
Example-Based Curve Generation

Paul Merrell ∗ Dinesh Manocha
University of North Carolina at Chapel Hill

Figure 1: Using the example curve sketched in red, several curves (blue) are generated automatically in the style of the example using our
algorithm. The new curves have over 50 branches and all of them were created in less than three minutes. Four of the generated curves are
shown on the left. The curves contain many branching points. The curves are directly used to create models of chandeliers by using them as
generators for surfaces of revolution or lofting. The final surface is made of about 60,000 Bezier patches.

Abstract

We present a novel synthesis method for procedural generation of
complex curves. Our approach takes a simple example input curve
specified by a user and automatically generates complex curves
that resembles the input. The algorithm preserves many of the in-
put shape features such as tangent directions, curvature and branch
nodes. The overall system is simple and can be used to generate dif-
ferent kind of curved 3D models in a few minutes. We demonstrate
its application to generating complex, curved models of man-made
objects including furniture pieces, chandeliers, glasses, and natural
patterns such as river networks and lightning bolts.

1 Introduction

One of the key problems in computer graphics is to generate geo-
metric models of complex shapes and structures. The main goal is
to generate three-dimensional content for different domains such as
computer games, movies, architectural modeling, urban planning
and virtual reality. In this paper, we address the problem of au-
tomatically or semi-automatically generating complex shapes with
curved or non-linear boundaries. Curved artistic decorations are
an important part of designing man-made objects. These include
household items such as furniture, glasses, candlesticks, chande-
liers, toys, etc.. Curved structures are also used in buildings and
interior design. Moreover, many patterns in nature (e.g. terrain fea-
tures or river network) or natural phenomena, such as lighting, also
have a curved boundaries. As a result, we need simple and effective
tools that can assist artists, designers, and modelers in designing
elaborate curved objects and structures.

Most of the prior work in this area has been in procedural model-
ing, which generates 3D models from a set of rules. These include
L-systems, fractals and generative modeling techniques which can
generate high-quality 3D models of plants, architectural models and
city scenes. However, each of these methods is mainly limited to a
special class of models. Instead we use example-based techniques,

∗http://gamma.cs.unc.edu/synthesis

which are more general and generate complex models from a sim-
ple example shape [Aliaga et al. 2008; Merrell 2007; Merrell and
Manocha 2008]. Some of these methods have been inspired by
texture synthesis and are currently limited to complex polyhedral
models or layouts of city streets.

Main Result: In this paper, we present a new curve synthesis al-
gorithm. Our algorithm accepts a simple 2D piecewise curve as
an input and generates a complex curve which has similar features.
Our approach is general and makes no assumptions about paramet-
ric continuity or branching nodes. We perform local shape analysis
based on the tangent vectors and curvature of the input curve, and
generate output curves that preserve these local features. Given
a complex curve, we perform an extrusion operation or use them
as generators for surface of revolution to generate 3D models of
curved objects.

The overall algorithm is relatively simple, efficient and quite robust
in practice. Our system also provides the capability to edit the in-
put curve and to create closed loops. We have used it to generate
complex 3D models of chandeliers, drinking glasses, candlesticks,
river networks, lightning bolts, and cabinet handles with hundreds
of curve segments or surface patches in a few minutes.

2 Related Work

A few techniques have been developed to transform curves sketched
in one particular artistic style into a different artistic style [Hertz-
mann et al. 2002; Freeman et al. 2003]. The artistic styles are deter-
mined automatically from the example curves sketched by the user.
Similar techniques have also been applied on meshes to transform
the models [Bhat et al. 2004; Zelinka and Garland 2003] and also to
tranform space-time curves for animation [Wu et al. 2008]. Simhon
and Dudok [2004] use a hidden Markov model to add artistic details
to sketches.

Example-based techniques are widely used to synthesize texture
[Efros and Leung 1999; Kwatra et al. 2003] and similar tech-
niques has been applied to vector data [Barla et al. 2006]. Three-
dimensional closed polyhedral models can also be synthesized from

example models [Merrell 2007; Merrell and Manocha 2008]. An
example-based method has also been presented to synthesize the
layout of city streets [Aliaga et al. 2008].

