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Abstract

We present a parallel time-domain simulator to solve the acoustic wave equation for large acoustic spaces on a distributed memory
architecture. Our formulation is based on the adaptive rectangular decomposition (ARD) algorithm, which performs acoustic wave
propagation in three dimensions for homogeneous media. We propose an efficient parallelization of the different stages of the ARD
pipeline; using a novel load balancing scheme and overlapping communication with computation, we achieve scalable performance
on distributed memory architectures. Our solver can handle the full frequency range of human hearing (20Hz-20kHz) in scenes
with volumes of thousands of cubic meters. We highlight the performance of our parallel simulator on a CPU cluster with up to a
thousand cores and terabytes of memory. To the best of our knowledge, this is the fastest time-domain simulator for acoustic wave
propagation in large, complex 3D scenes such as outdoor or architectural environments.
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1. Introduction

The computational modeling and simulation of acoustic spaces
is fundamental to many scientific and engineering applications
[10]. The demands vary widely, from interactive simulation in
computer games and virtual reality to highly accurate compu-
tations for offline applications, such as architectural design and
engineering. Acoustic spaces may correspond to indoor spaces
with complex geometric representations (such as multi-room
environments, automobiles, or aircraft cabins), or to outdoor
spaces corresponding to urban areas and open landscapes.

Computational acoustics has been an area of active research
for almost half a century and is related to other fields (such as
seismology, geophysics, meteorology, etc.) that deal with sim-
ilar wave propagation through different mediums. Small varia-
tions in air pressure (the source of sound) are governed by the
three-dimensional wave equation, a second-order linear partial
differential equation. The computational complexity of solving
this wave equation increases as at least the cube of frequency,
and is a linear function of the volume of the scene. Given the
auditory range of humans (20Hz - 20kHz), performing wave-
based acoustic simulation for acoustic spaces corresponding to
a concert hall or a cathedral (e.g. volume of 10,000 - 15,000
m3) for the maximum simulation frequency of 20kHz requires
tens of Exaflops of computational power and tens of terabytes
of memory. In fact, wave-based numeric simulation of the high
frequency wave equation is considered one of the more chal-
lenging problems in scientific computation [13].

Current acoustic solvers are based on either geometric or
wave-based techniques. Geometric methods, which are based
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on image source methods or ray-tracing and its variants [2,
14, 28], do not accurately model certain low-frequency fea-
tures of acoustic propagation, including diffraction and inter-
ference effects. The wave-based techniques, on the other hand,
directly solve governing differential or integral equations which
inherently account for wave behavior. Some of the widely-
used techniques are the finite-difference time domain method
(FDTD) [25, 6], finite-element method (FEM) [31], equiva-
lent source method (ESM) [18], or boundary-element method
(BEM) [9, 8]. However, these solvers are mostly limited to low-
frequency (less than 2kHz) acoustic wave propagation for larger
architectural or outdoor scenes, as higher-frequency simulation
on these kinds of scenes requires extremely high computational
power and terabytes of memory. Hybrid techniques also exist
which take advantage of the strengths of both geometric and
wave-based propagation [35].

Recently developed low-dispersion wave methods for solv-
ing the wave equation reduce the computational overhead and
memory requirements. These include Kowalczyk and van Wal-
stijn’s interpolated wideband scheme [17] in addition to mod-
ifications to waveguide mesh approaches [27]. One of these
methods is the adaptive rectangular decomposition (ARD) tech-
nique [22, 19], which performs three-dimensional acoustic wave
propagation for homogeneous media (implying a spatially-invariant
speed of sound). ARD is a domain decomposition technique
that partitions a scene in rectangular (cuboidal in 3D) regions,
computes local pressure fields in each partition, and combines
them to compute the global pressure field using appropriate in-
terface operators. Previously, ARD has been used to perform
acoustic simulations on small indoor and outdoor scenes for a
maximum frequency of 1 kHz using only a few gigabytes of
memory on a high-end desktop machine. However, performing
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accurate acoustic simulation for large acoustic spaces up to the
full auditory range of human hearing still requires terabytes of
memory. Therefore, there is a need to develop efficient parallel
algorithms, scalable on distributed memory clusters, to perform
these large-scale acoustic simulations.

Main Results: We present a novel, distributed time-domain
simulator that performs accurate acoustic simulation in large
environments. Our approach is based on the ARD solver and is
designed for CPU clusters. The two major components of our
approach are an efficient load-balanced domain decomposition
algorithm and an asynchronous technique for overlapping com-
munication with computation for ARD.

