebraic
primitive requires evaluating a polynomial func-
tion. We consider the time taken by this step to
be O(1).

– Cell intersection: We use directed and max-
norm distance computation for low degree alge-
braic primitives and interval arithmetic for higher
order primitives. For an algebraic primitive, both
directed and max-norm distance computation re-
duce to solving a univariate polynomial equation.
We consider the time taken by this step to be
O(1). Performing interval arithmetic on an al-
gebraic primitive reduces to evaluating a polyno-
mial function. We assume this step also takes
O(1) time.

• Star-shaped test: Our star-shaped test for an alge-
braic primitive uses a combination of linear program-
ming and interval arithmetic. The linear programming
step requires a discretization of the algebraic primitive.
We assume that each algebraic primitive P has an as-
sociated discretization (see Sec. 6.4). Let n denote
the number of points in the discretization. We define
the size of the algebraic primitive to be n. The linear
programming step takes an O(n) expected time. We
assume the interval arithmetic step takes O(1) time.

Therefore, applying the complex cell and star-shaped tests
to a single primitive – polyhedral or algebraic – takes O(n)
expected time, where n is the size of the primitive.

Our algorithm performs the complex cell and star-shaped
tests on E . Specifically, within a cell C, we perform them on
EC , whose associated Boolean expression ẼC is obtained by
performing expression simplification. Let ΓC = {Pi1 , . . . ,Pik}
denote the set of primitives in the Boolean expression ẼC .
In order to perform the complex cell and star-shaped tests
on EC , we need to take into account every primitive in ΓC .
For example, in order to compute the sign of a point w.r.t

EC , we need to compute its sign w.r.t every primitive in ΓC .
Similarly, in case of star-shaped test, we combine the linear
constraints derived from the all the primitives in ΓC . There-
fore, the complex cell and star-shaped tests take

∑k
j=1 O(nj)

time where nj is the size of Pij . This means the cell com-
plexity T(C) is given by:

T (C) =

k∑
j=1

O(nj) = O(n)

where n =
∑k

j=1 nj .

11. IMPLEMENTATION & APPLICATIONS
In this section, we describe the implementation of our al-

gorithm and highlight three different applications: Boolean
operations, simplification, and remeshing.

We used C++ programming language with the GNU g++
compiler under Linux operating system. We demonstrate
the performance of our algorithm on many complex models.
Table 1 highlights the performance of our algorithm on these
models. All execution times are on a 2 GHz Pentium IV PC
with a GeForce 4 graphics card and 1 GB RAM.

In all our applications, we first generate an adaptive oc-
tree grid using our adaptive subdivision algorithm. We then
compute a polyhedral approximation to the boundary of the
final solid using a modified Dual Contouring algorithm (See
8). The reconstructed surface is a manifold. We used a
freely available linear programming package, QSOPT [68],
to implement the star-shaped test.

11.1 Boolean operations
Figure 21(left) shows the reconstruction of the final sur-

face generated by our algorithm on the dragon model. The
solid is defined as a union of two dragons, each with over
870K triangles. It took 95 secs to compute the approxi-
mate union. The second example is obtained by perform-
ing 5 difference operations on the Turbine Blade model (see
rightmost image in Fig. 20). The model has more than 1.7
million triangles. The final surface has multiple components
and a higher genus. Our algorithm computes the boundary
in 116 secs. Figure 21(right) highlights application of our
algorithm to perform Boolean operations on curved primi-
tives. It shows a challenging scenario where we perform 100
difference (Boolean) operations between a polyhedron and
100 ellipsoids. The resulting surface has a complex topol-
ogy with numerous small holes; it has a genus of 208. Our
algorithm took 16 secs to generate an approximation with
the correct topology.

The problem of Minkowski sum computation arises in
many applications including solid modeling, digital geom-
etry processing, robotics, dynamic simulation and computer
animation. The Minkowski sum of two sets P and Q is the
set of points {p + q | p ∈ P, q ∈ Q}. Minkowski sum com-
putation of polyhedral models can be reduced to a union
operation. We have applied our isosurface extraction algo-
rithm to approximate the resulting union thereby producing
an accurate Minkowski sum approximation. Details of the
Minkowski sum approximation algorithm and its application
to robot motion planning can be found in [74–76].

(a) Turbine Model (b) Turbine Interior (c) Zoomed View (d) Difference Opera-
tions

Figure 20: Simplification and Boolean operations: This 1.7M triangle model of a turbine has a high genus
and many features in the interior. We highlight the application of our algorithm to simplification and Boolean
operations on this complex model. The simplified model of the turbine has 511K triangles and we show a
zoomed view in the center-right image. We perform five difference (Boolean) operations on the turbine model
and reconstruct the boundary of the final solid. Our algorithm produces a geometrically close and topology
preserving approximation to the final solid. Overall, our algorithm can perform such geometric computations
on complex models in tens of seconds and give rigorous guarantees in terms of preserving the topology of the
final surface.

11.2 Topology Preserving Volumetric Simpli-
fication

Model simplification algorithms produce a lower polygon
count approximation of a polygonal object that preserves the
shape or appearance of the object. Simplification techniques
have been used for fast display and simulation. In order to
compute a drastic simplification for interactive visualization,
many algorithms do not preserve the surface topology. On
the other hand, preserving topology during simplification is
important for applications like CAD, medical visualization,
and molecular modeling. Volumetric algorithms have been
proposed for model simplification [77,78]. These algorithms
are fast in practice and are applicable to all kind of models.
However, none of these algorithms give rigorous guarantees
on preserving the surface topology.

We compute a discrete sampling of the distance field by
applying our adaptive subdivision algorithm. Different lev-
els of detail are generated by changing the value of the two-
sided Hausdorff error tolerance. The reconstruction algo-
rithm generates an isosurface that has the same topology
as the original model. Our metric of Hausdorff error can
be easily combined with other metrics such as curvature,
quadric error, etc, to guide the simplification.

Figure 22 shows our simplification algorithm applied to a
medical dataset, a 650K triangle Hand model. This model
has a number of topological features that need to be pre-
served in order to maintain the anatomical structure of the
hand. Figs. 22(b) (27K triangles) and 22(c) (58K triangles)

show a coarse and a fine approximation, respectively, of the
original model. The coarse approximation was computed by
applying our adaptive subdivision algorithm without impos-
ing any Hausdorff error bound. The resulting grid is shown
in Fig. 22(d). Fig. 22(e) shows a closeup view of part of
the finer approximation. It took 36 secs to generate the ap-
proximation. Figure 20 shows our simplification algorithm
applied to the Turbine Blade model. This model has a high
genus and many tunnels in the interior. It took 110 secs
to generate a simplified model with 511K triangles. Note
that our method preserves the complex topological features
in the simplified model.

Some prior surface simplification methods can be adapted
to perform topology preserving simplification [79,80]. How-
ever, one limitation of these approaches is that they need to
perform global tests to avoid surface self-intersections, which
can result in considerable overhead. On the other hand, our
algorithm is guaranteed not to produce self intersections.

