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Abstract

We present a parallel time-domain acoustic wave
solver designed for large computing clusters of tens of
thousands of CPU cores. Our approach is based on a
novel scalable method for dividing acoustic field com-
putations specifically for large-scale memory clusters
using parallel Adaptive Rectangular Decomposition
(ARD). In order to take full advantage of the com-
pute resources of large clusters, we introduce a hy-
pergraph partitioning scheme to reduce the commu-
nication cost between cores on the cluster. Addi-
tionally, we present a novel domain decomposition
scheme that reduces the amount of numerical dis-
persion error introduced by the load balancing algo-
rithm. We also present a novel pipeline for parallel
ARD computation that increases memory efficiency
and reduces redundant computations.

Our resulting parallel algorithm makes it possible
to compute the sound pressure field for high frequen-
cies in large environments that are thousands of cu-
bic meters in volume. We highlight the performance
of our system on large clusters with 16000 cores on
homogeneous indoor and outdoor benchmarks up to
10kHz. To the best of our knowledge, this is the first
time-domain parallel acoustic wave solver that can
handle such large domains and frequencies.

1 Introduction

Modeling and simulating acoustic wave propagation
is one of the leading problems in scientific comput-
ing today [12]. Challenges in this area vary from real
time constraints in video games and virtual reality
systems to highly accurate offline techniques used in
scientific computing and engineering. The simulation
environment also varies; acoustic propagation prob-
lems can vary from small room acoustics problems to
large, complicated outdoor scenes.

The sound we hear is the results of small changes in
air pressure traveling as a wave. The propagation of
these pressure waves is governed by the linear, second
order partial differential acoustic wave equation:
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wp(‘ii t) - C2V2p(fa t) = f(fv t);

(1)
where 7 is a 3D position, ¢ is time, p(Z,t) is the pres-
sure at point £ and time ¢, f is a forcing term at point
Z and time ¢, and c¢ is the speed of sound. In this pa-
per, we assume that the environment is homogeneous
and the speed of sound is constant in the media.
There are two classes of methods known for solv-
ing the acoustic wave equation. The first class en-
compasses geometric approaches to solving the equa-
tion. These methods include such approaches as ray
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tracing techniques, image source methods, and beam
tracing [2| 15, [I6]. Geometric approaches are viable
for real time applications, but do not provide suffi-
cient accuracy for scientific or engineering applica-
tions.

The second class of methods, the numerical tech-
niques, directly solve the wave equation. These
techniques provide accurate solutions to the acoustic
wave equation, suitable for scientific and engineer-
ing applications, but at a large computational cost.
These methods include finite difference time domain
(FDTD) [6, 28], finite element method (FEM) [35],
and the boundary element method (BEM) [II [§].
Most current implementations of these methods are
limited to small domains or low frequencies (e.g., less
than 2kHz).

The main challenge is that the computational cost
of computing the sound propagation in the environ-
ment scales with the 4th power of frequency and lin-
early with the volume of the scene, while memory
use scales with the 3rd power of frequency and lin-
early with the scene volume. Since the human au-
ral range scales from 20 Hz to 20kHz, large scenes
such as a cathedral (10000m? to 15000m?) would
require tens of Exaflops of computation and tens of
terabytes of memory to compute using prior wave-
based solvers. This makes high frequency acoustic
wave simulation one of the more challenging prob-
lems in scientific computation [14].

Recently, there has been a lot of emphasis on reduc-
ing the computational cost of wave-based methods.
These techniques, called low dispersion techniques
use coarser computational meshes or decompositions
in order to evaluate the wave equation. One example
of a low dispersion algorithm is the Adaptive Rectan-
gular Decomposition method (ARD)[24] 21], a solver
for the 3D acoustic wave equation in homogeneous
media. ARD is a domain decomposition method that
subdivides the computational domain into rectangu-
lar regions. One of the main advantages of ARD is
the greatly reduced computational and memory re-
quirements over more traditional methods like FDTD
[22].

Despite these computational advantages, the ARD
method still requires a great deal of compute and
memory in order to evaluate the wave equation for

the full range of human hearing on large architec-
tural or outdoor scenes. In order to deal with these
requirements, a parallel distributed version of ARD
was developed [22]. However, this approach was lim-
ited to smaller scenes and compute clusters and still
had high computational requirements. The approach
did not take into account the cost of communication
between cores and suffered from numerical instability.