Procedural modeling techniques are widely used to generate differ-
ent types of objects. Many of these methods are designed to model
urban environments [Müller et al. 2006; Wonka et al. 2003]. Many
elegant algorithms have also been developed for modeling plants
using L-systems [Mĕch and Prusinkiewicz 1996; Ijiri et al. 2005;
Power et al. 1999]. Wong et al. [1998] have developed a proce-
dural techniques for designing decorative patterns, including floral
patterns. Pottmann et al. [2007] have presented elegant algorithms
to generate freeform shapes for architectural models.

Sketch-based interfaces have been developed as an intuitive way to
model and deform meshes [Igarashi et al. 1999; Singh and Fiume
1998]. These methods complement our own work and can be used
to transform 2D curves into full 3D models.

3 Curve Generation

3.1 Overview

We assume that the input example curve is represented as a piece-
wise parametric curve {c1(t), c2(t), . . .}, where ci(t) is a 2D
Bezier curve. However, our algorithm can handle any curve rep-
resentation as long as it can be subdivided and we can evaluate
bounds on its tangents and curvatures. The curves may or may not
contain closed loops, branches, and cusps. Our algorithm generates
an output curve that resembles the input curve and is composed of
segments from the input example curve si(t). These segments are
created in a process described in Section 3.2. The curves and the
segments start at the value t = 0 and end at the value t = 1.

Our goal is not only to generate simple curves, but also to generate
curves with multiple branches and loops. We use a graph data struc-
ture to represent how the parts of the curve connect. Each of the
graph’s edges is a sequence of the curve segments si(t). Different
versions of the new graph are constantly being generated and evalu-
ated. Each version is evaluated and given a score based on how well
it adjusts to changes the user makes and how well it forms closed
loops if the example curve contains loops. The user can edit the
graph by creating and moving adjustment points on the curves. The
graph with the best current score is displayed even while the user is
moving adjustment points. Section 3.4 describes how the sequence
of segments si(t) for the graph’s edges are modified and evaluated.
Even the best sequences of segments rarely produce loops that close
exactly or curves that exactly touch the user’s adjustment points. In
order to accomplish this, the segments are bent and stretched as
described in Section 3.3.

3.2 Creating and Connecting Segments

For the new curve to resemble the example curve, every local neigh-
borhood of the new curve should closely resemble a neighborhood
of the input example curve. We characterize a curve’s local struc-
ture in terms of its curvature and tangent. The output curve is cre-
ated by piecing together parts of the example curve which have
roughly the same tangent angle θ = tan−1 y′

x′ and signed curva-
ture k = x′y′′−y′x′′

(x′2+y′2)3/2
. Our algorithm two curves can be connected

if their tangent vectors at the common end point are within an angle
of about θb and their curvatures are within about kb. As part of pre-
computation, we discretize the tangent angles and curvatures into
uniform bins θ̂ = b θ

θb
c and k̂ = b k

kb
c.

Given an input curve, we subdivide it into curve segments si. Each

Figure 2: The curve is decomposed into segments which have only
small changes to their tangents and curvatures. The segments are
placed into bins with bounds on tangent angles and curvatures.

segment si has a starting and ending tangent angle, θ̂si , θ̂
e
i , and a

starting and ending curvature k̂si , k̂
e
i . Smooth segments are subdi-

vided until their start and end are only one bin apart |k̂si − k̂ei | ≤ 1

and |θ̂si − θ̂ei | ≤ 1 or |θ̂si − θ̂ei | = b πθb
c − 1. Moreover, we ensure

that the tangent angles and curvatures of all points on each segment
are contained with the starting and ending bin. However, since we
do not assume C1 or C2 continuity, there may be points of discon-
tinuity i.e. cusps. Every cusp is followed by and preceded by an
open interval having C2 continuity. We subdivide this open inter-
val into curved segments until the start and end of each segment are
only one bin apart. Wherever a cusp appears we combine it with
the curve segment immediately before and immediately after it into
a single unit. This means that even though the cusp itself does not
have a well-defined tangent, it is integrated into a segment si whose
beginning and end have well-defined tangents θ̂si , θ̂

e
i . If a segment

has a cusp, usually its start and end are more than one bin apart.