Our subdivision criterion ensures that the isosurface is a
topological disk within each grid cell by satisfying the com-
plex cell and star-shaped criteria. In applications such as
simplification and remeshing, a simpler test exists. In these
applications, we have a polygonization of the original sur-
face. We can ensure the topological disk property by com-
puting the Euler characteristic and testing if it is equal to
1. However, in case of Boolean operations, we do not have
a polygonization of the final surface (in fact, our goal is to
compute a polygonization). Consequently, the test based on

Figure 21: Boolean operations on complex models and curved primitives: The left figure shows the result
of the union of two dragons. Each dragon is represented using 850K triangles. Our algorithm computes a
topology preserving approximation of the final boundary. It took 95 secs to compute an approximation with 118K
triangles at a relative Hausdorff error bound of 1/128. The relative Hausdorff error is defined as the ratio of the
absolute Hausdorff error to the maximum length of a “tight” axis-aligned bounding box around the object. The
right figure shows the result of 100 difference operations between a polyhedron and 100 ellipsoids. The resulting
surface has a complex topology; it has a genus of 208. Our algorithm took 16 secs to generate an approximation
with the correct topology at a relative Hausdorff error bound of 1/64.

Combi. Complexity Performance (secs)
Model Input Output Complex Star-shaped Subdivision Total

Hand Simplification (Fig. 22) 654,666 58,966 4.3 8.1 23 36
Turbine Simplification (Fig. 1) 1,765,388 511,182 14.1 31.3 65.8 110
Turbine Blade Boolean (Fig. 1) 1,765,388 319,074 16.8 29.1 70.4 116

Union of Dragons (Fig. 21) 1,714,920 118,214 10.2 21.1 63.6 95
Curved Boolean (Fig. 21) - 57,286 5.4 5.1 5.5 16

Brake Hub Remeshing (Fig. 23) 14,208 7,056 0.38 0.55 0.90 1.85
CAD model Remeshing (Fig. 23) 41,152 16,524 0.58 0.81 1.41 2.8

Table 1: Performance: This table highlights the complexity of our input models and performance of our algo-
rithm. The columns on the left shows the the triangle count of the input and triangle count in our reconstruction.
The columns on the right show the cumulative time taken by the complex cell test, star-shaped test and adaptive
subdivision over all the grid cells. The rightmost column shows the total execution time.

Euler characteristic does not work for Boolean operations.

11.3 Topology Preserving Remeshing
Volumetric approaches have been used for remeshing of

polygonal models [3, 78]. In many applications, the polygo-
nal models can have triangles with bad-aspect ratios. The
goal is to compute a valid manifold representation of the
underlying closed solid and ensure that the resulting trian-
gles have a good aspect ratio. The mesh generated after
remeshing can be used for multiresolution analysis or sim-
plification.

Earlier algorithms generated a volumetric representation
by sampling the distance field on a uniform grid [3], or with
a simplified topology [78]. However, these methods pro-
vide no guarantees on the genus or the number of connected
components. We have applied our subdivision algorithm to
compute a topology preserving remeshing of CAD models.
Fig. 23 shows some of our results. The Euler characteristic
test (see Section 11.2) could also be used for remeshing.

11.4 Discussion

Table 1 highlights the performance of our algorithm on
these models. It also provides a breakup of the total time
spent in performing the complex cell test, star-shaped test,
and adaptive subdivision. This corresponds to the time
taken to “push” the input triangles down the octree data
structure. For each octree cell C, we perform expression
simplification to obtain a smaller set of primitives ΓC that
define the isosurface within the cell. We maintain a list TC

of triangles that belongs to the primitives in ΓC . We main-
tain the set TC in cell C. As we subdivide C, we partition it
into 8 children Ci and compute their triangle lists TCi simi-
larly. For large input models, this takes substantial fraction
of the total time.

12. ANALYSIS
In this section, we analyze the behavior of our adaptive

subdivision algorithm and provide a sufficient condition for
its termination. We show that under certain conditions,
once a cell becomes smaller than a certain size, it will even-
tually satisfy both complex cell and star-shaped criteria.

(a) Hand model (b) Coarse Approxi-
mation

(c) Fine Approxima-
tion

(d) Adaptive Subdivision (e) Closeup

Figure 22: Topology-Preserving Simplification: Figs (a),(b),(c) show the original model along with a coarse
and fine approximation generated using our topology preserving simplification algorithm. The original model has
654K triangles, while the two approximations consist of 27K and 58K triangles respectively at relative Hausdorff
error bounds of 1 and 1/128. Fig (d) shows the adaptive grid generated for the coarse approximation. The
colors, green, blue, and red in that order, indicate the increasing level of subdivision. Fig (e) shows a closeup
view of a part of the fine approximation. It highlights the features in the original model and our algorithm is
able to reconstruct all these features accurately. It took 36 secs to generate the approximation.

Our analysis assumes that E is a smooth surface – twice-
differentiable manifold. This assumption may not hold when
E is defined using Boolean operations. We note that we
make this assumption only to simplify the analysis of the
algorithm; the algorithm itself does not make this assump-
tion.

We perform the analysis in two stages. In the first stage,
we analyze both complex cell and star-shaped criteria in
terms of the Gauss map of E within the cell. The Gauss
map G of a smooth surface S in R3 is a set-valued function
from S to the unit sphere S2, which assigns to each point
p ∈ S the outward unit normal to S at p. We use the Gauss
map of E to provide sufficient conditions for when a cell will
satisfy both the complex cell and star-shaped criteria. There
are two separate conditions – one for complex cell criterion
and another one for star-shaped criterion.

In the second stage, we relate the Gauss map conditions to
the notion of local feature size (LFS), proposed by Amenta
and Bern [81]. The local feature size LFS(p) at a point p
on a surface S is defined as the least distance of p to the
medial axis of S (Fig. 26). The medial axis of S is the set of
points with more than one closest point on S. Amenta and
Bern used the LFS to design a sampling condition for topol-
ogy preserving reconstruction using Delaunay triangulation.
They showed that it suffices to choose a set of samples on S

such that every point p ∈ S has a sample at a distance less
than a fraction of LFS(p).

We extend the above definition to define the LFS of a
grid cell. We then show that if a cell is smaller than a
certain fraction of its LFS, then it will meet the Gauss map
conditions thus satisfying both the complex cell and star-
shaped criteria. This provides a bound on the size of a
cell relative to its LFS. In the absence of degeneracies, the
adaptive subdivision algorithm will terminate once all the
cells become smaller than a fraction of their respective LFS.
We use the LFS to also characterize some of the degenerate
cases of our algorithm. This will be discussed in Sec. 13.

12.1 Preliminaries
We use the following notation in this section. d(p,q) de-

notes the Euclidean distance between p and q. ‖~u‖ denotes
the length of a vector ~u. ∠m,n denotes the angle between
two vectors m and n.

Let o be the origin of Rd where d = 2, 3. Let x+
i ,x−i , i =

1, . . . , d denote the principal directions of Rd. x+
i is a unit

vector in Rd whose ith component is 1 and rest of the compo-
nents are 0. x−i is equal to −x+

i . By a principal hemisphere,
we mean a hemisphere whose axis is along one of the prin-
cipal directions. For example, a principal hemisphere with

Figure 23: Remeshing of brake hub and a CAD model: The left column of images shows a brake hub and a
CAD model, which have many “skinny” triangles with poor aspect ratios (center column) The right column of
images show the triangulation of the remeshed model produces by our algorithm. The original brake hub mod el
has 14K triangles. Our algorithm took 1.85 secs to perform remeshing and generate a mesh with 7K triangles
at a Hausdorff error of 1/32. The CAD model has 41K triangles. We performed remeshing and generated a
mesh with 16K triangles at a relative Hausdorff error of 1/32 in 2.8 secs.

x1+ axis in R3 is defined as:

{x = (x, y, z) ∈ R3 | ‖ox‖ = 1, x ≥ 0}

A right circular cone with an axis ~u and a half-angle θ is
defined as the set of points {x ∈ Rd | ∠~u,ox = θ}.