The primary use of our parallel simulator is to perform acous-
tic propagation in large, complex indoor and outdoor environ-
ments for high frequencies. We gain near-linear scalability with
our load-balancing scheme and our asynchronous communica-
tion technique. As a result, when the scale of the computa-
tional domain increases, either through increased simulation
frequency or higher volume, we can add and efficiently use
more computational resources. This efficiency is compounded
by the low-dispersion nature of the underlying ARD solver.

Our current implementation shows scalability up to 1024
cores of a CPU cluster with 4 terabytes of memory. Using these
resources, we can efficiently compute sound fields on large ar-
chitectural and outdoor scenes up to 4kHz. To the best of our
knowledge, this is the first practical parallel wave-simulator that
can perform accurate acoustic simulation on large architectural
or outdoor scenes for this range of frequencies.

Organization: The rest of the paper is organized as fol-
lows. We briefly survey prior work on acoustic simulation and
wave solvers in Section 2. We give an overview of ARD and
highlight its benefits in Section 3. We present our parallel algo-
rithm in Section 4 and describe its implementation in Section 5.
We analyze the performance in Section 6.

2. Prior Work

There has been considerable work on acoustic simulation,
parallel wave solvers, and domain-decomposition techniques.
In this section, we give a brief overview of prior work in these
areas.

2.1. Parallel Wave-based Solvers

There is considerable literature on developing parallel sci-
entific solvers for wave equations as applied to seismic, electro-
magnetic, and acoustic simulation. These include general, par-
allel algorithms based on FDTD on large clusters [15, 36, 32] or
GPUs [23, 26, 29, 30, 34]. Other techniques are based on par-
allel finite-element meshing [11, 5]. Many specialized parallel
algorithms have been developed for wave equations for specific
applications. These include PetClaw [1], a distributed solver
for time-dependent nonlinear wave propagation, massively par-
allel multifrontal solvers for time-harmonic elastic waves in 3D
anisotropic media [33], 3D finite-difference frequency-domain
methods for 3D visco-acoustic wave propagation on distributed

platforms [21], discontinuous Galerkin solvers designed on un-
structured tetrahedral meshes for three-dimensional heteroge-
neous electromagnetic and aeroacoustic wave propagation [4],
large-scale simulations of elastic wave propagation in hetero-
geneous media [3], parallel FDTD methods for computational
electromagnetics [37], etc.

2.2. Domain Decomposition

Domain-decomposition methods are widely used to solve
large boundary value problems by iteratively solving subprob-
lems defined on smaller subdomains. These techniques sub-
divide the problem domain into smaller partitions, solve the
problem inside each of the smaller partitions to generate lo-
cal solutions, and combine all the local solutions to compute
the global solution. Such techniques are also used to design
numeric solvers that can be easily parallelized on coarse-grain
parallel architectures. At a broad level, these can be classi-
fied into overlapping subdomain and nonoverlapping subdo-
main methods [7]. Many parallel multi-grid methods have also
been applied to computational acoustics, including solvers for
the three-dimensional wave equation in underwater acoustics
[24].

3. Adaptive Rectangular Decomposition

In this section, we provide an overview of the adaptive rect-
angular decomposition (ARD) technique.

3.1. Time-Domain Acoustic Simulation

ARD is a numerical simulation technique that performs sound
propagation by solving the acoustic wave equation in the time
domain [22]:

∂ 2

∂ t2 p(X , t)− c2
∇

2 p(X , t) = f (X , t), (1)

where X = (x,y,z) is the point in the 3D domain, t is time,
p(X , t) is the sound pressure (which varies with time and space),
c is the speed of sound, and f (X , t) is a forcing term corre-
sponding to the boundary conditions and sound sources in the
environment. In this paper, we limit ourselves to homogeneous
domains, where c is treated as a constant throughout the media.

The ARD simulator belongs to a class of techniques, re-
ferred to as domain-decomposition techniques. In this regard,
ARD uses a key property of the wave equation: the acoustic
wave equation has known analytical solutions for rectangular
(cuboidal in 3D) domains for homogeneous media. The under-
lying solver exploits this property decomposing the domain in
rectangular (cuboidal) partitions, computing local solutions in-
side the partitions, and then combining the local solutions with
interface operators to find the global pressure field over the en-
tire domain.
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3.2. Pressure Field Computation
Consider a cuboidal domain in three dimensions of size

(lx, ly, lz) with perfectly reflecting walls. The acoustic wave
equation on this domain has an analytical solution represented
as:

p(x,y,z, t) = ∑
i=(ix,iy,iz)

mi(t)Φi(x,y,z), (2)

where mi are the time-varying mode coefficients and Φi are the
eigen functions of the Laplacian for the cuboidal domain, given
by:

Φi(x,y,z) = cos
(

πix
lx

x
)

cos
(

πiy
ly

y
)

cos
(

πiz
lz

z
)
. (3)

We limit the modes computed to the Nyquist rate of the
maximum simulation frequency.

