
Collision Detection: Algorithms and Applications

Ming C. Lin, U.S. Army Research O�ce and University of North Carolina, Chapel Hill, NC, USA

Dinesh Manocha, University of North Carolina, Chapel Hill, NC, USA

Jon Cohen, University of North Carolina, Chapel Hill, NC, USA

Stefan Gottschalk, University of North Carolina, Chapel Hill, NC, USA

http://www.cs.unc.edu/~geom/collide.html

Fast and accurate collision detection between general

geometric models is a fundamental problem in model-

ing, robotics, manufacturing and computer-simulated

environments. Most of the earlier algorithm are either

restricted to a class of geometric models, say convex

polytopes, or are not fast enough for practical applica-

tions. We present an e�cient and accurate algorithm

for collision detection between general polygonal mod-

els in dynamic environments. The algorithm makes

use of hierarchical representations along with frame to

frame coherence to rapidly detect collisions. It is ro-

bust and has been implemented as part of public domain

packages. In practice, it can accurately detect all the

contacts between large complex geometries composed of

hundreds of thousands of polygons at interactive rates.

1 Introduction

Collision detection is a fundamental problem in
robotics, computer animation, physically-based mod-

eling, molecular modeling and computer simulated en-
vironments. In these applications, an object's motion
is constrained by collisions with other objects and by
other dynamic constraints. The problem has been well
studied in the literature.

A realistic simulation system, which couples geomet-
ric modeling and physical prototyping, can provide a

useful toolset for applications in robotics, CAD/CAM
design, molecular modeling, manufacturing design sim-
ulations, etc. Such systems create electronic represen-
tations of mechanical parts, tools, and machines, which

need to be tested for interconnectivity, functionality,
and reliability. A fundamental component of such a
system is to model object interactions precisely. The
interactions may involve objects in the simulation envi-
ronment pushing, striking, or smashing other objects.

Detecting collisions and determining contact points is a
crucial step in portraying these interactions accurately.

The most challenging problem in a simulation,
namely the collision phase, can be separated into three
parts: collision detection, contact area determination,
and collision response. In this paper, we address the
�rst two elements by presenting general a purpose col-

lision detection and contact area determination algo-
rithm for simulations. The collision response is appli-
cation dependent. The algorithm reports the contact
area and thus enables the application to compute an

appropriate response.

Our algorithm not only addresses interaction be-
tween a pair of general polygonal objects, but also large
environments consisting of hundreds of moving parts,
such as those encountered in the manufacturing plants.

Furthermore, we do not assume the motions of the ob-
jects to be expressed as a closed form function of time.
Our collision detection scheme is e�cient and accurate
(to the resolution of the models).

Given the geometric models, the algorithm pre-
computes the convex hull and a hierarchical representa-

tion of each model in terms of oriented bounding boxes.
At runtime, it uses tight �tting axis-aligned bounding
boxes to pair down the number of object pair interac-
tions to only those pairs within close proximity [12].

For each pair of objects whose bounding boxes over-
lap, the algorithm checks whether their convex hulls
are intersecting based on the closest feature pairs [22].
Finally for each object pair whose convex hulls over-

lap, it makes use of oriented bounding box hierarchy
(OBBTree) to check for actual contact [18].

Organization: The rest of the paper is organized as
follows: Section 2 reviews some of the previous work
in collision detection. Section 3 outlines the algorithm
for pruning the number of object pairs. We brie
y

describe the closest feature and contact determination
algorithms in Section 4. Finally, we describe the imple-

leftmark

mentation and performance on di�erent applications in

Section 5

2 Previous Work

Collision detection has been extensively studied in
CAD, computer graphics, robotics, and computational

geometry. Since collision detection is needed in a wide
variety of situations, many di�erent methods have been
proposed. Most of them make speci�c assumptions
about the objects of interest and design a solution
based on object geometry or application domain.

Robotics literature deals with collision detection in
the context of path planning. Using sophisticated

mathematical tools, several algorithms have been de-
veloped that plan collision-free paths for a robot in
restricted environments [8, 9]. However, in path plan-
ners based on potential �eld methods, collision detec-

tion and distance computation are still considered as
major bottlenecks [21, 10].

Most computational geometry literature deals with

collision detection of objects in a static environment.
Objects are at a �xed location and orientation, and
the algorithms determine whether they are intersecting
[11, 13]. In most modeling and graphics applications,

where many objects are in motion, such an approach
would be ine�cient. Moreover, the objects move only
slightly from frame to frame and the collision detec-
tion scheme should take advantage of the information
from the previous frame to initialize the computation

for the current frame [3, 23]. Several solutions based
on this idea of coherence have been proposed in [22].
Approaches that combine collision response with de-

tection can be found in [3, 33, 25]. The methods in

[32, 33] make use of the boundary representation to
detect collisions.