Given a cell C, we define a Gauss map of restrictions of E
to the voxel and faces of C.

• For a voxel ϑ of C, define Gϑ as a set valued function
from Eϑ to the unit sphere S2, which assigns to each
point p ∈ Eϑ the outward unit normal to Eϑ at p.

• For a face f of a cell, we consider the restriction of E
to the plane Πf containing f . Ef is treated like a curve
in R2. We use a 2D definition of Gauss map. Define
Gf as a set valued function from Ef to the unit circle
S1, which assigns to each point p ∈ Ef the outward
unit normal (defined in 2D) to Ef at p.

We use the term Gauss map to also refer to the image of the
Gauss map.

12.2 Gauss Map Condition for Complex Cell
Criterion

In Sec. 5, we had defined a cell to be complex if it has a
complex voxel, a complex face, a complex edge, or an am-
biguous sign configuration. There is some redundancy in
this definition: a complex voxel is allowed to have complex
faces or complex edges. We now provide an equivalent def-
inition without the redundancy. We refer to a voxel (face)
as strongly complex if it is complex and none of its faces
(edges) intersect E . Unlike a complex voxel, a strongly com-
plex voxel cannot have a complex face or a complex edge. A
strongly complex voxel always contains a closed component
of E in its interior. We define a cell to be complex if it has
a strongly complex voxel, a strongly complex face, a complex

edge, or an ambiguous sign configuration. This definition of
a complex cell is equivalent to the one presented in Sec. 5.

We now present a Gauss map condition for when a cell
satisfies the complex cell criterion. First, we introduce a
definition.

DEFINITION 9 Let c be a voxel/face of a cell. Let ~u be
a unit vector and θ be a value such that 0 < θ ≤ π/2.

1. We say c is normal-bounded w.r.t (~u, θ) if

(a) Ec = ∅ or

(b) ∠~u,n < θ ∀n ∈ Gc(Ec)

This means that the Gauss map Gc(Ec) lies within a
right circular cone whose axis is ~u and whose half-angle
is θ.

2. We say c is normal-bounded by θ if

(a) Ec = ∅ or

(b) For any two vectors n1,n2 ∈ Gc(Ec), we have
∠n1,n2 < θ.

THEOREM 3 Consider a cell C. If the following condi-
tions hold:

1. The voxel of C is normal-bounded w.r.t (~u, arcsin(1/
√

(3)))
for some unit vector ~u ∈ S2.

2. Every face of C is normal-bounded w.r.t (~u, π/4) for
some unit vector ~u ∈ S1.

3. No edge e of C is complex.

then C is not complex.

(a) Topological Ambiguity (b) Supports Proof of Theorem 3

Figure 24: This figure supports the proof of Theorem 3. Fig. (a) shows a face with ambiguity. In Fig. (b), the
unit vectors along pa, sa, qc and rc have been mapped onto the the unit circle. The figure shows a cone with an
axis ~u and half-angle θ. We show that it is not possible for the Gauss map of the curve to lie within this cone.

Proof: Let c be a voxel/face of C satisfying (1) or (2).
We show it cannot be strongly complex and cannot have an
ambiguity. Therefore, C cannot be complex.

Consider a face f satisfying (2). If f is strongly complex,
then there exists a closed component of Ef within f . There-
fore Gf (Ef) would span the entire circle S1. This contradicts
the fact that f is normal-bounded w.r.t (~u, π/4). Therefore,
f cannot be strongly complex.

We now prove that f cannot have a face ambiguity. Let
the vertices of f be a, b, c, and d, as shown in Fig. 24(a).
Suppose f has an ambiguity. Without loss of generality,
assume that a and c have a positive sign, while b and d
have a negative sign. Each of the four edges intersect E .
Let the intersection points on ab, bc, cd, da be p, q, r,
s respectively. If an edge has more than one intersection
point, then choose the one that is closest to the positive
endpoint of the edge. Let nx denote the unit normal to Ef

at x ∈ Ef . Assume that the unit normal points “outwards”,
i.e., towards a point with a positive sign.

Since f is ambiguous, it has two boundary curves. With-
out loss of generality, assume p and s belong to one of the
boundary curves, while q and r belong to the other. See
Fig. 24(a).

Because a and c have a positive sign and the normals to
Ef point outwards, the normals have to lie within a range
specified by the following:

∠np, ~pa < π/2 ∧ ∠ns, ~sa < π/2 (5)

∠nq, ~qc < π/2 ∧ ∠nr, ~rc < π/2

where ~pa, ~sa, ~qc, ~rc denote the unit vectors along pa, sa,qc, rc
respectively. Under the Gauss map Gf (Ef), these unit vec-
tors will map to extremal points in S1, i.e. points belonging
to the set {(1, 0), (0, 1), (−1, 0), (0,−1)}. See Fig. 24(b).

Since f is normal-bounded w.r.t (~u, π/4), Gf (Ef) lies within
a right circular cone C centered at the origin and with a half-
angle π/4. The portion of S1 that lies within such a cone
is always a subset of a principal hemisphere. Let H1 denote
such a principal hemisphere. Then we have Gf (Ef) ⊆ H1.
Furthermore, H2 = S1 \H1 is another principal hemisphere.
The apex of H2 is an extremal point in S1 (~rc in Fig. 24(b)).
This extremal point corresponds to a unit vector. Let us de-
note it as ~v. Since Gf (Ef) ⊆ H1, the angle between ~v and
any vector in Gf (Ef) is greater than π/2. In particular, the
angle between ~v and each of np,nq,nr,ns is greater than
π/2. This contradicts Equation 5.

We can use a similar argument to show that the voxel
ϑ of C is not strongly complex and does not have an am-
biguity. We can show that if ϑ is normal-bounded w.r.t
(~u, arcsin(1/

√
(3))), then Gϑ(Eϑ) is always a subset of a

principal hemisphere. This fact can then be used to prove
the result.

2

12.3 Gauss Map Condition for Star-shaped
Criterion

We now present a Gauss map condition for when E is star-
shaped w.r.t a voxel. We show that a voxel ϑ will satisfy
the star-shaped criterion if there exists a unit vector ~u such
that ϑ is normal-bounded w.r.t (~u, π/2). A similar 2D result
holds for the faces of the cell.

Before proving the result, we introduce a definition.

DEFINITION 10 Consider a line segment pq that inter-
sects E.

• We call an intersection point r ∈ Epq a tangential
intersection point if pq · nr = 0. Otherwise we

Figure 25: Condition for Star-shaped Criterion:
This figure supports the proof of Theorem 4. If there
exists a unit vector ~u such that angle between ~u and
the normal at any point in Eϑ is less than π/2, then
Eϑ is star-shaped.

say r is a transversal intersection point. We call
r an entry point if pq · nr < 0, an exit point if
pq · nr > 0.