We place all the curve segments cut from the example curve into a
2D array of bins shown in Figure 2. The start of a segment sj can
be attached to the segment si if their endpoints are in the same bin
(θ̂sj , k̂

s
j) = (θ̂ei , k̂

e
i). Let ai be the set of segments that may follow

after si, ai = {sj |(θ̂sj , k̂sj) = (θ̂ei , k̂
e
i)} and let bi be the set of

segments that may come before si. If for any i and j, ai = {sj}
and bj = {si}, then the segment sj is always attached to the end
of si. These segments can be combined into a single segment sm
where (θ̂sm, k̂

s
m) = (θ̂si , k̂

s
i) and (θ̂em, k̂

e
m) = (θ̂ej , k̂

e
j). Combining

segments that are always attached together improves the overall ef-
ficiency of the algorithm since there are fewer segments to manage.

There are special cases to consider within the example curve. The
input curves could start and end at the same location c(0) = c(1)
to form a closed loop. In this case, there is nothing unusual about
the segments at the start or end of the curve. Each segment has a
segment before it and after it. But if c(0) 6= c(1), the curve could
start or end by branching off another curve or it could start or end
in empty space. In order to handle these special cases, we include
special symbols in the sets ai and bi to indicate that before si there
is a branching point or empty space.

3.3 Bending and Stretching the Curves

Our algorithm uses a graph to represent the topology of the out-
put curve. The graph has vertices that denote the special cases of
branching points, starting points, and ending points as well as any
point the user selects as an adjustment point. The edges of the graph
are sequences of curved segments. For each edge, let us combine
all the segments si of that edge into a single piecewise parametric
curve s(t) (i.e. the composite curve). Let s(0) and s(1) be the start
point and end point of the composite curve. Moreover, let s(t) be
an arbitrary point on the curve. We also estimate the arc length of
s(t) using a piecewise linear approximation and compute an arc-

Figure 3: The points along a parametric curve s(t) are bent and
stretched so that the curve goes from the vertex v0 to v1.

length parametrization of s(t). In the rest of the paper, we assume
that all the computed curves are represented with an approximate
arc-length parameterization.

Let v0 and v1 be two vertices of the graph that the curve segments
are supposed to go between. We position the curve s(t) so that
s(0) = v0. Ideally, s(1)− s(0) = v1−v0, but otherwise we must
stretch the curve to get it to reach to v1 by performing a simple ge-
ometric deformation. We stretch the curve over its entire length as
shown in Figure 3. We move the point s(1) by v1− s(1) and every
intermediate point s(t) by t(v1 − s(1)). Long curves are distorted
less than short curves when stretched a given distance since the
stretching is distributed over a greater length. Our goal is to keep
the extent that a curve stretches small especially for short curves.

We now have a simple formulation to stretch a curve given its two
endpoints. The endpoints are the vertices of the graph. The loca-
tions of some of the vertices may be specified by the user, but any
remaining vertices are treated as free variables in the plane. The
goal is to determine the optimal vertex locations to minimize the
extent of the stretching. The overall extent of the stretching or de-
formation should be minimized because it can distort the segments
si found in the example curve. The extent of the stretching can
be represented by a system of linear equations. Each edge pro-
vide two linear equations, one for the x and one for the y com-
ponents. The edge connecting v0 to v1 provides the equation
s(1) − s(0) = v1 − v0. Since the equations are all linear, we
can easily minimize the amount of stretching for each edge in the
least squares sense. It is best to use a weighted least squares op-
timization that weights each equation according to the reciprocal
of the length of each curve and thereby, ensures that short curve
segments stretch less than the long segments.

3.4 Choosing the Sequence of Curve Segments

Our method is designed to constantly refine and improve the current
solution. Anytime the user is not physically moving an adjustment
point, our algorithm performs random modifications to the structure
of the graph and to the sequence of segments along the graph’s
edges. Most of these modifications do not improve the result, but
by rapidly testing many of them, there are likely to be a few of them
that do.

First, we select a portion of the graph to modify. We randomly se-
lect a point on the graph and construct a circle around it. Within
the circle, we remove every curve segment as shown in Figure 4.
The segments removed from the circle were connected to other seg-
ments from outside the circle. The segments outside the circle must
be reconnected in one of three ways. First, they could be recon-
nected to another cut segment. This option is preferable since it
reconnects two cut segments simultaneously. Second, they could
become branches of an existing curve. Certain types of segments
can have branches attached to them. If such a segment does not
already have a branch attached to it, we can attach one. The third
option is to connect the cut segment to the special type of segment
that can start or end the curve as described in Section 3.2. This cre-

Figure 4: The graph is modified by removing segments from part of
the graph and then reconnecting them.

ates a leaf-vertex, a vertex incident to a single edge, in the graph.
The first two options have a specific target location where the curve
must attach to either a branch point or a cut segment. However, the
third option does not have a target location because the curve could
start or end anywhere. As a result, the third option is relatively easy
to satisfy, but is not necessarily the best option.