Collision detection for multiple moving objects has
recently become a popular research topic with the in-
creased interest in large-scaled virtual prototyping en-
vironments. For example, a vibratory parts feeder can
contain up to hundreds of mechanical parts moving si-

multaneously under periodical force impulses in a vi-
bratory bowl or tray. In a general simulation environ-
ment, there may be N moving objects and M station-
ary objects. Each of the N moving objects can collide

with the other moving objects, as well as the stationary

ones. Keeping track of
�
N

2

�
+NM pairs of objects

at every time step can become time consuming as N

andM get large. To achieve interactive rates, the total
number of pairwise intersection tests must be reduced
before performing exact collision tests on the object
pairs, which are in the close vicinity of each other. Sev-

eral methods dealing with this situation are found in
[7, 12, 16]. Most methods use some type of a hierarchi-
cal bounding box scheme. Objects are surrounded by
bounding boxes. If the bounding boxes overlap, indi-
cating the objects are near each other, a more precise

collision test is applied.

As for curved models, algorithms based on inter-
val arithmetic for collision detection are described in
[15, 17]. These algorithms expect the motion of the

objects to be expressed as a closed form function of
time. Moreover, the performance of interval arithmetic
based algorithms is too slow for interactive applica-
tions. Coherence based algorithms for curved models
are presented in [24].

In many CAD applications, the input models are
given as collections of polygons with no topology in-
formation. Such models are also known as `polygon
soups' and their boundaries may have cracks, T-joints,
or may have non-manifold geometry. In general, no

robust techniques are known for cleaning such models.
Many of the algorithms described are not applicable
to such models. Rather techniques based on hierarchi-
cal bounding volumes and and spatial decomposition

are used on such models. Typical examples of bound-
ing volumes include axis-aligned boxes (of which cubes
are a special case) and spheres, and they are chosen
for to the simplicity of �nding collision between two

such volumes. Hierarchical structures used for colli-
sion detection include cone trees, k-d trees and octrees
[31], sphere trees [20, 30], R-trees and their variants
[5], trees based on S-bounds [7] etc. Other spatial rep-
resentations are based on BSP's [27] and its extensions

to multi-space partitions [32], spatial representations
based on space-time bounds or four-dimensional test-
ing [1, 6, 9, 20] and manymore. All of these hierarchical
methods do very well in performing \rejection tests",

whenever two objects are far apart. However, when the
two objects are in close proximity and can have mul-
tiple contacts, these algorithms either use subdivision
techniques or check very large number of bounding vol-
ume pairs for potential contacts. In such cases, their

performance slows down considerably and they become
a major bottleneck in the simulation, as stated in [19].

Collision Detection: Algorithms & Applications

3 Collision Detection between Multiple

Moving Objects

We review our previous algorithm for multiple mov-

ing convex polytopes in complex environments. Co-
herence combined with incremental computation is a
major theme of our algorithms. By exploiting coher-
ence, we are able to incrementally trim down the num-
ber of pairwise object pairs and feature tests involved

in each iteration.

De�nition: Temporal and geometric coherence is

the property that the state of the application does not
change signi�cantly between successive time steps or
simulation frames. The objects move only slightly from
frame to frame. This slight movement of the objects
translates into geometric coherence, since their spatial

relationship does not change much between frames.

For a con�guration of N objects, the worst case run-

ning time for any collision detection algorithm isO(N2)
where N is the number of objects. However, evidence
suggests that these cases rarely occur in simulations
[3, 12, 22, 28]. So our algorithm uses a Sweep and

Prune technique to eliminate testing object pairs that
are far apart, and later we show that the technique can
be extended to eliminate testing features that are far
apart between two colliding objects.

We use a bounding box based scheme to reduce the
O(N2) bottleneck of testing all possible pairs of objects
for collisions. In most realistic situations, an object has

to be tested against a small fraction of all objects in the
environment for collision. For example, in a simulation
of a vibratory parts feeder most objects are in close

proximity to only a few other objects. It would be

pointless and expensive to keep track of all possible
interactions between objects at each time step.

Sorting the bounding boxes surrounding the objects

is the key to our Sweep and Prune approach [12]. It
is not intuitively obvious how to sort bounding boxes
in 3-space to determine overlaps. We use a dimension

reduction approach. If two bounding boxes collide in 3-

D, then their orthogonal projections on the x, y, and z
axes must overlap. The sweep and prune algorithm be-
gins by projecting each 3-D bounding box surrounding
an object onto the x, y, and z axes. Since the bound-
ing boxes are axially-aligned, projecting them onto the

coordinate axes results in intervals. We are interested
in overlaps among these intervals, because a pair of

bounding boxes can overlap if and only if their inter-

vals overlap in all three dimensions.