• If all the intersection points are transversal then we
say pq intersects E transversally.

If pq intersects E transversally, then we can classify each
intersection point as an entry point or an exit point. We
can sort the intersection points in the order of increasing
distance from p. In the sorted order, the entry and exit
points will alternate each other. This is because E is an
oriented closed manifold.

THEOREM 4 Let ϑ be a boundary voxel, i.e. Eϑ 6= ∅. If
there exists a unit vector ~u such that Eϑ is normal-bounded
w.r.t (~u, θ) for any θ, 0 < θ < π/2, then

1. E is star-shaped w.r.t ϑ.

2. Any point belonging to the set

{(x− α‖ϑ‖~u) | x ∈ ϑ, α > 1/ cos(θ)}

is a guard of Eϑ.

Proof: (2) implies (1). Hence we prove (2). Choose any
point x ∈ ϑ. Let c = x − α‖ϑ‖~u. Consider any point
p ∈ Eϑ. We first show that cp · np > 0.

See Fig. 25. We have

cp = cx + xp

= α‖ϑ‖~u + xp

cp · np = α‖ϑ‖~u · np + xp · np

> α‖ϑ‖ cos(θ) + xp · np because ∠~u,np < θ

> ‖ϑ‖+ xp · np

> 0 because ‖xp‖ < ‖ϑ‖ and np is a unit vector

We now show that cp ∩ E = {p}. We first note that cp
intersects E transversally because otherwise it will contradict
the fact that cp · np > 0 for all p ∈ Eϑ.

Suppose cp intersects E at a point other than p. Let r be
a point belonging to E ∩(cp\{p}) that is closest to p. Since
r and p are “consecutive” intersection points, one of them
is an entry point and the other is an exit point. This means
either cp · nr < 0 or cp · np < 0 which is a contradiction.

2

We note that the condition in the above theorem is suf-
ficient, but not necessary. The above theorem can also be
rephrased as follows: If the Gauss map Gϑ(Eϑ) is a strict
subset of a hemisphere of S2, then Eϑ is star-shaped. The
unit vector ~u will point towards the apex of such a hemi-
sphere. Similar Gauss map conditions have been widely used
in the boundary evaluation literature [82].

12.3.1 Conservative Star-shaped Test
In the case where E is non-linear, we use a conservative

technique to answer the star-shaped query (Sec. 6.4). The
conservative technique enumerates a set of samples on E to
estimate a candidate point for the guard and verifies whether
E is actually star-shaped w.r.t the candidate point. Due to
a poor estimate of the candidate point, it is possible that
a voxel satisfies the condition in Theorem 4, but still fails
the star-shaped criterion as per the conservative technique.
However, under a more restrictive condition than the one
used in Theorem 4, we can show that a voxel will satisfy the
star-shaped criterion even as per the conservative technique.
This restrictive condition requires that a voxel be normal-
bounded by π/2.

COROLLARY 1 Consider a voxel ϑ that is normal-bounded
by θ, 0 < θ < π/2. Then

1. E is star-shaped w.r.t ϑ.

2. Any point belonging to the set

{(p− α‖ϑ‖np) | p ∈ Eϑ, α > 1/ cos(θ)}

is a guard of Eϑ.

This corollary follows directly from Theorem 4 by choos-
ing ~u = np for any point p ∈ Eϑ. The corollary provides a
sufficient condition when a voxel will satisfy the star-shaped
criterion as per the conservative technique. It suffices to
choose merely one sample (say p ∈ Eϑ) within the voxel.
Then any point belonging to the set

{(p− α‖ϑ‖np) | α > 1/ cos(θ)}

can be chosen as a guard. In practice, we enumerate more
than one sample point to obtain a faster convergence. This

(a)

Figure 26: Local Feature Size (LFS): The LFS of a
point p w.r.t E is defined as the distance between p
and the medial axis of E. We extend this definition to
a face. The LFS of a face f is defined as the minimum
of the LFS of all points in Ef .

enables us to verify the star-shaped criterion even in the case
where the voxel is not normal-bounded by π/2.

12.4 Local Feature Size Condition
In this subsection, we derive a conservative lower bound

on the size of the grid cells during adaptive subdivision.
This provides a sufficient condition for the termination of
the algorithm.

We reduce the Gauss map conditions for both the complex
cell and star-shaped criteria to a common condition based
on local feature size (LFS). We start by defining the LFS of
a cell. Then we show that both the Gauss map conditions
are met if the grid cells are smaller than a certain fraction of
their LFS. This yields a lower bound on the cell size and in
turn a sufficient condition for termination of the algorithm.

We define the LFS of a cell, which in turn is defined in
terms of the LFS of its voxel, faces and edges. The LFS of a
voxel is defined as the minimum of the LFS of all the points
on E that belong to the voxel. The LFS of a face/edge is
defined similarly by considering the restriction of E to the
face/edge. See Figs. 26 and 27.

LFS of a Voxel: Let LFS : E → R denote the LFS of E .
Recall that LFS(p) at a point p on E is defined as the least
distance of p to the medial axis of E . Then the LFS of a
voxel ϑ is defined as:

LFS(ϑ) = min{LFS(p) | p ∈ Eϑ} if Eϑ 6= ∅
= ∞ otherwise

LFS of a Face: Let Πf be the plane containing a face f .
Consider the restriction EΠ of E to Π. We can treat EΠ as a
curve in R2; hence we can use a 2D definition of LFS for EΠ.
Let the LFS be defined by the function LFSΠf : EΠ → R.
Then the LFS of f is defined as:

(a)

Figure 27: LFS of an edge: This figure shows the LFS
of an edge e that is intersected by E at two points. In
this case, the LFS of the edge is equal to the distance
between the two intersection points.

LFS(f) = min{LFSΠf (p) | p ∈ Ef} if Ef 6= ∅
= ∞ otherwise

See Fig. 26.

LFS of an Edge: Let le be the line containing an edge
e. Consider the restriction Ele of E to le. We define a one-
dimensional LFSle for points on Ele in terms of three cases:

1. If Ele = ∅, then LFSle is always infinity.

2. Suppose E intersects le at one point. If this intersection
is tangential, then LFSle is always zero. Otherwise it
is infinity.

3. E intersects le at multiple points. Then LFSle is de-
fined as follows:

LFSle(p) = 0 if p is a tangential intersection point

= inf{d(p,q) | q ∈ Ele , q 6= p} otherwise

The LFS of edge e is defined as follows:

LFS(e) = min{LFSle(p) | p ∈ Ee} if Ee 6= ∅
= ∞ otherwise

See Fig. 27.

LFS of a Cell: The LFS of a cell is defined as the minimum
of the LFS of its edges, faces, and the voxel.

Intuitively, our goal is to show that a cell will satisfy the
complex cell and star-shaped criteria if it is “sufficiently
small”. We make the previous statement precise using the
following definition.

DEFINITION 11 Let c be an edge/face/voxel of a cell C.

1. c is LFS-small if ‖c‖ < ρ LFS(c) for any ρ < β/(1 +
3β) where β = arcsin(1/

√
(3)).