Main results

We present a parallel 3D wave-based acoustic solver
capable of computing sound propagation through
large architectural and outdoor scenes for pressure
field computations at large frequencies (at least
10kHz) and is designed to utilize tens of thousands
of CPU cores.

Scaling to this level introduces many challenges,
including communication cost, numerical stability,
and reducing redundant computations. MPARD ad-
dresses all of these in a novel method that:

e Uses a hypergraph partitioning approach for
load balance and communication reduction
among multiple nodes

e Introduces a modified domain decomposition al-
gorithm to improve the numerical accuracy of
our wave-based simulator

e Uses a multi-stage pipeline for scene preprocess-
ing and runtime computation

MPARD is capable of computing the acoustic prop-
agation in large indoor scenes (20000m3) up to at
least 10kHz. The algorithm has been tested to and
scales up to at least 16000 cores. We have analyzed
many aspects of our parallel algorithm including the
scalability over tens of thousands of cores, the time
spent in different computation stages, communica-
tion overhead, and numerical errors. To the best
of our knowledge, this is one of the first wave-based
solvers that can handle such large domains and high
frequencies.



2 Previous work

There has been considerable research in the area of
wave-based acoustic solvers, including the field of
parallel solvers, domain decomposition approaches,
and low-dispersion acoustic solvers. In this section,
we provide a brief overview of some of these ap-
proaches.

2.1 Parallel wave-based solvers

Parallel wave solvers are used in a multitude of sci-
entific domains, including the studying of seismic,
electromagnetic, and acoustic waves. A large cate-
gory of these solvers are parallel FDTD solvers ei-
ther for large clusters [17], 36, 40} [41] or for GPUs
[26, 29] 33| B4, B9]. A category of parallel methods
are also based on finite-element schemes [13] [5].
Additionally, there are several parallel methods de-
veloped for specific applications of the wave equa-
tion. PetClaw [I] is a scalable distributed solver for
time-dependent non-linear wave propagation. Other
methods include parallel multifrontal solvers for time-
harmonic elastic waves [3§], distributed finite differ-
ence frequency-domain solvers for visco-acoustic wave
propagation [23], discontinuous Galerkin solvers for
heterogeneous electromagnetic and aeroacoustic wave
propagation [4], scalable simulation of elastic wave
propagation in heterogeneous media [3], etc.

2.2 Domain decomposition

MPARD, like ARD, is a domain decomposition
method. Domain decomposition approaches subdi-
vide the computational domain into smaller domains
that can be solved locally. The solver uses these local
solutions to compute a global solution of the scientific
problem. Many of these approaches are designed for
coarse grain parallelization where each subdomain or
a set of subdomains is computed locally on a core or
a node on a large cluster.

Domain decomposition approaches tend to fall into
two categories: overlapping subdomain and mnon-
overlapping subdomain methods [10].

Existing domain decomposition approaches in
computational acoustics include parallel multigrid

solvers for 3D underwater acoustics [27] and the non-
overlapping subdomain ARD approach [24].

2.3 Low dispersion acoustic solvers

The goal of low dispersion methods is to reduce com-
putation cost by using coarser computational meshes.
A wide variety of these approaches exist including a
multitude of waveguide mesh approaches [37, [30} [31]
and an interpolated wideband scheme [19].

Our approach is primarily based on the ARD
method [24] which partitions the computational do-
main into rectangular regions. It utilizes the property
that the wave equation has a closed form solution in
a homogeneous rectangular domain. Therefore, the
only numerical dispersion originates from the inter-
faces between these rectangular regions, allowing a
much coarser grid size.

3 Parallel Adaptive Rectangu-
lar Decomposition

In this section, we provide a brief overview of the
ARD method and a description of the parallel ARD
pipeline. More details about these methods are avail-
able in [24] 211 22].

3.1 Adaptive Rectangular Decompo-
sition

Adaptive Rectangular Decomposition (ARD) is a

wave-based time domain method for solving the 3D

acoustic wave equation (Equation . ARD is lim-

ited to homogeneous environments, where the speed

of sound ¢ does not vary.

ARD is a domain decomposition approach. It takes
advantage of the fact that the analytic solution of a
3D rectangular domain in a homogeneous media is
known [20]. The ARD solver computes this analytic
solution inside the rectangular regions and patches
the results across the boundaries between these re-
gions using an FDTD stencil.