We construct three lists, one for each dimension.
Each list contains the values of the endpoints of the

intervals in each corresponding dimension. By sorting
these lists, we can determine which intervals overlap.
In the general case, such a sort would take O(N logN)
time, where N is the number of objects. We can re-
duce this time bound by keeping the sorted lists from

the previous frame, updating only the interval end-
points. In environments where the objects make rel-
atively small movements between frames, the lists will
be nearly sorted, so we can re-sort using insertion sort

in expected O(N) time [26, 3]. Graphs 1 { 6 are timings
taken from a multi-object simulation where we com-
pare the performance of using �xed versus dynamic
sized boxes [12]. Parameters such as the number of
objects, the polygonal complexity of the objects, the

velocity of the objects, etc. were varied as the graphs
show.

Graph 1

Number of Polytopes

S
ec

o
n

d
s

p
er

 F
ra

m
e

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0 500 1000 1500 2000

Dynamic
Box

Fixed Cube

Graph 3

% Density of Simulation Volume

S
ec

o
n

d
s

p
er

 F
ra

m
e

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.0 2.0 4.0 6.0 8.0 10.0

Graph 4

Rotational Velocity (degrees/frame)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0

Graph 2

Number of Faces

0.00

0.03

0.05

0.08

0.10

0.13

0.15

0.18

0.20

0.23

0 100 200 300 400

4 Exact Collision Detection

Given two objects in close proximity, the algorithm ini-

tially checks whether their convex hulls are overlap-
ping. It incrementally computes their closest feature

leftmark

Graph 6

Rotational Velocity for Fixed Cube

S
ec

o
n

d
s

p
er

 F
ra

m
e

0.00

0.01

0.02

0.03

0.04

0.05

0 3 6 9 1 2 1 5 1 8 2 1 2 4 2 7 3 0 3 3 3 6 3 9 4 2 4 5

Graph 5

Rotational Velocity for Dynamic Box

S
ec

o
n

d
s

p
er

 F
ra

m
e

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

0.11

0 3 6 9 1 2 1 5 1 8 2 1 2 4 2 7 3 0 3 3 3 6 3 9 4 2 4 5

Collision Tests

Sort Lists

Update Boxes

pairs and check for overlap. If the convex hulls are in-

tersecting, it checks whether the overlapping features
belong to the original model or are introduced by the
convex hull computation. Eventually it makes use of
hierarchy of oriented bounding boxes to check for exact
contact.

4.1 Collision Detection between Convex Poly-

topes

The algorithm computes the convex hull of all objects
as part of pre-processing. Furthermore, it classi�es the

feature of convex hulls into red and green features. The
red features correspond to the features of the original
model and the green features are introduced by the
convex hull computation.

We use the algorithm described in [22] to keep track
of closest features for a pair of convex polytopes. The
algorithm maintains a pair of closest features for each

convex polytope pair and calculates the Euclidean dis-
tance between the features to detect collisions. This
approach can be used in a static environment, but is es-
pecially well-suited for dynamic environments in which
objects move in a sequence of small, discrete steps. The

method takes advantage of coherence: the closest fea-
tures change infrequently as the polytopes move along

�nely discretized paths. In most situations, the algo-

rithm runs in expected constant time if the polytopes
are not moving at large discrete steps (e.g. 180 degrees
of rotation per step).

4.1.1 Voronoi Regions

Each convex polytope is pre-processed into a mod-
i�ed boundary representation. The polytope data
structure has �elds for its features (faces, edges, and

vertices) and corresponding Voronoi regions. Each fea-
ture is described by its geometric parameters and its
neighboring features, i.e. the topological information
of incidences and adjacencies.

De�nition: A Voronoi region associated with a fea-
ture is a set of points closer to that feature than any

other [29].

The Voronoi regions form a partition of the space

outside the polytope, and they form the generalized
Voronoi diagram of the polytope. Note that the gener-
alized Voronoi diagram of a convex polytope has linear
number of features and consists of polyhedral regions.

A cell is the data structure for a Voronoi region of a
single feature. It has a set of constraint planes which
bound the Voronoi region with pointers to the neigh-
boring cells (which share a constraint plane with it) in
its data structure. If a point lies on a constraint plane,

then it is equi-distant from the two features which share
this constraint plane in their Voronoi regions. For more
details on this construction and its properties, please
refer to [22].