2. C is LFS-small if every edge/face/voxel of C is LFS-
small.

The choice of the value of ρ is determined by Theorem 5
(see below). We show that a LFS-small cell satisfies the
complex cell and star-shaped criteria. Our proof relies on
the following lemma presented by Amenta and Bern [81]. It
basically states that the normals at two closeby points on
the surface are close to each other. The surface E is assumed
to be a twice-differentiable manifold.

LEMMA 6 For any two points p and q on E with d(p,q) ≤
ρ min{LFS(p), LFS(q)}, for any ρ < 1/3, the angle between
the normals to E at p and q is at most ρ/(1− 3ρ) [81].

THEOREM 5 Let C be a LFS-small cell. Then,

1. C is not complex.

2. E is star-shaped w.r.t C.

Proof: Let c be a face/voxel of C. Because c is LFS-small,
any two points in Ec are within distance ‖c‖ < ρ LFS(c)
where ρ < β/(1 + 3β). Then according to Lemma 6, the
angle between the normals to any two points in Ec is at
most ρ/(1− 3ρ) = β = arcsin(1/

√
(3)). Hence c is normal-

bounded by β. We now use Theorem 3 and Corollary 1 to
prove the result.

To apply Theorem 3, we choose ~u to be the normal at any
point in Ec. Thus c is normal-bounded w.r.t (~u, π/4). Fur-
thermore, by definition, an LFS-small edge is not complex.
Therefore C cannot have complex edges. Theorem 3 implies
that C is not complex.

Since c is normal-bounded by π/4, Corollary 1 ensures
that E is star-shaped w.r.t both voxel as well as faces of C.

2

12.5 Termination
Theorem 5 provides a lower bound on the size of the grid

cells relative to the LFS. During adaptive subdivision, once
the size of a cell C is less than ρLFS(C), then it is LFS-small,
and satisfies both the complex cell and star-shaped criteria.
The algorithm will terminate provided there exist a lower
bound on the LFS of every grid cell. Suppose there exists
such a lower bound τ . Assuming a cell halves its size at each
subdivision step, this implies a lower bound of ρτ/2 on the
size of every cell. We use this fact to provide the following
sufficient condition for the termination of the subdivision
algorithm:

COROLLARY 2 If there exists an τ > 0, such that during
adaptive subdivision, the LFS of every grid cell is greater
than τ , then the subdivision algorithm will terminate and
the grid cells will be of size greater than ρτ/2.

In general, it is difficult to enforce the above condition
during adaptive subdivision. During the subdivision pro-
cess, as new voxels, faces and edges are created, the LFS
of the newly created voxels/faces/edges change. While it is

true that the LFS of a voxel of a child cell is always greater
than or equal to the LFS of the voxel of its parent cell, a
similar property does not hold for the faces and edges of the
children cells. The LFS for the newly created faces and edges
depends on how they intersect E . If these faces and edges
intersect E in a “near grazing” manner, then their LFS can
be arbitrarily small. For example, if E has large flat regions
that are parallel to the axis-aligned planes of the coordinate
system (XY, YZ, or ZX), then the LFS of some of the faces
and edges can be zero. Such problems may sometimes be
alleviated by choosing a different set of co-ordinate axes.

We conclude the analysis with a few remarks. We note
that LFS-small condition is sufficient, but not necessary.
Furthermore, the lower bound (ρτ/2) is an overly conser-
vative lower bound on the cell size. In practice, we have
observed that the algorithm produces much larger cells. Fi-
nally, even though our analysis is restricted to only smooth
surfaces, our algorithm is applicable to surfaces with sharp
features.

Figure 28: Tangential Contact: This figure shows a
case where two primitives touch each other at a point.
We call such a contact a tangential contact. It is a
degenerate case for our algorithm.

13. DEGENERACIES
There are two types of degenerate cases for our algorithm.

The first type of degeneracy occurs when E has a tangential
contact. See Fig. 28. This can occur when two input primi-
tives touch each other. Different types of tangential contacts
are possible: the contact region may be a point, curve, or
a surface. Our algorithm cannot handle such cases. No
matter how much subdivision is performed in the vicinity
of the tangential contact, the complex cell and star-shaped
properties are never satisfied.

Another kind of degeneracy occurs when the E grazes an
edge or a face of a cell. The contact region may be a point,
curve, or a surface. We refer to these types of situations as
grazing contacts. Fig. 5 shows a few examples. In the vicin-
ity of a grazing contact, the sampling condition is never
met; an edge (face) with grazing contact will not satisfy

the complex edge (complex face) criterion. One way of re-
ducing the likelihood of grazing contacts is to perform the
adaptive subdivision randomly, i.e., choose random points
to split the voxel, faces, and edges of the cell. For example,
we can randomly select a point in the interior of the voxel,
and subdivide the voxel into tetrahedral regions with the
chosen point as an apex. This type of subdivision would
generate a tetrahedral grid. Isosurface extraction can then
be performed using an MC-like algorithm such as Marching
Tetrahedra [83,84].

Both tangential contact and grazing contact can be char-
acterized in terms of the LFS. At a tangential contact, the
LFS of the voxel containing the contact is zero. Similarly,
at a grazing contact along a face or an edge, the LFS of the
corresponding face or edge is zero.

Detecting the occurence of either type of degeneracy is
difficult. This is because we do not have an explicit repre-
sentation of E . Note that the portion of E involved in the
contact may belong to either a single primitive or the in-
tersection curve between multiple primitives. While it may
be possible to detect the first case, the second case is much
harder as this requires intersection curve computation.

Handling degeneracies is a challenging problem that has
been extensively studied in solid modeling [85–87]. Many
approaches have been proposed to handle them. One option
is to perform “special case handling”: enumerating all the
possible types of degeneracies and adding code to explicitly
detect and resolve them. While this approach can be useful
in many situations, it leads to more complexity in the under-
lying algorithms and representations, e.g., these algorithms
need to work with non-manifold representations. Moreover,
these algorithms will not be compatible with MC-like re-
construction methods: We cannot use special-purpose algo-
rithms in cells containing degeneracies and MC-like methods
in the remaining cells as this may lead to cracks in the out-
put.

Another approach to handling degeneracies is to use per-
turbation methods. This approach applies a perturbation
to the input to eliminate the degeneracy. The perturbation
may be done either symbolically [85] or numerically [87]. It
may be possible to use perturbation methods to resolve graz-
ing and tangential contacts. The input primitives defining E
can be numerically perturbed. This defines a perturbed sur-
face E ′. If the perturbation is chosen randomly, it is likely
that E ′ is not degenerate. We can then apply our adaptive
subdivision approach to the perturbed input.

The main advantage of perturbation methods is that we
can apply the adaptive subdivision algorithm directly with-
out having to explicitly handle degeneracies. However, there
are a few issues with using numerical perturbation. It mod-
ifies the input data, and hence the output will be topologi-
cally equivalent to the perturbed surface Ẽ and not the orig-
inal surface E . Moreover, adding a numerical perturbation
may not necessarily eliminate the degeneracy, or even worse,
it may create another. Therefore, this method requires a ro-
bust test for detecting degeneracy. If the applied perturba-
tion does not resolve the degeneracy, another perturbation
is needed.

14. LIMITATIONS

In this section, we discuss the limitations of our algorithm.
As discussed earlier, our algorithm does not terminate in
certain degenerate cases. Our algorithm can only generate
manifold boundaries and is not applicable to the cases where
the exact boundary is non-manifold.