After the sound pressure in each rectangular sub-
domain is computed, sound propagation across the
interfaces between subdomains must be calculated.



ARD uses a (6,2) FDTD stencil in order to patch
together subdomains.

The pressure field computation assumes a perfectly
reflective boundary condition for the rectangular re-
gions and the interface stencils. However, this is an
unrealistic assumption for real-world scenes, which
have a variety of different absorbing materials and
walls (the free space boundary condition can be mod-
eled as a fully absorptive wall).

ARD implements the Perfectly Matched Layer
(PML) scheme, a modified form the wave equation
that absorbs propagating waves [25]. PML subdo-
mains, using this modified wave equation, are gener-
ated from wall regions and the boundary of the scene
and use the same interface scheme to transfer pres-
sure waves between subdomains.

3.2 Parallel ARD

The parallel ARD method is an adaptation of the
ARD method for distributed compute clusters and
shared memory machines [22]. MPARD is directly
based on parallel ARD, so this section will go over
relevant implementation details and the parallel ARD
pipeline, which MPARD also shares.

3.2.1 Parallel algorithm

The parallel ARD pipeline is similar to the serial
implementation discussed in Section [3.1] Because
the subdomains in the ARD decomposition are non-
overlapping, the local computation for each rectangu-
lar subdomain can be run independent of any other
subdomain. Therefore, each core can update a set of
subdomains independently of any other core. These
subdomains are referred to as local subdomains for
a particular core and are fully in memory for that
core. Subdomains not present on a core are referred
to as remote subdomains; only metadata is stored for
these rectangular regions. This metadata generally
includes which rank (core id) owns the subdomain
and what interfaces the subdomain is spanned by.
The core that is responsible for the local update of a
rectangular region is referred to as the owner of that
subdomain.

However, interfaces between subdomains still need
to be evaluated. Only one core needs to carry out the
interface computation. This core is referred to as the
owner of the interface. The owner of the interface is
generally also the owner of one of the rectangular re-
gions that the interface spans. Before interface eval-
uation is performed, the owner of the interface needs
all the pressure terms from the subdomains spanned
by the interface. Not all of these subdomains are lo-
cal; some may be resident on other cores. Therefore,
the core evaluating the interface needs to retrieve the
pressure data from other cores. Similarly, once the
interface is resolved, forcing terms need to be sent
back to the cores owning the subdomains spanned by
the interface. Finally global update for each rectan-
gular region is computed with the results from the
interface handling. This means that the final global
pressure computation requires two data transfers per
remote interface.

3.2.2 Load balancing

Due to the greedy nature of the rectangular decompo-
sition algorithm, some rectangles can be quite large.
Additionally, because of the stairstepping artifacts of
curved geometric surfaces, the decomposition algo-
rithm can generate some very small rectangles. Be-
cause the evaluation cost of the local update of a
subdomain is linearly related to the volume of that
subdomain, the discrepancy in subdomain sizes can
cause load imbalance problems where all the cores
wait for one core to finish computing the local up-
date. In fact, even attempting some sort of balanc-
ing without modifying the rectangle sizes does not
improve the scalability of parallel ARD [22].

Parallel ARD implements a load balancing scheme
that modifies the sizes of the rectangles to be less
than a certain threshold volume. Splitting is imple-
mented by dividing any rectangle greater than a cer-
tain volume into two smaller rectangles. The splitting
plane is chosen so that one of the rectangles is just
below the threshold volume. This approach can min-
imize the interface area added under some circum-
stances, but does not take into account the shape of
the subdomains. This can cause numerical stability
issues, as discussed in Section [£:2}



Finally rectangular subdomains are assigned to
cores using a simple bin-packing approach where the
total volume assigned to each core is roughly equal.
The bin-packing approach only considers the total
volume assigned to each core and does not take into
account communication cost of the core assignment.

3.2.3 Limitations of parallel ARD

While parallel ARD has been shown to work well for
smaller clusters up to 1000 cores, it has many limita-
tions when scaling to very large clusters with tens of
thousands of cores:

e Parallel ARD does not take into account the cost
of communication between cores

e Parallel ARD suffers from numerical instability
when a large number of cores is used

e Parallel ARD computes interface information in
the simulation itself, which can take hours on
larger scenes

Large scale scenes on a large number of cores suf-
fer from these issues. On some of our test scenes,
hundreds of gigabytes of interface data are be cre-
ated. This means a significant increase in commu-
nication cost that is dependent on the assignment
of subdomains to cores. Additionally, the Parallel
ARD splitting scheme creates thin and badly formed
partitions when splitting the larger partitions. This
occurs when the splitting threshold is lower than the
smallest surface area of a given partition. Finally,
the time ARD requires to compute hundreds of gi-
gabytes of interface data can take hours to compute.
On larger clusters where computation time is a valu-
able resource, this is time wasted.