There may be several target locations that the cut segments can con-
nect to. We start from one cut segment and connect it to a sequence
of segments. The segment sj can only follow si in the sequence if
sj ∈ ai as described in Section 3.2. When ai contains several op-
tions, we randomly choose between them. This is a type of random
walk. The segments are eventually connected to whichever target
location, a branching point or a cut segment, they pass the closest
to. However, not only does the end of the segments need to be close
to the target, but it also needs to have the appropriate tangent angle
and curvature when it reaches the target. Let (θ̂st , k̂

s
t) be the tar-

get segment’s tangent angle and curvature. As the sequence is be-
ing generated, we need to ensure that it ends at the target’s tangent
angle and curvature. Let (θ̂eu, k̂

e
u) be the end of the unfinished se-

quence that the algorithm is currently generating. We can compute
the shortest sequence of segments that will take us between these
given two tangent angles and curvatures using Dijkstra’s algorithm.
This gives us the shortest curve that we could attach to our unfin-
ished curve to finish it with the correct tangent angle and curvature.
We attach it to the end of our unfinished curve and compute the
distance between the end of the attached curve and the target. We
perform this distance computation everytime a segment is added to
our random walk and for every target. Whichever target the ran-
dom walk gets the closest to is the target the cut segment connects
to. If we do not get close to any of the targets, then the cut segment
connects to a leaf-vertex.

We connect all of the cut segments to either another cut segment,
a branch, or a leaf. Next, the curves are stretched as needed as de-
scribed in Section 3.3. Once all these changes have been made to
the graph, they must be evaluated. The new modified graph is com-
pared to the graph before the modifications were made based upon
several criteria. Curves that are stretched more, get more distorted
and so a stretch cost is computed as the sum of the distances that
each curve is stretched ||c(1) − v1||. This stretch cost has some
unintended consequences. It penalizes graphs with cycles and pro-
motes graphs with leaf-vertices. When a cut segment is attached to
a leaf-vertex, the curve does not need to be stretched since the leaf-
vertex may be placed anywhere. But when the cut segment is at-
tached to a loop the curve must stretch. The cycles of the graph may
all be removed unless we compensate for them by adding a cost for
each leaf-vertex and subtracting a cost for each cycle. We also may
want to encourage branching by removing a cost for each branch. It
is possible that parts of the graph may become disjoint or that parts
may self-intersect. In order to discourage this, heavy penalties are
added for each disjoint part and for each self-intersection.

Num. Input Output Input Output
Output Seg. Seg. Branch Branch

Chandelier 8 105 5,686 4 56
Cabinet 9 38 9,787 0 0
Streams 5 203 9,900 5 82
Lightning 4 633 12,509 3 149
Glasses 13 42 2,749 0 0
Candlestick 8 53 1,080 0 0

Table 1: Table of the number of output curves generated, input
segments, output segments, input branches, and output branches.

Figure 5: From a sketch of a few bolts of lightning, several more
complex lightning patterns are generated in under two minutes. The
output curves contain about 150 branches and over 12,000 seg-
ments.

The process of modifying and evaluating the graph can be accom-
plished quickly. This means that the curves will respond immedi-
ately to the user’s changes. The shortest path between any (θ̂st , k̂

s
t)

and (θ̂su, k̂
s
u) can be precomputed. The stretching cost is computed

by summing up one vector for each segment. The number of cycles,
branches, leaves, and disjoint subsets can be easily counted. Count-
ing the number of self-intersection among the segments is the most
expensive computation in this algorithm. As a result, we only per-
form that test after we have confirmed that the new graph is a good
candidate based on other criteria.

4 Results and Analysis
Our method was tested on sketches of several different kinds of
natural and man-made objects. It was used to design the branches
of many chandeliers in Figure 1. Automatically generated curves
were used to design candlesticks (Figure 8) and drinking glasses
(Figure 9) by revolving the curves around an axis. It was also used
to model fancy cabinet handles in Figure 7, bolts of lightning Figure
5, and river systems Figure 6. The output curve computed by our
system is a piecewise Bezier curve. Typically, a single cubic Bezier
curves is used to represent each curve segment.