In order to compute the pressure, we need to compute the
mode coefficients. Reinterpreting equation (2) in the discrete
setting, the discrete pressure P(X , t) corresponds to an inverse
Discrete Cosine Transform (iDCT) of the mode coefficients Mi(t):

P(X , t) = iDCT (Mi(t)). (4)

Substituting the above equation in equation (1) and applying a
DCT operation on both sides, we get

∂ 2

∂ t2 Mi + c2ki
2Mi = DCT (F(X , t)), (5)

where ki
2 = π2

(
ix2

lx2 +
iy2

ly2 +
iz2

lz2

)
and F(X , t) is the force in the

discrete domain. Assuming the forcing term F(X , t) to be con-
stant over a time-step ∆t of simulation, the following update
rule can be derived for the mode coefficients:

Mi
n+1 = 2Mn

i cos(ωi∆t)−Mn−1
i +

2
∼

Fn

ω2
i
(1− cos(ωi∆t)), (6)

where
∼
F = DCT (F(X , t)). This update rule can be used to gen-

erate the mode-coefficients (and thereby pressure) for the next
time-step. This gives us a method to compute the analytical so-
lution of the wave equation for a cuboidal domain. Next, we
describe how these solutions are used to solve the wave equa-
tion over the entire scene.

3.3. Interface Handling
In order to ensure correct sound propagation across the bound-

aries of these subdomains, we use a 6th order finite difference
stencil to patch two subdomains together. A 6th order scheme
was chosen because has been experimentally determined [19]
to produce reflection errors at 40 dB below the incident sound
field. We derive the stencil as follows.

First, we examine the projection along an axis of two neigh-
boring axis-aligned cuboids. Our local solution inside the cuboids
assumes a reflective boundary condition, ∂ p

∂x

∣∣∣
x=0

= 0. Looking
at the rightmost cuboidal partition, the solution can be repre-
sented by the discrete differential operator, ∇2

local , that satisfies

the boundary solutions. Referring back to the wave equation,
we have the global solution:

∂ 2 p
∂ t2 − c2

∇
2
global p = f (X , t).

Using the local solution of the wave equation inside the
cuboid (∇2

local), we derive:

∂ 2 p
∂ t2 − c2

∇
2
local p = f (X , t)+ fI(X , t),

where fI(X , t) is the forcing term that needs to be contributed
by the interface to derive the global solution. Therefore, we
need to solve for this term, using our two previous identities:

fI(X , t) = c2 (
∇

2
global−∇

2
local

)
p. (7)

While the exact solution to this is computationally expen-
sive, we can approximate the solution using a 6th order finite
difference stencil, with spatial step size h:

fI(x j) =
−1

∑
i= j−3

p(xi)s[ j− i]−
2− j

∑
i=0

p(xi)s[i+ j+1], (8)

where j∈ [0,1,2], fI(x j)= 0 for j > 2, and s[−3 . . .3] = 1
180h2 {2,−27,270,−490,270,−27,2}.

3.4. ARD computational pipeline

The ARD technique has two main stages: Preprocessing
and Simulation. During the preprocessing stage, the input scene
is voxelized into grid cells. The spatial discretization of the grid
h is determined by the maximum simulation frequency νmax de-
termined by the relation h = c/(νmaxs), where s is the number
of samples per wavelength (=2.66 for ARD) and c is the speed
of sound (343m/sec at standard temperature and pressure). The
next step is the computation of adaptive rectangular decompo-
sition, which groups the grid cells into rectangular (cuboidal)
domains. These generate the partitions, also known as air parti-
tions. Pressure-absorbing layers are created at the boundary by
generating Perfectly-Matched-Layer (PML) partitions. These
partitions are needed to model partial or full sound absorption
by different surfaces in the scene. Artificial interfaces are cre-
ated between the air-air and the air-PML partitions to propa-
gate pressure between partitions and combine the local pressure
fields of the partitions into the global pressure field.

During the simulation stage, the global acoustic field is com-
puted in a time-marching scheme as follows (see Figure 1 (top
row)):

1) Local update
For all air partitions

(a) Compute the DCT to transform force F to
∼
F .