4 MPARD

MPARD introduces a new parallel pipeline for the
ARD method, designed to run on tens of thousands
of cores. The pipeline includes a modified subdomain
assignment scheme that takes into account the com-
munication costs between cores, a modified domain

decomposition and splitting stage that increases nu-
merical stability, and new preprocessing stages for
computing metadata for interfaces and PML subdo-
mains.

4.1 Communication efficiency

Each interface in the scene covers two or more subdo-
mains (for example, if the subdomains on either side
are especially thin, the 6th order stencil may cover
more than two). When subdomains on an interface
are owned by different cores, the pressure terms re-
quired by the interface and the forcing terms gener-
ated by the interface need to be communicated.

MPARD uses asynchronous communication calls to
avoid blocking while sending messages. When a core
completes an operation (either a subdomain update
or an interface update), it can send off a message
to the cores that require the computed results. The
sending core does not have to wait for the message
to be received and can continue working on the next
computation. When receiving data, a core can place
the message on an internal queue until it needs the
data for that operation. As a particular core fin-
ishes working on a subdomain, it sends off an asyn-
chronous communication message to cores that re-
quire the pressure field of that subdomain for inter-
face computation. As the message is being sent, that
particular core begins to process the next subdomain,
sending off a message upon completion. At the same
time the receiving core is working on its own subdo-
mains. The incoming message is stored on an internal
queue for use when needed. The sending core there-
fore does not have to worry about when the message
is received.

When a core finishes updating a rectangular re-
gion, it waits until it has the pressure fields from
the remote subdomains available. It evaluates the
first available interface, asynchronously sending back
the forcing terms as soon as the stencil is evaluated.
This allows us to effectively hide the communication
costs. By using this system of queues and a “fire
and forget” method of sending messages, the only
explicit synchronization is the barrier at the end of
the time step. This barrier is necessary to ensure
the algorithm’s correctness. Figure [I] shows a flow
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Figure 1: A flow-chart of one time step of the main
loop of the parallel ARD technique implemented on
each core of the CPU-cluster with asynchronous MPI
calls.

chart of one time step of MPARD, laying out the
asynchronous message passing calls for transferring
pressure and forcing terms.

Another important thing to note is that in gen-
eral ARD’s communication cost of evaluating all the
interfaces is proportional to the surface area of the
rectangular region while the cost of evaluating each
subdomain is proportional to the volume of the sub-
domain. This implies a rough O(n?) running time for
interface evaluation (where n is the length of one side
of the scene) while local update has an O(n?) running
time. This means that as the size of the scene or
the simulation frequency increases, the computation
cost of local update dominates over the communica-

tion cost of transferring pressure and forcing values
for interface evaluation. On the other hand the finer
grid size of larger complex scenes can introduce many
more interfaces which causes an increase in the cost
of communication.

In order to evaluate these interfaces, communica-
tion is only required when resolving the interface be-
tween two or more subdomains that lie on different
cores. As a result, minimizing the number of these
interactions can greatly reduce the total amount of
communicated data.

This can be performed by ensuring that neighbor-
ing subdomains that are part of the same interface
are located on the same core. Due to the complexity
of the scene and the interactions between different
rectangular regions, this is not feasible. However, we
can use a heuristic to minimize the number of inter-
faces that span across multiple cores.

This problem can be reworded as a hypergraph
partitioning problem. Our hypergraph can be rep-
resented as the pair H = (X, E') where X, the nodes
of the hypergraph are the rectangular regions of our
decomposition, while the hyperedges E represent the
interfaces between the rectangular regions. Hyper-
edges are used rather than regular edges because an
interface can actually cover up to six different subdo-
mains.

The goal of the hypergraph partitioning algorithm
is to divide the hypergraph into k regions such that
the cost function of the hyperedges spanning the re-
gions is minimized [9]. In ARD, the partitioning
algorithm can be run to divide our computational
elements (interfaces and rectangles) into k regions,
where k is the number of processors used in the sim-
ulation. As a result, the interface cost between cores
is minimized.