We do not provide a bound on the time complexity of our
algorithm as a function of the combinatorial complexity of
the input primitives. This is because of we are unable to
give an absolute lower bound on the size of the grid cells
generated during adaptive subdivision. Sec. 12 provides a
lower bound on the cell size relative to the LFS of a cell.
However, to obtain an absolute bound, the LFS needs to be
expressed as a function of the combinatorial complexity of
the input. This requires further analysis.

Our algorithm may perform conservative subdivision. Within
a cell, we require that all the primitives should be star-
shaped with respect to a common guard. This is a con-
servative condition. The isosurface defined by the Boolean
expression over the primitives can be star-shaped within the
cell even though this condition may not be satisfied. This
can result in additional subdivision and lead to higher poly-
gon counts in the approximation.

Our topology preserving simplification algorithm cannot
perform drastic simplifications. This is due to the conserva-
tive subdivision and also the fact that volumetric approaches
can not produce drastic simplifications [88]. Moreover, for
a fixed polygon budget, approaches based on surface deci-
mation operations like edge collapses or vertex removal [79]
will generate a higher quality simplification.

15. SUMMARY
We have described a novel approach to compute topology

preserving isosurfaces that arise in a variety of geometric
processing applications. We have presented a sufficient sam-
pling condition based on the complex cell and star-shaped
criteria so that the reconstruction maintains the topology
of the original isosurface. We have described a simple ex-
tension to the sampling condition to also bound the two-
sided Hausdorff error of the reconstruction. We have also
described an adaptive subdivision algorithm which is effi-
cient in practice and easy to implement. We have demon-
strated the application of our algorithm to Boolean opera-
tions, topology preserving simplification, and remeshing on
a number of complex examples.

16. FUTURE WORK
There are many avenues for future work. Our sampling

criteria – complex cell and star-shaped criteria – are geared
towards Marching Cubes reconstruction. We would like to
develop better reconstruction algorithms so that we could
make the sampling criteria less conservative and yet preserve
topology.

The star-shaped criterion ensures that the surface within
every cell is star-shaped. A useful property of a star-shaped
surface is that it has a spherical parametrization. The fact
that every point on the surface is visible to the guard can be
used to map the surface onto a portion of the unit sphere.
Then a tessellation of this portion of the sphere yields a
polygonization of the star-shaped surface. It would be use-
ful to develop a reconstruction algorithm that exploits this

property.
Current algorithms for kernel computation on curved prim-

itives involve solving non-linear equations and can be slow.
For the special case of rational freeform surfaces, kernel com-
putation can be reformulated as computing the zero sets of
polynomial equations [89]. Solving such equations for each
grid cell can be rather expensive in practice. Moreover, no
good algorithms are known for kernel computation on free-
form solids defined using subdivision surfaces. We would
like to develop efficient algorithms for kernel computation
on curved solids.

In applications such as laser scanning, the input data often
contains topological noise due to inaccuracies in the scan-
ning and merging process. We would like to investigate
whether our results can be combined with the algorithms
presented in [56,57] and used to perform topological reason-
ing for noise removal.

Our current implementation supports polyhedral and low
order algebraic primitives. We would like to apply our al-
gorithm to higher order NURBS and subdivision surfaces.
Finally, we plan to use our algorithm for other surface ex-
traction problems such as swept volume computation.

17. REFERENCES
[1] G. Varadhan, S. Krishnan, T. V. N. Sriram, and

D. Manocha, “Topology preserving surface extraction using
adaptive subdivision,” in Eurographics Symposium on
Geometry Processing, 2004.

[2] W. E. Lorensen and H. E. Cline, “Marching cubes: A high
resolution 3D surface construction algorithm,” in Computer
Graphics (SIGGRAPH ’87 Proceedings), vol. 21, 1987, pp.
163–169.

[3] L. Kobbelt, M. Botsch, U. Schwanecke, and H. P. Seidel,
“Feature-sensitive surface extraction from volume data,” in
Proc. of ACM SIGGRAPH, 2001, pp. 57–66.

[4] T. Ju, F. Losasso, S. Schaefer, and J. Warren, “Dual
contouring of hermite data,” ACM Trans. on Graphics
(Proc. SIGGRAPH), vol. 21, no. 3, 2002.

[5] G. Varadhan, S. Krishnan, Y. Kim, and D. Manocha,
“Feature-sensitive subdivision and isosurface
reconstruction,” Proc. of IEEE Visualization, 2003.

[6] B. Wyvill, C. McPheeters, and G. Wyvill, “Animating soft
objects,” The Visual Computer, vol. 2, no. 4, pp. 235–242,
1986.

[7] J. Bloomenthal, “Polygonization of implicit surfaces,”
Comput. Aided Geom. Design, vol. 5, no. 4, pp. 341–355,
1988.

[8] B. Wyvill and K. van Overveld, “Polygonization of Implicit
Surfaces with Constructive Solid Geometry,” Journal of
Shape Modelling, vol. 2, no. 4, pp. 257–274, 1996.

[9] D. Breen, S. Mauch, and R. Whitaker, “3d scan conversion
of csg models into distance, closest-point and color
volumes,” Proc. of Volume Graphics, pp. 135–158, 2000.

[10] R. Perry and S. Frisken, “Kizamu: A system for sculpting
digital characters,” in Proc. of ACM SIGGRAPH, 2001,
pp. 47–56.

[11] Y. Ohtake, A. Belyaev, M. Alexa, G. Turk, and H.-P.
Seidel, “Multi-level partition of unity implicits,” ACM
Trans. Graph., vol. 22, no. 3, pp. 463–470, 2003.

[12] W. Schroeder, K. Martin, and B. Lorensen, The
Visualization Toolkit: An Object-Oriented Approach to 3D
Graphics. New Jersey, NJ: Prentice-Hall Inc, 1997.

[13] S. Frisken, R. Perry, A. Rockwood, and R. Jones,
“Adaptively sampled distance fields: A general
representation of shapes for computer graphics,” in Proc. of
ACM SIGGRAPH, 2000, pp. 249–254.

[14] P. Sutton, C. Hansen, H. Shen, and D. Schikore, “A case

study of isosurface extraction algorithm performance,”
2000. [Online]. Available:
citeseer.ist.psu.edu/sutton00case.html

[15] H. Carr, “Topological manipulation of isosurfaces,” Ph.D.
dissertation, The University of British Columbia, 2004.

[16] H. Fuchs, Z. M. Kedem, and S. P. Uselton, “Optimal
surface reconstruction from planar contours,” Commun.
ACM, vol. 20, no. 10, pp. 693–702, 1977.

[17] A. Koide, A. Doi, and K. Kajioka, “Polyhedral
approximation approach to molecular orbital graphics,” J.
Mol. Graph., vol. 4, no. 3, pp. 149–155, 1986.

[18] B. A. Payne and A. W. Toga, “Medical imaging: Surface
mapping brain function on 3d models,” IEEE Comput.
Graph. Appl., vol. 10, no. 5, pp. 33–41, 1990.

[19] W. E. Lorensen, “Marching through the visible man,” in
VIS ’95: Proceedings of the 6th conference on
Visualization ’95. Washington, DC, USA: IEEE
Computer Society, 1995, p. 368.