(b) Update mode coefficients Mi using update rule.
(c) Transform Mi to pressure P using iDCT.

For all PML partitions
Update the pressure field of the PML absorbing layer.

2) Interface handling
For all interfaces
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(a) Compute the forcing term F within each parti-
tion.

3) Global update
Update the global pressure field.

The first stage solves the wave equation in each rectan-
gular region by taking the Discrete Cosine Transform (DCT)
of the pressure field, updating the mode coefficients using the
update rule, and then transforming the mode coefficients back
into the pressure field using inverse Discrete Cosine Transform
(iDCT). Both the DCT and iDCT are implemented using fast
Fast Fourier Transforms (FFT) libraries. Overall, this step in-
volves two FFT evaluations and a stencil evaluation correspond-
ing to the update rule. The pressure fields in the PML-absorbing
layer partitions are also updated in this step.

The second stage uses a finite difference stencil to propa-
gate the pressure field between partitions. This involves a time-
domain stencil evaluation for each grid cell on the boundary.

The last stage uses the forcing terms computed in the inter-
face handling stage to update the global pressure field.

For more details, please refer to the original texts [22, 19].

4. Parallel Acoustic Simulation

In this section, we describe our ARD-based distributed par-
allel acoustic simulator.

4.1. Partition and Interface Ownership

This first step involves distributing the problem domain onto
the cores of the cluster. In the case of ARD, the different do-
mains include air partitions, PML partitions, and the interfaces.

Air and PML partitions The ARD solver can be paral-
lelized because the partition updates for both the air and the
PML partitions are independent at each time step: each par-
tition update is a localized computation that does not depend
on the data associated with other partitions. As a result, parti-
tions can be distributed onto separate cores of the cluster and
the partition update step is evaluated in parallel at each time
step without needing any communication or synchronization.
In other words, each core exclusively handles a set of parti-
tions. These local partitions compute the full pressure field in
memory. The rest of the partitions are marked as remote parti-
tions for this core and are evaluated by other cores of the cluster.
Only metadata (size, location, etc.) for remote partitions needs
to be stored on the current core, using only a small amount of
memory (see Figure 1 bottom row (b)).

Interfaces Interfaces, like partitions, retain the concept of
ownership. One of the two cores that owns the partition of an
interface, takes ownership of that interface, and is responsible
for performing the computations with respect to that interface.
Unlike the partition update, the interface handling step has a
data dependency with respect to other cores. Before the inter-
face handling computation is performed, pressure data needs to
be transferred from the dependent cores to the owner (Figure 1
bottom c). In the next step, the pressure data is used, along
with the source position, to compute the forcing terms (Figure 1
bottom d). Once the interface handling step is completed, the

interface-owning core must send the results of the force com-
putation back to the dependent cores (Figure 1 bottom e). The
global pressure field is updated (Figure 1 bottom f) and used at
the next time step.

4.2. Parallel Algorithm

The overall technique proceeds in discrete time steps (see
Figure 1 bottom row). Each time step in our parallel ARD
algorithm is evaluated through three main stages described in
Section 3.4; these evaluations are followed by a barrier syn-
chronization at the end of the time step. Each core starts the
time step at the same time, then proceeds along the computa-
tion without synchronization until the end of the time step.

Local Update This step updates the pressure field in the air
and PML partitions for each core independently, as described
in detail in Section 3.4.

Pressure field transfer After an air partition is updated,
the resulting pressure data is sent to all interfaces that require
it. This data can be sent as soon as it is available.

Interface handling This stage uses the pressure transferred
in the previous stage to compute forcing terms for the partitions.
Before the interface can be evaluated, it needs data from all of
its dependent partitions.

Force transfer After an interface is computed, the owner
needs to transfer the forcing terms back to the dependent cores.
A core receiving forcing terms can then use them as soon as the
message is received.

Global update Each core updates the pressure field using
the forcing terms received from the interface operators.

Barrier synchronization A barrier is needed at the end of
each time step to ensure that the correct pressure and forcing
values have been computed. This is necessary before local up-
date is performed for the next time step.