Additionally, because the hypergraph partitioning
algorithm attempts to generate k regions of equal
cost, the heuristic serves as a way of load balancing
the assignment of work to cores. The cost of evalu-
ating a rectangular region is linearly related to the
volume of the region. Therefore, we can input the
volume of each rectangular subdomain as the weight
parameter for a node in the hypergraph.



-

(b) (c)

EsiEE
w -/ 2
D 24 ,
[T %\ - \ \

Figure 2: The relationship between computational elements of MPARD (rectangular subdomains and inter-
faces) and the hypergraph structure. (a) shows an example scene of three subdomains with three interfaces,
shown in (b). The organization of the resulting hypergraph is shown in (c), while (d) shows the hypergraph
with the node weights determined by the sizes of the rectangles and the hyperedge weights determined by the
size of the interfaces. Subfigure (e) shows an example partitioning of the simple graph, taking into account
both the computation cost of each node and the cost of each interface.

4.2 Load balancing and numerical sta-
bility

The splitting algorithm for load balancing introduced

in parallel ARD minimizes the number of extra inter-

faces created by splitting in some cases. One of the

resulting subdomains is exactly below the maximum

volume threshold of the splitting algorithm.

However, on a cluster with a higher number of
cores and where the volume threshold can be rela-
tively small, this splitting algorithm can introduce a
series of very small and thin rectangles. Small and
thin rectangles can create numerical instability dur-
ing interface resolution. The interface solver uses a
(2,6) FDTD scheme. However, in the scenario where
a series of thin interfaces with a width of one voxel
are next to each other, our pressure computation de-
volves into the (2,6) FDTD scheme, but does not have
a small enough grid size for the method to be stable.
The lack of sufficient grid size for the FDTD stencil
causes the numerical instability in the overall system.

In this particular case, it is more advantageous to
have well-formed rectangular subdomains that may
introduce more interface area rather than degenerate
rectangles which can result in numerical issues.

We introduce a new splitting scheme for load bal-
ancing that is particularly useful for reducing nu-
merical instability at interfaces for higher numbers
of cores. Our new approach favors well-formed sub-
domains that are roughly cuboidal in shape rather

than long and thin rectangles.

Each rectangular region that has a volume greater
than some volume threshold @ is subdivided by the
new algorithm. @ is determined by the equation

where V is the total air volume of the scene in
voxels, p is the number of cores the solver is to be
run on, and f is the balance factor. It is usually the
case that f = 1, although this can be changed to a
higher value if smaller rectangles are desired for the

hypergraph partitioning heuristic (5.1)).

4.3 Interface and PML computation

An important step of the ARD and parallel ARD
methods is the initialization of interfaces and PML
regions. This generally involves determining subdo-
main adjacency and which voxels are in an interface.
This computation is linear with respect to the num-
ber of voxels in the scene — that is, it scales linearly
with the volume of the scene and with the 4th power
of frequency. At higher frequencies, the interface and
PML setup can consume several hours of time before
any actual simulation steps are run.

In order to reduce the running time of the simu-
lation, MPARD introduces a new preprocessing step
in which the interfaces can be initialized offline. This
preprocessing step occurs after any splitting and load



balancing, after the decomposition for the scene is fi-
nal.

Additionally, this extra preprocessing step allows
for further memory optimization in MPARD. With
the kind of global metadata computed in the prepro-
cessing, each core only needs to load the exact inter-
faces and PML regions it needs for its computations.

4.4 MPARD Pipeline

The MPARD pipeline introduces new preprocessing
stages and a modified simulation stage. The pipeline
overview can be found in Figure [3] The scene input
(Figure [[a)) is first voxelized (Figure [3(b)). Next,
the rectangular decomposition fills the available air
space with rectangular subdomains using a greedy
algorithm (Figure c)) Next, our new splitting
algorithm that avoids degenerate subdomains splits
rectangular regions that are larger than the volume
threshold (Figure [3(d)). After interface regions are
calculated (Figuree)), we assign subdomains to
cores using hypergraph partitioning (f). Finally, our
solver reads the preprocessing data and runs the sim-
ulation for a set number of time steps.