[20] P. D. Heermann, “Production visualization for the asci one
teraflops machine,” in VIS ’98: Proceedings of the
conference on Visualization ’98. Los Alamitos, CA, USA:
IEEE Computer Society Press, 1998, pp. 459–462.

[21] C. R. F. Monks, P. J. Crossno, G. Davidson, C. Pavlakos,
A. Kupfer, C. Silva, and B. Wylie, “Three dimensional
visualization of proteins in cellular interactions,” in VIS
’96: Proceedings of the 7th conference on Visualization ’96.
Los Alamitos, CA, USA: IEEE Computer Society Press,
1996, pp. 363–ff.

[22] A. Ricci, “A constructive geometry for computer graphics,”
Computer Journal, vol. 16, no. 2, pp. 157–160, May 1973.

[23] J. F. Blinn, “A generalization of algebraic surface
drawing,” ACM Transactions on Graphics, vol. 1, no. 3,
pp. 235–256, July 1982.

[24] A. Pasko, V. Adzhiev, A. Sourin, and V. Savchenko,
“Function representation in geometric modeling: concepts,
implementation and applications,” The Visual Computer,
vol. 11, no. 8, pp. 429–446, 1995.

[25] J. Bloomenthal, Ed., Introduction to Implicit Surfaces.
Morgan-Kaufmann, 1997, vol. 391.

[26] S. Wang and A. Kaufman, “Volume-sampled 3d modeling,”
IEEE Computer Graphics and Applications, vol. 14, no. 5,
pp. 26–32, 1994.

[27] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and
W. Stuetzle, “Surface reconstruction from unorganized
points,” in Computer Graphics (SIGGRAPH ’92
Proceedings), vol. 26, July 1992, pp. 71–78.

[28] B. Curless and M. Levoy, “A volumetric method for
building complex models from range images,” in
SIGGRAPH 96 Conference Proceedings, ser. Annual
Conference Series, H. Rushmeier, Ed., ACM SIGGRAPH.
Addison Wesley, Aug. 1996, pp. 303–312, held in New
Orleans, Louisiana, 04-09 August 1996.

[29] J. C. Carr, R. K. Beatson, J. B. Cherrie, T. J. Mitchell,
W. R. Fright, B. C. McCallum, and T. R. Evans,
“Reconstruction and representation of 3d objects with
radial basis functions,” in SIGGRAPH ’01: Proceedings of
the 28th annual conference on Computer graphics and
interactive techniques. New York, NY, USA: ACM Press,
2001, pp. 67–76.

[30] Z. Wood, H. Hoppe, M. Desbrun, and P. Schroder,
“Iso-surface topology simplification,” Microsoft Research,
MSR-TR-2002-28, Tech. Rep., 2002.

[31] W. J. Schroeder, W. E. Lorensen, and S. Linthicum,
“Implicit modeling of swept surfaces and volumes,” in VIS
’94: Proceedings of the conference on Visualization ’94.
Los Alamitos, CA, USA: IEEE Computer Society Press,
1994, pp. 40–45.

[32] M. Hall and J. Warren, “Adaptive polygonalization of
implicitly defined surfaces,” IEEE Comput. Graph. Appl.,
vol. 10, no. 6, pp. 33–42, 1990.

[33] L. Velho, “Adaptive polygonization of implicit surfaces

using simplicial decomposition and boundary constraints,”
in Eurographics ’90, C. E. Vandoni and D. A. Duce, Eds.
North-Holland, Sept. 1990, pp. 125–136.

[34] P. Ning and J. Bloomenthal, “An evaluation of implicit
surface tilers,” IEEE Comput. Graph. Appl., vol. 13, no. 6,
pp. 33–41, 1993.

[35] A. Bottino, W. Nuij, and K. van Overveld, “How to
shrinkwrap through a critical point: An algorithm for the
adaptive tesselation of iso-surfaces with arbitrary
topology,” Implicit Surfaces, pp. 53–72, 1996.

[36] B. T. Stander and J. C. Hart, “Guaranteeing the topology
of an implicit surface polygonization for interactive
modeling,” in Proc. of ACM SIGGRAPH, 1997, pp.
279–286.

[37] Y. Ohtake, A. G. Belyaev, and A. Pasko, “Dynamic meshes
for accurate polygonanization of implicit surfaces with
sharp features,” Prof. of Shape Modeling International, pp.
135–158, 2001.

[38] N. Zhang, W. Hong, and A. Kaufman, “Dual contouring
with topology-preserving simplification using enhanced cell
representation,” in VIS ’04: Proceedings of the conference
on Visualization ’04. Washington, DC, USA: IEEE
Computer Society, 2004, pp. 505–512.

[39] J.-D. Boissonnat, D. Cohen-Steiner, and G. Vegter,
“Isotopic implicit surface meshing,” STOC, 2004.

[40] G. M. Nielson, “Dual marching cubes,” in VIS ’04:
Proceedings of the conference on Visualization ’04.
Washington, DC, USA: IEEE Computer Society, 2004, pp.
489–496.

[41] S. Schaefer and J. Warren, “Dual marching cubes: Primal
contouring of dual grids,” in PG ’04: Proceedings of the
Computer Graphics and Applications, 12th Pacific
Conference on (PG’04). Washington, DC, USA: IEEE
Computer Society, 2004, pp. 70–76.

[42] J. Wilhelms and A. V. Gelder, “Octrees for faster
isosurface generation extended abstract,” in Computer
Graphics (San Diego Workshop on Volume Visualization),
vol. 24, no. 5, Nov. 1990, pp. 57–62.

[43] C. L. Bajaj, V. Pascucci, and D. R. Schikore, “Fast
isocontouring for improved interactivity,” in 1996 Volume
Visualization Symposium. IEEE, Oct. 1996, pp. 39–46,
iSBN 0-89791-741-3.

[44] P. Cignoni, C. Montani, E. Puppo, and R. Scopigno,
“Optimal isosurface extraction from irregular volume
data,” in 1996 Volume Visualization Symposium. IEEE,
Oct. 1996, pp. 31–38, iSBN 0-89791-741-3.

[45] Y. Livnat, H.-W. Shen, and C. R. Johnson, “A near
optimal isosurface extraction algorithm using the span
space,” IEEE Trans. Visualizat. Comput. Graph., vol. 2,
pp. 73–84, 1996.

[46] R. Shekhar, E. Fayyad, R. Yagel, and F. Cornhill,
“Octree-based decimation of marching cubes surfaces,”
Proc. of IEEE Visualization, pp. 335–342, 1996.

[47] R. Westermann, L. Kobbelt, and T. Ertl, “Real-time
exploration of regular volume data by adaptive
reconstruction of isosurfaces,” The Visual Computer, vol. 2,
pp. 100–111, 1999.

[48] T. Gerstner and R. Pajarola, “Topology preserving and
controlled topology simplifying multi-resolution isosurface
extraction,” Proc. of IEEE Visualization, pp. 259–266,
2000.

[49] C. Montani, R. Scateni, and R. Scopigno, “Discretized
marching cubes,” Proc. of IEEE Visualization, pp.
353–355, 1994.

[50] M.J.Durst, “Letters: Additional reference to marching
cubes,” ACM Computer Graphics, vol. 22, no. 4, pp. 72–73,
1988.

[51] J. Wilhelms and A. V. Gelder, “Topological considerations
in isosurface generation extended abstract,” Computer
Graphics, vol. 24, no. 5, pp. 79–86, 1990.