4.3. Efficient Load Balancing

Algorithm 1 Load balanced partitioning
Require: list of cores B, list of partitions P
Require: volume threshold Q
{Initialization}

1: for all b ∈ B do
2: b← Q
3: end for
{Splitting}

4: while ∃pi ∈ P where volume(pi)> Q do
5: P← P−{pi}
6: (p′i,q

′
i)← split pi

7: P← P∪{p′i,q
′
i}

8: end while
{Bin-packing}

9: sort P from greatest to the least volume
10: for all pi ∈ P do
11: volume(b)←maxvolume(B)
12: assign pi to core b
13: volume(b)← volume(b)−volume(pi)
14: end for
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Figure 1: Serial ARD Pipeline (top row): Step (a) is the input into the system; step (b) is the analytical-solution update in the rectangular partitions and pressure
updates in the PML partitions (c) is interface evaluation; step (d) is the global pressure-field update. Parallel ARD (bottom row): We start with the input (Step (a))
and the local update (b). Interface handling is split into 3 parts: the pressure is transferred to dependent interfaces in (c), the interface is evaluated in (d), and the
forcing terms are transferred back in (e). Finally, the global pressure-field update is done in (f).

For each time step, the computation time is proportional to
the time required to compute all of the partitions. This implies
that a core with larger partitions or more partitions than another
core would take longer to finish its computations; this would
lead to load imbalance in the system, causing the other cores
of the cluster to wait at the synchronization barrier instead of
doing useful work. Load imbalance of this kind results in sub-
optimal performance.

Imbalanced partition sizes in ARD are rather common as
ARD’s rectangular decomposition step uses a greedy scheme
based on fitting the biggest possible rectangle at each step. This
can generate a few big partitions and large number of small
partitions. In a typical scene (e.g. the Cathedral benchmark),
the load imbalance results in poor performance.

A naive load balancing scheme would reduce the size of
each partition to exactly one voxel, but this would negate the
advantage of the rectangular decomposition scheme’s use of
analytical solutions; furthermore, additional interfaces intro-
duced during the process at partition boundaries would reduce
the overall accuracy of the simulator [22]. The problem of find-
ing the optimal decomposition scheme to generate perfect load
balanced partitions while minimizing the total interface area is
non-trivial. This problem is known in computational geome-
try as ink minimization [16]. While the problem can be solved
for a rectangular decomposition in two dimensions in polyno-
mial time, the three-dimensional case is NP-complete [12]. As
a result, we approach the problem using a top-down approxi-
mate technique that bounds the sizes of partitions and subdi-
vides large ones yet avoids increasing the interface area signifi-
cantly. This is different from a bottom-up approach that would
coalesce smaller partitions into larger ones.

Our approach splits the partitions that exceed a certain vol-
ume Q = V

f num procs , where V is the total volume of the simula-

tion domain, num procs is the number of cores available, and f
is the load balancing factor (typically 1-4, but in our implemen-
tation and our results we use f = 1). To split the partition, we
find a dividing orthogonal plane that separates the partition pi
into two partitions of size at most Q and of size volume(pi)−Q.
Both are added back into the partition list. The splitting oper-
ation is repeated until no partition is of size greater than Q.
Once all the large partitions are split, we allocate partitions to
cores through a greedy bin-packing technique. The partitions
are sorted from the greatest volume to least volume, then added
to the bins (where one bin represents a core) in a greedy manner.
The bin with the maximum available volume is chosen during
each iteration (see Algorithm 1).

4.4. Reduced Communication Cost

Each interface in the simulation depends on the data from
two or more partitions in order to evaluate the stencil. In the
worst case, when the partitions are very thin, the stencil can
cross over multiple partitions. This dependence means that data
must be transferred between the cores when the dependent par-
tition and the interface are in different cores.

In order to reduce the cost of this data transfer, we use an
asynchronous scheme where each core can evaluate a partition
while waiting for another core to receive partition data, effec-
tively overlapping communication and computation costs.

As the problem size grows, the communication cost increases.
However, the communication cost grows with the surface area
of the scene, while computation grows with the volume. There-
fore, computation dominates at higher problem sizes and can be
used effectively to hide communication cost.
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(a) The Cathedral benchmark. Al-
coves, curves, and fine details gener-
ate a large number of partitions and
interfaces.

(b) The Twilight benchmark. An
open area in the center and sloped
surfaces create partitions of widely
varying sizes.

(c) The Village benchmark. The
huge open area can create very large
partitions.

(d) The KEMAR benchmark, meant
to emulate a human head.

Figure 2: Indoor and outdoor acoustic benchmarks: our parallel simulator is the
first approach that can perform high frequency numeric acoustic propagation in
such benchmarks.

5. Implementation

In this section, we describe the implementation of our sim-
ulator on a distributed memory architecture, and highlight its
performance on various indoor and outdoor scenes. We use
a CPU cluster with 119 Dell C6100 servers or 476 compute
nodes, each node with 12-core, 2.93 GHz Intel processors, 12M
L3 cache, and 48 GB of physical memory. All the nodes of the
cluster are connected by Infiniband (PCI-Express QDR) inter-
connect.