5 Implementation

The following section discuss the implementation de-
tails of MPARD and the scalability problems intro-
duced in section [

5.1 Hypergraph partitioning

We implemented a hypergraph partitioning scheme
through the PaToH (Partitioning Tool for Hyper-
graphs) library in order to minimize core-to-core
communication and equally distribute computation
load across all cores[d. There are many cus-
tomizable parameters to adjust the details of how
nodes are partitioned; we opted to use the “con-
nectivity” (PATOH_CONPART) and “quality” metrics
(PATOH_SUGPARAM_QUALITY), which sacrifice speed for
better partitioning. @ We repeatedly execute this
heuristic until a satisfactory subdomain assignment
is achieved (no unassigned cores or subdomains).

We pass the rectangular regions into the PaToH
partitioner as vertices with weights equal to the re-
spective subdomain volumes. The hyperedges are
defined by the interfaces connecting separate subdo-
mains. By executing PaToH hypergraph partitioning
onto this representational graph, the resulting core
assignments will tend to prioritize low data trans-
fer over cores, since it attempts to assign vertices in
close proximity to a shared core. This also allows for
a balanced load distribution by assigning each core
roughly equal volume, which is linearly related to
computation time.

5.2 Preprocessing pipeline

Both hypergraph partitioning and the subdomain
splitting are implemented in the preprocessor stage.
This is possible because the scenes targeted by
MPARD are static. Since we know the 3D arrange-
ment of subdomains and interfaces beforehand. As a
result, we can avoid run-time simulation costs of dy-
namically updating the hypergraph or dynamically
subdividing rectangular regions.

Our preprocessing pipeline in MPARD is separated
into four stages: voxelization, decomposition, core al-
location/splitting, and interface/PML preprocessing.

5.2.1 Voxelization

The voxelization stage takes in a triangle mesh repre-
senting the environment in which we want to compute
the sound propagation. Because MPARD targets
large and high frequency scenes that may consume
a large amount of memory, we use a CPU method for
voxelization. We implement an accurate and minimal
method introduced by Huang et al. [I8].

The spatial discretization for the voxelization is de-
termined by the minimum simulated wavelength and
the required number of spatial samples per wave-
length, which is typically between 2 and 4 [24].
Therefore, the voxelization only needs to be run once
per desired maximum frequency.
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Figure 3: The MPARD pipeline. The input geometry (a) is voxelized in the first step (b). The rectangular
decomposition step divides the domain into multiple non-overlapping subdomains (¢). The splitting step then
splits these subdomains when they are greater than the volume threshold @ (d). These partitions are then
processed by the interface initialization stage which computes interface metadata (e). The final preprocessing

stage allocates subdomains to nodes using the hypergraph partitioning (f).

(g)-

5.2.2 Decomposition

The decomposition stage then reads the voxel field
and determines the location of the different cuboidal
subdomains. The process is a greedy approach, at-
tempting to expand each rectangular subdomain into
as large a volume as possible under the constraints of
the wall voxels.

At very high frequencies, such as 10kHz, this pro-
cess can take several days to complete but only needs
to run once for a given voxel input.

5.2.3 Core allocation and subdomain split-
ting

The next stage of the preprocessing is the core allo-
cation and subdomain splitting stage. In addition to
a decomposition computed in the previous stage, this
step also requires the number of cores the solver will
run on. This stage uses the input values to compute a
hypergraph partitioning for the decomposition in ad-
dition to splitting any rectangular regions that have
volumes greater than the volume threshold Q.

The core allocation stage then determines the as-
signment of subdomains to cores by using the hyper-

Finally, the simulation is run

graph partitioning assignment or alternatively a sim-
ple bin-packing algorithm. This load balancing step
ensures that each core has a roughly equal amount of
work to complete during the acoustic simulation.

The allocation and splitting stage must be run for
each decomposition for each desired core configura-
tion.

5.2.4 Interface and PML preprocessing

The final stage of preprocessing computes interfaces
and creates PML regions from wall voxels. This stage
takes as input a modified decomposition from the core
allocation and splitting stage in addition to a refine-
ment parameter r that can be used to subdivide vox-
els in the final acoustic simulation. This allows us to
run at r times the frequency the decomposition was
run at. However, this is at the expense of some accu-
racy where high frequency geometric features of the
scene that may affect sound propagation cannot be
accurately represented.

One additional caveat of the interface and PML
preprocessing file is file read performance in the sim-
ulator. The interface file can be several GBs in size,



and thousands of CPU cores reading the file can cause
a bottleneck. As a solution, we use the file striping
feature of the Lustre file system [32] to increase file
read performance over all cores.