Analysis: The final shapes produced by our algorithm depend on
the example curve and the adjustment points added by the user as

Figure 6: From a sketch of a river system, several larger and more
complex river systems are automatically generated in under two
minutes. The output curves each have an average of about 80
branches and 10,000 segments.

Figure 7: From a simple sketch of the handle of a cabinet, several
complex cabinet handles are designed automatically in the same
style. The example handle is the top center red-tinted handle.

Figure 8: The profile of a candlestick is sketched and used to de-
sign many similar candlesticks in under one minute. The curves are
revolved around an axis to produce these candlesticks. The example
candlestick is tinted red.

part of the editing. Our underlying algorithm ensures that the local
features of the final curve, in terms of tangent vectors and curvature,
are similar to that of the input example curve. However, the basic
stretching deformation can change those. The running time of the
algorithm varies as a function of number input segments, curve de-
gree and the number of branch points in the final curve. In practice,
our algorithm is very fast and can generate new curves at interactive
rates on a desktop PC for curves with a lot of segments.

Comparison: Much of the prior work in procedural modeling has
focused on modeling plants using L-systems. Our method has rules
similar to L-systems. For example, the acceptable sequences of
segments described in Section 3.2 could be generated using a com-
plex L-system. Overall, we expect that prior algorithms based on
L-systems would generate higher quality models of plants and trees
and our algorithm is slightly faster. The main benefit of our ap-
proach is in generating models of curved man-made objects (e.g.
decorative objects) such as furniture and household items. We are
not aware of any prior procedural methods for such curved objects.
As a result, tools that are general and that can model a wide vari-
ety of objects are highly valuable. Our method can model a wide
variety of objects because it is example-based. The user can eas-
ily switch between creating two very disimiliar types of objects by
sketching a new example curve.

Limitations: As explained in Section 3.4, the curves are generated
by making small incremental changes and testing if the changes im-
prove a cost function. In some ways, our algorithm is performing
an optimization in the design space and there is a risk that the cur-

Figure 9: The profile of a drinking glass is sketched (red curve) and used to design many glasses in a similar style (blue curves). The glasses
are modeled by revolving the curves around an axis. The surface of revolution obtained from the example input curve is shown as red tinted
glass.

rent solution may fall within a local minima of the cost function
meaning that small incremental changes do not improve the solu-
tion, only large changes do. The shape of the final object depends
on the input curve and where the user moves the adjustment points.
In some cases, our approach can result in unnatural shapes. Our
algorithm can produce self-intersections, and the algorithm needs
to explicitly check for that.

5 Conclusion and Future Work

We have presented a method for taking curves sketched by a user
and automatically generating new curves that resemble the input
shape. Parts of the new curve closely resemble parts of the ex-
ample curve because they have the same geometric characteriza-
tion including tangent vectors, curvature and branches. The exam-
ple curve is divided into segments. These segments are bent and
stretched and rearranged to fit a cost function. The cost function
gives low scores to curve that follow the user’s control points, that
do not self-intersect, and that have many branches. We have applied
the algorithm to different input curves and used to generate curved
models of different man-made objects and some natural patterns.

There are many avenues for future work. We can improve the user
interface and use more sophisticated physically-based deformation
algorithms for stretching the curves. We would use our algorithm to
generate more kind of models include architectural structures and
outdoor scenes. The set of input curves can also include subdivision
curves, and our approach can be extended to generate non-planar
3D curves as well as 4D space-time curves for animation. Finally,
we would like to extend our approach to procedurally generate gen-
erate 3D surface models composed of freeform surfaces.

References

ALIAGA, D. G., VANEGAS, C. A., AND BENEŠ, B. 2008. Interactive example-based
urban layout synthesis. In SIGGRAPH Asia ’08: ACM SIGGRAPH Asia 2008
papers, ACM, New York, NY, USA, 1–10.

BARLA, P., BRESLAV, S., THOLLOT, J., SILLION, F. X., AND MARKOSIAN, L.
2006. Stroke Pattern Analysis and Synthesis. 663–671.

BHAT, P., INGRAM, S., AND TURK, G. 2004. Geometric texture synthesis by exam-
ple. In SGP ’04: Proceedings of the 2004 Eurographics/ACM SIGGRAPH sympo-
sium on Geometry processing, ACM Press, New York, NY, USA, 41–44.