Preprocessing The preprocessing stage is single threaded
and run in two steps. The first step is the voxelization, which
can be done in seconds even on very complex scenes. The sec-
ond step, partitioning, can be done within minutes or hours de-
pending on the scene size and complexity. However, this is a
one time cost for a specific scene configuration. Once we have
a partitioning, we can further upsample and refine the voxel grid
to simulate even higher frequencies; however, this will smooth
out finer details of the mesh. This allows us to run the prepro-
cessing step only once for a scene at different frequency ranges.

Simulator Initialization An initialization step is run on
all partitions, determining which interfaces they belong to and
whether or not they will receive forcing terms back from the
interface. Therefore, each core knows exactly which cores it
should send to and receive from, allowing messages to be re-
ceived from other cores in no particular order. This works hand
in hand with the independence of operations (see Section 4.1):
interfaces can be handled in any order depending on which mes-
sages are received first.

Interface Handling Optimizations In scenes with a large
number of interfaces on separate cores, the amount of data that
is sent between cores can quickly grow. Although a partition
stores the pressure and forcing data, the interface handling com-
putation only needs the pressure as an input and generates the

forcing data as the output. Therefore, only half of the data at
the surface of the partition needs to be sent and received.

We send partition messages using an asynchronous com-
munication strategy instead of a collective communication ap-
proach. Asynchronous communication allows us to send mes-
sages while computation is being performed. The collective
communication approach requires that all cores synchronize at
the data-transfer call (since each core needs to both send and
receive data), causing some cores to wait and idle.

Benchmark Scenes In order to evaluate our parallel algo-
rithm, we use five benchmark scenes. The first, Cube, is an op-
timal and ideal case, designed to show the maximum scalabil-
ity of our simulator with frequency and volume. It is perfectly
load-balanced and contains a minimum number of interfaces.
The second scene, Cathedral, was chosen for its spatial com-
plexity. Cathedral is a large indoor scene that generates parti-
tions of varying sizes: many large-sized partitions (which can
cause load imbalance) and a large number of tiny partitions and
interfaces. The third scene, Twilight, is the Twilight Epiphany
skyspace from Rice University. The main feature of the scene
is its sloped surfaces, which can cause the generation of smaller
partitions. The fourth scene, Village, is a huge open area with
scattered buildings. This outdoor scene is useful since it can
generate very large partitions. This can cause problems for a
simulator that does not handle load imbalance properly. The
final scene, KEMAR, is a head model used to simulate how
acoustic waves interact with the human head. The fine details
of the human head (esp. ears) cause the generation of very small
partitions. The scene is small (only 33m3) and can be simulated
up to 22kHz.

6. Results and Analysis

6.1. Scalability

Figure 3 shows the performance of our simulator with in-
creasing numbers of CPU cores of the cluster. We show near-
linear scaling for three benchmark scenes: Village, Cathedral,
and Twilight, up to 1024 CPU cores.

Figure 3: Performance scaling of our simulator with increasing number of CPU
cores. Speedup with X cores = ( Simulation time on 32-cores / Simulation time
over X-cores). Village was run at 2000Hz, Cathedral was run at 3000Hz, and
Twilight was run at 6000Hz
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We perform scalability analysis of our parallel simulator as
the scene volume and scene frequency increase. We run the
acoustic simulation on the cube scene while keeping the num-
ber of CPU cores fixed at 128 and scene volume size fixed at
20m x 20m x 20m; we vary the simulation frequency using
these values: 2kHz, 4kHz, 8kHz, 12kHz and 22kHz (see Fig-
ure 4(a)). The computational complexity of the ARD wave-
solver increases with the fourth power of frequency. For smaller
frequencies, the amount of computation is relatively small, so
the system does not fully utilize 128 CPU-cores. It also be-
comes much harder to hide the communication cost by over-
lapping it with computation, since the computation cost per
node is small. However, as the frequency increases, all the 128
cores are utilized, and the computation cost easily overcomes
the communication cost, resulting in higher peak performance.
We then perform the acoustic simulation for the cube scene
with varying volume (Figure 4(b)). We scale the scene from
a volume of 50m3 to 8000m3, while keeping the maximum fre-
quency fixed at 22kHz and the number of cores fixed at 128.
The computational complexity of the ARD wave-solver varies
almost linearly with the volume of the scene. As shown in Fig-
ure 4(b), the amount of computation available at low volumes
is considerably less, resulting in under-utilization of the CPU
cores and computation cost not hiding the communication cost.
As the volume increases, both these factors are ameliorated, and
we observe higher performance and throughput.