The interface and PML initialization stage only
needs to be run once for each core configuration.

6 Results and analysis

Our method was tested on two computing clusters:
the large-scale Blue Waters supercomputer [7] at the
University of Illinois and the UNC KillDevil cluster.
Blue Waters is one of the world’s leading compute
clusters, with 362240 XE Bulldoze cores and 1.382
PB of memory. The KillDevil cluster has 9600 cores
and 41 TB of memory.

(a) Sibenik Cathedral Scene

(b) Village Scene

Figure 4: The scenes used in our experiments.

Our primary experiments were performed on the
Sibenik Cathedral scene and the Village scene (Fig-
ure. Both scenes provide a challenge for the under-
lying ARD solver. Cathedral has many curved sur-
faces, creating very small rectangular regions in the
rectangular decomposition. Additionally, the large
areas in the center of the cathedral creates a very
large rectangular regions. Furthermore, the size of
the scene is around 20000 m?, making communicat-
ing the sound propagation of the scene at high fre-
quencies with wave-based methods very challenging.

10

For example, a 10kHz voxelization of the cathedral
has almost 4 billion voxels. On the other hand, Vil-
lage is mostly a large open area with a few buildings
(Figure@). Village is also much larger than cathedral.
The size of the scene (362000m?) presents many
computational challenges, particularly with comput-
ing interfaces. The scene contains over 100GB of in-
terface data compared to 40GB in the 10 kHz Cathe-
dral scene.
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(a) Local Timings
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Figure 5: The average running time of each stage of
our solver on a 10kHz scene compared to the 5kHz
scene. These results were obtained on 1024 cores.

We were able to run the MPARD solver on the
cathedral scene up to 10 kHz. Figure [5|shows the av-
erage running time of each stage of our algorithm on
this scene in comparison to the 5kHz. The wait time
for interface terms shows the necessity for optimizing
communication at higher frequencies.



Scene Name | Volume Frequency Number of Triangles
Cathedral 19177 m? 5kHz, 10kHz | 55415
Village 362987m? | 1.5kHz 358

Table 1: Dimensions and complexity of the scenes used in our experiments.

Cathedral Scaling (5kHz)
25000

20000

15000

Speedup

10000

5000

0

0 2000 4000 €000 8000 10000 12000 14000 16000 18000

Number of Cores

Figure 6: Scalability results from 1024 to 16384 cores
on the 5kHz cathedral scene. We obtain close-to-
linear scaling in this result. The base speedup is 1024
on 1024 cores since the scene will not fit in memory
on a lower number of cores.

Village Scaling (1.5kHz)
2500

2000

500 -

2000 3000 4000 5000

Number of Cores

6000 8000 9000

Figure 7: Scalability results from 1024 to 8192 cores
on the 1.5kHz village scene. We obtain sublinear
scaling in this result. The base speedup is 1024 on
1024 cores since the scene will not fit in memory on
a lower number of cores.
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6.1 Scalability results

The primary scalability experiment was done on the
cathedral scene at 5kHz. The experiment was exe-
cuted on the Blue Waters supercomputer up to 16384
cores. The main purpose of this experiment is to un-
derstand the performance of MPARD at very high
number of cores. Figure [6] shows the performance
of MPARD on the cathedral scene for 1024 cores all
the way up to 16384 cores. With this kind of com-
pute power, we are able to compute each time step
on Cathedral in 0.193 75s for a 5 kHz scene.

The Village scene also shows scalability up to 8192
cores. The challenge in the Village scene is the com-
pute time of the interfaces. We show sublinear scaling
in this case, with compute times as fast as 0.6761s
for a 1.5 kHz scene.

Figure[8|shows a plot of how the interface area gen-
erated by our splitting scheme increases as the num-
ber of cores used in the splitting algorithm increases.
A comparison between three different test scenes was
done.

6.2 Comparisons and benefits

In comparison to standard methods like FDTD, ARD
does not require as fine of a computational grid. Tra-
ditional FDTD methods generally require a spatial
discretization that is 1/10 the minimum wavelength
(although the low-dispersion methods listed in Sec-
tion aim to lower this requirement). In compar-
ison ARD can use a much coarser grid size, around
1/2.6 times the minimum wavelength [24, 2I]. This
means that ARD can inherently be 24—50 times more
memory efficient than FDTD and up to 75—100 times
faster.