CHEN, X., NEUBERT, B., XU, Y.-Q., DEUSSEN, O., AND KANG, S. B. 2008.
Sketch-based tree modeling using markov random field. ACM Trans. Graph. 27, 5,
1–9.

EFROS, A. A., AND LEUNG, T. K. 1999. Texture synthesis by non-parametric sam-
pling. In IEEE International Conference on Computer Vision, 1033–1038.

FREEMAN, W. T., TENENBAUM, J. B., AND PASZTOR, E. C. 2003. Learning style
translation for the lines of a drawing. ACM Trans. Graph. 22, 1, 33–46.

HERTZMANN, A., OLIVER, N., CURLESS, B., AND SEITZ, S. M. 2002. Curve analo-
gies. In EGRW ’02: Proceedings of the 13th Eurographics workshop on Rendering,
Eurographics Association, Aire-la-Ville, Switzerland, Switzerland, 233–246.

IGARASHI, T., MATSUOKA, S., AND TANAKA, H. 1999. Teddy: a sketching interface
for 3d freeform design. In Proc. Of ACM SIGGRAPH ’99, ACM Press/Addison-
Wesley Publishing Co., New York, NY, USA, 409–416.

IJIRI, T., OWADA, S., OKABE, M., AND IGARASHI, T. 2005. Floral diagrams and
inflorescences: interactive flower modeling using botanical structural constraints.
In Proc. Of ACM SIGGRAPH ’05, ACM Press, New York, NY, USA, 720–726.

KWATRA, V., SCHDL, A., ESSA, I., TURK, G., AND BOBICK, A. 2003. Graphcut
textures: Image and video synthesis using graph cuts. Proc. Of ACM SIGGRAPH
’03, 277–286.

MERRELL, P., AND MANOCHA, D. 2008. Continuous model synthesis. ACM Trans.
Graph. 27, 5, 1–7.

MERRELL, P. 2007. Example-based model synthesis. In I3D ’07: Symposium on
Interactive 3D graphics and games, ACM Press, 105–112.

MĔCH, R., AND PRUSINKIEWICZ, P. 1996. Visual models of plants interacting with
their environment. In Proc. Of ACM SIGGRAPH ’96, 397–410.

MÜLLER, P., WONKA, P., HAEGLER, S., ULMER, A., AND GOOL, L. V. 2006.
Procedural modeling of buildings. ACM Trans. Graph. 25, 3, 614–623.

POTTMANN, H., LIU, Y., WALLNER, J., BOBENKO, A., AND WANG, W. 2007.
Geometry of multi-layer freeform structures for architecture. In Proc. of ACM
SIGGRAPH ’07.

POWER, J. L., BRUSH, A. J. B., PRUSINKIEWICZ, P., AND SALESIN, D. H. 1999.
Interactive arrangement of botanical l-system models. In I3D ’99: Proceedings
of the 1999 symposium on Interactive 3D graphics, ACM, New York, NY, USA,
175–182.

SIMHON, S., AND DUDEK, G. 2004. Sketch Interpretation and Refinement Using
Statistical Models. In Proceedings of Eurographics Symposium on Rendering 2004
(Norrköping, Sweden, June 21–23), EUROGRAPHICS Association, A. Keller and
H. W. Jensen, Eds., 23–32, 406.

SINGH, K., AND FIUME, E. 1998. Wires: a geometric deformation technique. In
Proc. Of ACM SIGGRAPH ’98, ACM, New York, NY, USA, 405–414.

WONG, M. T., ZONGKER, D. E., AND SALESIN, D. H. 1998. Computer-generated
floral ornament. In Proc. Of ACM SIGGRAPH ’98, ACM, New York, NY, USA,
423–434.

WONKA, P., WIMMER, M., SILLION, F., AND RIBARSKY, W. 2003. Instant archi-
tecture. In Proc. Of ACM SIGGRAPH ’03, 669–677.

WU, Y., ZHANG, H., SONG, C., AND BAO, H. 2008. Space-time curve analogies for
motion editing. In GMP, 437–449.

ZELINKA, S., AND GARLAND, M. 2003. Mesh modelling with curve analogies.
In SIGGRAPH ’03: ACM SIGGRAPH 2003 Sketches & Applications, ACM, New
York, NY, USA, 1–1.