6.2. Load balancing
Table 1 shows the benefit of our load balancing scheme in

terms of the reduction of wait time at the synchronization bar-
rier. The computation time at each node is proportional to the
total number of grid cells in local partitions residing on that
node. In the case of perfect load balancing, all the nodes will
have same number of grid cells, require identical computation
time, and reach the synchronization barrier at the same moment,
resulting in zero wait time. In the case of load imbalance, some
nodes will have more number of grid cells than others. In this
case, the node with the minimum number of grid cells will fin-
ish the computation first, and the node with maximum number
of grid cells will finish last. Therefore, the wait time at the bar-
rier will be proportional to the load-imbalance factor, defined as
|N max−N min|

N min , where N max and N min are the maximum and
minimum number of grid cells over all nodes, respectively. Ta-
ble 2 shows the average memory used per core for our simulator
on the CPU-cluster. The average memory used per core is be-
low the maximum memory available per core ( 48 GB / 12 cores
= 4 GB per core ) on the cluster we used.

In Figure 5, we compare the performance scaling for the
simulation with and without the load balancing method. This
experiment is repeated for four scenes: Cathedral, Twilight, Vil-
lage, and KEMAR. As shown, the simulation with load balanc-
ing scales almost linearly with the number of cores, whereas the
simulation without load balancing fails to scale after 64 cores.
This is primarily due to the long wait times at the barrier syn-
chronization. All the nodes have to wait for the slowest node
(with the maximum number of grid cells) to catch up to the bar-
rier before they can start the computation for the next time-step.

(a)

(b)

Figure 4: Performance of the simple cube scene. (a) Our simulation performs
better as frequency increases. At high frequencies, compute begins to dominate
over communication cost and interface handling cost. (b) As the volume of the
scene increases, partition computation begins to dominate over communication
and interface handling. Since the computation has no data dependencies, the
overall throughput increases.

This is shown in the timing results in Figure 6, where the simu-
lation without the load balancing shows a significant increase in
the barrier time compared to the load-balanced one. The load
imbalance also affects the partition update and the remote in-
terface handling step, since remote partitions residing on the
slowest node can delay the processing of all the neighboring
nodes.

Because the partition-splitting algorithm adds new inter-
faces to the simulation, splitting can introduce error. We have
quantified this error on a simple 10kHz test scene. Because
we can determine the exact solution of the wave equation on a
rectangular scene, we use a single partition as the ground truth
reference. We then subdivide the rectangular area in order to
increase the interface area and compare the resulting pressure
field with the exact solution. Figure 7 shows the error as the
total interface area increases on the 10kHz cube scene.

6.3. Asynchronous Communication

There are two main categories of communication possible
in our simulator: asynchronous and collective. The asynchronous
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Scene #cores Thresh. Load Ratio Load Ratio #partitions Area
Before After added added (in m2)

Cathedral 64 300 20.0 1.06 23 0.53 M
(19K m3, 128 150 47.5 1.07 56 1.1 M
4kHz) 256 75 123.4 1.07 138 2.3 M
Twilight 64 128 6.9 1.06 26 0.16 M
(8.2K m3, 128 64 20.8 1.07 67 0.35 M
4kHz) 256 32 65.7 1.06 164 0.75 M
Village 64 5514 53.3 3.35 18 0.36 M
(353K m3, 128 2757 189.1 4.70 43 0.76 M
2kHz) 256 1378 720.3 7.20 103 1.6 M
KEMAR 64 2185454 19354.4 1.30 24 1.6 M
(33 m3, 128 1092727 121497 1.32 54 3.2 M
22kHz) 256 546363 456933 1.28 118 6.4 M

Table 1: Benefits of load balancing: Comparison of the rectangular decomposition step without and with our load balancing for the three benchmark scenes.
Abbreviations: #cores denotes the number of CPU cores, T hresh = scene volume/#cores is the parameter of our load balancing method, and #partitions added is
the total number of partitions added from splitting. Load Ratio is a metric to measure the total wait time of the system and is equal to the worst case load imbalance
in the system, computed as |N max−N min|

N min , where N max and N min are the maximum and minimum number of grid cells over all nodes, respectively.

Scenes sim. freq. avg. mem./core

Cathedral 3 kHz 3.9 GB
Village 2 kHz 3.0 GB
Twilight 6 kHz 2.2 GB

Table 2: Memory usage: The average memory usage per core for our simulator
on the CPU-cluster with 1024 cores. Abbreviations: “sim. freq.” denotes the
simulation frequency and “avg. mem./core” is the average memory used per
core.

communication approach is what was discussed earlier in sec-
tion 4.4. This is different from a collective communication
approach which transfers messages from all cores at the same
time.