Cathedral (2 kHz)
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Village (500 Hz)

1200 Kb ~

1000 Kb
N
» 800Kb
o]
“E 600 Kb -
2 400Kb -
=

200 Kb -

Kb T T T 1
0 200 400 600
Number of Cores

Figure 8: Interface area generated by our splitting
scheme for three different scenes. The interface area
tapers off as the number of cores increases.

6.2.1 Comparsion with GPU ARD

MPARD provides advantages over previous GPU
parallel ARD approaches. Large scenes at high fre-
quencies require terabytes of memory that are easily
available on large compute clusters but are not avail-
able on GPUs [2I]. Secondly, MPARD scales over
a much larger number of cores while GPU ARD is
limited to a single machine and a shared memory ar-
chitecture.

6.2.2 Comparison with Parallel ARD

Communication costs In order to examine the ben-
efits of hypergraph partitioning, the total size of all
messages sent during a single simulation time step
of both scenes was computed. The scenes had cores
assigned through the old bin-packing approach and
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Cathedral (5kHz / 1.9GB)
 Reg (Parallel ARD)  ® Hyper (MPARD)

102 2085 192 16380

Number of Cores.

Figure 9: Communication cost comparison between
the hypergraph and bin-packing approach on a 5kHz
cathedral scene.

Village (1.5kHz / 0.9GB)

 Reg (Parallel ARD) B Hyper (MPARD)

192

3096
Number of Cores

Figure 10: Communication cost comparison be-
tween the hypergraph and bin-packing approach on
a 1.5kHz village scene.

the other had cores assigned through the new hyper-
graph partitioning approach [22]. Figure El shows the
results of this experiment on a 5 kHz scene where the
hypergraph partitioning approach has a 10x reduc-
tion in communication costs for 1024 cores and a 3x
reduction for 16384 cores. The village scene, half as
large in memory also had a reduction in communica-
tion costs (Figure

Subdomain splitting Figure shows the differ-
ence in decomposition between the old conservative
approach and the new subdivision approach. Both
scene decompositions were run on 1024 cores to show
the difference between the two approaches at a high
number of cores. The parallel ARD approach creates
a series of very thin rectangles along the edge of the



|

- [l M

(a) Parallel ARD

. —

(b) MPARD

Figure 11: 2D slice comparison between parallel
ARD and MPARD splitting methods. Notice the se-
ries of thin rectangles that are generated in parallel
ARD [22] and can result in numerical stability prob-
lems. MPARD can overcome these issues. This result
was computed on a decomposition for 1024 cores on
a 500 Hz scene.

interface while the new splitting scheme creates more
cuboidal subdomains.

A comparison of the relative error amounts be-
tween parallel ARD and MPARD can be found in
Figure Each pressure field was compared to a ref-
erence field generated without splitting. The window
of the slice shown was taken after a Gaussian pulse
traversed the series of interfaces. It is clear that the
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Sound Source * |

%

Ny

-

(a) Parallel ARD

(b) MPARD

Figure 12: Mean squared error comparison between
the two splitting scenes as compared to a reference
implementation that does not do splitting. The de-
composition shown is the reference (non-split) decom-
position.

new splitting approach reduces the amount of error
generated by the interfaces.

7 Conclusion and future work

MPARD is a massively parallel approach showing
scalability up to 16000 cores and is capable of calcu-
lating pressure fields for large scenes with frequencies
up to 10kHz. MPARD introduces several improve-
ments over parallel ARD, reducing communication



cost by assigning cores with a hypergraph partition-
ing scheme, providing better numerical stability for
higher numbers of cores, and implementing an ex-
tended preprocessing pipeline that reduces the usage
of valuable cluster resources for redundant calcula-
tions.

In the future, we would like to evaluate the ar-
chitectural acoustics for large indoor and outdoor
scenes, and use them to improve their designs. The
computational power of MPARD can be exploited
to automatically calculate optimal scene geometry or
surface materials for a desired acoustic configuration
of a scene.

Additionally, although we have shown the ability to
compute very high frequency scenes, we would like to
test the method on more scenes including even larger
architectural and outdoor scenes at high frequencies.
Increasing the scalability of interface computations
will help us do this. We also would like to adapt
MPARD to work in heterogeneous environments with
a spatially varying speed of sound.

Finally, although we examine the error impact of
ARD’s interfaces to some extent, a thorough error
analysis is required. This analysis can better inform
the splitting algorithm MPARD uses for load balanc-
ing.
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