[52] G. M. Nielson and B. Hamann, “The asymptotic decider:

Removing the ambiguity in marching cubes,” in
Visualization ’91, 1991, pp. 83–91.

[53] B. K. Natarajan, “On generating topologically consistent
isosurfaces from uniform samples,” Vis. Comput., vol. 11,
no. 1, pp. 52–62, 1994.

[54] P. Cignoni, F. Ganovelli, C. Montani, and R. Scopigno,
“Reconstruction of topologically correct and adaptive
trilinear isosurfaces,” Computers & Graphics, vol. 24, no. 3,
pp. 399–418, 2000.

[55] A. Lopes and K. Brodlie, “Improving the robustness and
accuracy of the marching cubes algorithm for isosurfacing,”
IEEE Transactions on Visualization and Computer
Graphics, vol. 9, no. 1, pp. 16–29, 2003.

[56] I. Guskov and Z. Wood, “Topological noise removal,” Proc.
of Graphics Interface, 2001.

[57] S. Bischoff and L. Kobbelt, “Isosurface reconstruction with
topology control,” Proc. of Pacific Graphics, pp. 246–255,
2002.

[58] J. M. Snyder, “Interval analysis for computer graphics,” in
Computer Graphics (SIGGRAPH ’92 Proceedings), E. E.
Catmull, Ed., vol. 26, July 1992, pp. 121–130.

[59] S. Plantinga and G. Vegter, “Isotopic approximation of
implicit curves and surfaces,” in SGP ’04: Proceedings of
the 2004 Eurographics/ACM SIGGRAPH symposium on
Geometry processing. New York, NY, USA: ACM Press,
2004, pp. 245–254.

[60] H. Samet, Spatial Data Structures: Quadtree, Octrees and
Other Hierarchical Methods. Addison Wesley, 1989.

[61] J. Munkres, Topology: A First Course. Prentice-Hall,
1975.

[62] H. Edelsbrunner and N. R. Shah, “Triangulating
topological spaces,” in ACM Symposium on Computational
Geometry, 1994, pp. 285–292.

[63] R. E. Moore, Interval Analysis. Englewood Cliffs, NJ:
Prentice Hall, 1966.

[64] G. Varadhan, S. Krishnan, Y. Kim, S. Diggavi, and
D. Manocha, “Efficient max-norm computation and reliable
voxelization,” Proc. of ACM SIGGRAPH/Eurographics
Symposium on Geometry Processing, pp. 116–126, 2003.

[65] M. de Berg, M. van Kreveld, M. H. Overmars, and
O. Schwarzkopf, Computational Geometry: Algorithms and
Applications, 2nd ed. Berlin, Germany: Springer-Verlag,
2000.

[66] A. Schrijver, Theory of Linear and Integer Programming.
John Wiley & Sons, 1998.

[67] GLPK, “Gnu linear programming kit,
url:http://www.gnu.org/software/glpk/glpk.html,” 2003.
[Online]. Available:
\url{http://www.gnu.org/software/glpk/glpk.html}

[68] QSOPT, “Qsopt linear programming solver,
url:http://www.isye.gatech.edu/ wcook/qsopt/index.html,”
2005.

[69] J.-K. Seong, G. Elber, J. Johnstone, and M.-S. Kim, “The
convex hull and kernel of freeform surfaces,” in UAB
Technical Report (UABCIS-TR-2004-120104-02), 2003.

[70] D. Manocha and J. F. Canny, “Implicit representation of
rational parametric surfaces,” J. Symb. Comput., vol. 13,
no. 5, pp. 485–510, 1992.

[71] N. Aspert, D. Santa-Cruz, and T. Ebrahimi, “Mesh:
Measuring error between surfaces using the hausdorff
distance,,” in Proceedings of the IEEE International
Conference on Multimedia and Expo, 2002, pp. 705–708.

[72] M. Guthe, P. Borodin, and R. Klein, “Fast and accurate
hausdorff distance calculation between meshes,” vol. 13,
no. 2, February 2005, pp. 41–48.

[73] J. Peters, “Efficient one-sided linearization of spline
geometry,” 10th IMA Conference on Mathematics of
Surfaces, pp. 297–319, 2003.

[74] G. Varadhan and D. Manocha, “Accurate minkowski sum
approximation of polyhedral models.” in Pacific
Conference on Computer Graphics and Applications, 2004,

pp. 392–401.

[75] G. Varadhan, S. Krishnan, T. V. N. Sriram, and
D. Manocha, “A simple algorithm for complete motion
planning of translating polyhedral robots,” in Workshop on
Algorithmic Foundations of Robotics, 2004.

[76] G. Varadhan and D. Manocha, “Star-shaped roadmaps - a
deterministic sampling approach for complete motion
planning,” in Proceedings of Robotics: Science and
Systems, Cambridge, USA, June 2005.

[77] T. He, L. Hong, A. Varshney, and S. Wang, “Controlled
topology simplification,” IEEE Transactions on
Visualization and Computer Graphics, vol. 2, no. 2, pp.
171–184, 1996.

[78] F. S. Nooruddin and G. Turk, “Simplification and repair of
polygonal models using volumetric techniques,” IEEE
Trans. on Visualization and Computer Graphics, vol. 9,
no. 2, pp. 191–205, 2003.

[79] J. Cohen, A. Varshney, D. Manocha, G. Turk, H. Weber,
P. Agarwal, F. Brooks, and W. Wright, “Simplification
envelopes,” in Proc. of ACM Siggraph’96, 1996, pp.
119–128.

[80] S. Zelinka and M. Garland, “Permission grids: Practical,
error-bounded simplification,” ACM Trans. on Graphics,
2002.

[81] N. Amenta and M. Bern, “Surface reconsruction by Voronoi
filtering,” in ACM Symposium on Computational
Geometry, 1998, pp. 39–48.

[82] M. E. Hohmeyer, “A surface intersection algorithm based
on loop detection,” vol. 1, no. 4, pp. 473–490, 1991.

[83] B. A. Payne and A. W. Toga, “Surface mapping brain
function on 3D models,” IEEE Computer Graphics and
Applications, vol. 10, no. 5, pp. 33–41, Sept. 1990.

[84] A. Gueziec and R. Hummel, “Exploiting triangulated
surface extraction using tetrahedral decomposition,” IEEE
Transactions on Visualization and Computer Graphics,
vol. 1, no. 4, pp. 328–342, Dec. 1995, iSSN 1077-2626.

[85] R. Seidel, “The nature and meaning of perturbations in
geometric computing, Manuscript,” 1994.

[86] C. Hoffmann, “Robustness in geometric computations,”
Journal of Computing and Information Science in
Engineering, vol. 1, pp. 143–156, 2001.

[87] K. Ouchi and J. Keyser, “Handling degeneracies in exact
boundary evaluation,” in Proceedings of 9th ACM
Symposium on Solid Modeling and Applications, 2004, pp.
321–326.

[88] J. El-Sana and A. Varshney, “Controlled simplification of
genus for polygonal models,” Proc. of IEEE Visualization,
pp. 403–410, 1997.

[89] J. K. Seong, G. Elber, J. Johnston, and M. S. Kim, “The
convex hull of freeform surfaces,” Computing, 2004.