In our acoustic simulations, the asynchronous communica-
tion approach shows clear advantages over a more traditional
collective communication MPI approach. Figure 8 shows the
reduction of force-transfer times using asynchronous communi-
cation. Even the complex Cathedral scene, with its many small
interfaces that make overlapping communication with compu-
tation difficult, still proves more efficient on a larger number
of cores. Additionally, we show in Figure 9 that our approach
improves the scalability of the simulation; as we increase the
number of cores, the performance gap widens.

6.4. Comparison with FDTD

Wave-based methods for solving the acoustic wave equa-
tion are typically prone to numerical dispersion errors, in which
waves with different frequencies do not travel at the same speed.
This results in loss of phase relations in the source signal, ef-
fectively destroying the signal after certain distance: the result
is a muffled sound. In order to keep the numerical dispersion
error low, the spatial discretization for the wave-based method
needs to be kept high. Ideally, the spatial discretization for a
given maximum frequency is determined by the Nyquist theo-

Figure 5: Our load balancing method allows us to scale to a larger number of
cores. Speedup with X cores = ( Simulation time on 32-cores / Simulation time
over X-cores). Note how the simulator fails to achieve speedup past 64 cores
without load balancing since all the nodes get stalled and wait for computation
to finish for the slowest node.

rem: the size of the grid cell must be at most half the minimum
wavelength. In practice, wave-based methods such as FDTD
often require a spatial discretization which is 1/10 times the
minimum wavelength, although recent methods have focused
on reducing the refinement of spacial discretization [17, 27].

Because ARD uses the rectangular-domain analytical so-
lution of wave equation, it exhibits extremely low numerical
dispersion error. Therefore, ARD can work at a spatial dis-
cretization that is 1/2.6 times the minimum wavelength [22, 19].
Since the memory requirements of both ARD and FDTD scale
inversely with the third power of spatial discretization, ARD
is 25-50 times more memory efficient than FDTD. The com-
putational cost also scales inversely with the fourth power of
the spatial discretization: ARD algorithm is 75-100 times faster
than the FDTD algorithm.

8



Figure 6: In this example from the Village scene, the breakdown of the maxi-
mum timing of each stage for a core shows how the delay from an unbalanced
partition propagates throughout the time step. The maximum remote interface
handling time and the maximum barrier time are longer as a result of the im-
balance due to which the nodes are stalled and waiting for computation of the
slowest node to finish.

Figure 7: A comparison between interface area and overall normalized error

over the entire scene. The error percent is calculated as
Σvi [psim(vi)−pre f (vi)]

2

Σvi [pre f (vi)]2

where vi loops over every voxel in the scene over all time steps, psim is the
simulated pressure and pre f is the reference pressure.

7. Conclusion and Future Work

We present a massively parallel time-domain solver for the
acoustic wave equation. In order to accelerate the performance,
we present novel algorithms for load balancing and overlapping
the computation of pressure field with communication of inter-
face data. We take advantage of the separability of partition
updates to independently calculate pressure terms in rectangu-
lar domains distributed over multiple cores. We perform asyn-
chronous MPI calls to ensure that a process running on each
core is performing useful computations while communicating
with other nodes.

Our load balancing scheme provides a marked improve-
ment over a naive bin-packing approach. We achieve better per-
formance for all three scenes, as well as providing scalability.
Moreover, as the size of the scene increases or the frequency
of the simulation increases, performance improves. This allows

Figure 8: Asynchronous communication reduces the force transfer time com-
pared to a traditional collective communication approach.

Figure 9: Asynchronous communication provides better scalability than the
traditional collective communication approach. While the Twilight scene has
approximately the same scaling, Cathedral shows a clear win as does Village at
a higher number of cores.
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us to simulate at high frequencies while taking full advantage of
cluster resources. As compared to prior wave solvers, our solver
is the first algorithm and system that can perform numeric sim-
ulation at high frequencies for large indoor and outdoor scenes.

There are many avenues for future work. We would like
to evaluate the performance of our solver on larger CPU or
GPU clusters with tens or hundreds of thousands of cores and
achieve petaFLOPS performance on very high frequencies (an
improved version of our algorithm scalable to tens of thousands
of cores is presented in [20]). It will also be useful to extend our
approach to heterogeneous environments with varying speed of
sound.
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