4.1.2 Closest Feature Tests

Our method for �nding closest feature pairs is based
on Voronoi regions. We start with a candidate pair of

features, one from each polytope, and check whether
the closest points lie on these features. Since the poly-
topes and their faces are convex, this is a local test
involving only the neighboring features of the current

candidate features. If either feature fails the test, we
step to a neighboring feature of one or both candidates,
and try again. As the Euclidean distance between fea-
ture pairs must always decrease when a switch is made,
cycling is impossible for non-penetrating objects. An

example of the algorithm is given in Fig. 1.

Given a pair of features Face 1 and vertex Vb, on

objects A and B, as the closest features we test to see
if vertex Vb lies within Cell 1 of of Face 1. Vb violates

Collision Detection: Algorithms & Applications

Object A

Object B

Face 1

CP

Cell 2

Cell 3

V
Cell 1

Pa

b

Figure 1: A walk across Voronoi cells.

the constraint plane imposed by CP of Cell 1. The

constraint plane CP has a pointer to its adjacent cell
Cell 2, so the walk proceeds to test the containmentship
of Vb within Cell 2. In similar fashion, vertex Vb has
a cell of its own, and we see if the nearest point Pa
on the edge to the vertex Vb lies within Vb's Voronoi

cell. Basically, we are performing the containmentship
tests of a point within a Voronoi region de�ned by the
constraint planes of the region. The constraint plane
causing the containmentship test to fail points the next

direction for the algorithm to advance in the search of
a new and closer feature. Eventually, we must reach
the closest pair of features.

4.1.3 Penetration Detection for Convex Polytopes

The key to detecting penetrations lies in partition-

ing the interior as well as the exterior of the convex
polytope. For internal partitioning, internal Voronoi
regions can be used. The internal Voronoi regions can
be constructed for any convex polytope by computing

all the equi-distant hyperplanes between two or more
facets on the polytope. However the general construc-
tion of the internal Voronoi regions is a non-trivial com-
putation [29]. To detect a penetration { as opposed to
knowing all the closest features { it is unnecessary to

construct the exact internal Voronoi regions.

Rather we use an approximation, labeled as pseudo-
internal Voronoi region. It is calculated by �rst com-

puting the centroid of each convex polytope { the

weighted average of all vertices. Then a hyperplane
from each edge is extended towards the centroid. The
extended hyperplane tapers to a point, forming a
pyramid-type cone over each face. Each of the faces of

the given polytope is now used as a constraint plane.
If a candidate feature fails the constraint imposed by
the face (indicating the closest feature pair lies possi-
bly behind this face), the algorithm stepping \enters"
inside of the polytope (as shown in Fig. 2). If at any

time we �nd one point on a feature of one polytope
is contained within the pseudo internal Voronoi region
(i.e. this point satis�es the constraints posed by an
pseudo internal Voronoi region of the other polytope),

it corresponds to a penetration. A detailed discussion
is presented in [28]

4.1.4 Feature Classi�cation

The algorithm highlighted above returns all pairs of

overlapping features between the convex hulls. The
resulting feature pairs can be classi�ed into:

� Red-red feature overlap (as shown in Fig. 3(a)):
This corresponds to an actual collision between
the original models.

� Red-green feature overlap (as shown in Fig. 3(b)):
This may or may not correspond to a collision.
The algorithmpresented in the next section is used
to check for exact contact.

� Green-green feature overlap (as shown in Fig.
3(c)): Same as above. The algorithm presented
in the next section is used to check for exact con-
tact.

4.2 Exact Contact Determination

In this section, we present a robust, e�cient and gen-
eral purpose algorithm to compute all contacts between

geometric models composed of polygons. The algo-
rithms computes a hierarchical representation using
oriented bounding boxes (OBBs). An OBB is a rect-
angular bounding box at an arbitrary orientation in 3-

space. The resulting hierarchical structure is referred
to as an OBBTree. The idea of using OBBs is not new
and many researchers have used them extensively to
speed up ray tracing and interference detection compu-
tations [2]. In this paper, we brie
y describe the algo-

rithms for computing tight-�tting OBBs and checking
them for overlap. More details are given in [18].

leftmark

V

V

V Inside
External
Cell

V Inside
Internal
Cell

Figure 2: Walk from external to internal Voronoi regions.

4.2.1 Building an OBBTree

In this section we describe algorithms for building an
OBBTree. The tree construction has two components:
�rst is the placement of a tight �tting OBB around a

collection of polygons, and second is the grouping of
nested OBB's into a tree hierarchy.

We want to approximate the collection of polygons
with an OBB of similar dimensions and orientation.

We triangulate all polygons composed of more than
three edges. The OBB computation algorithm makes
use of �rst and second order statistics summarizing the
vertex coordinates. They are the mean, �, and the

covariance matrix, C, respectively [14]. If the vertices
of the i'th triangle are the points pi, qi, and ri, then
the mean and covariance matrix can be expressed in
vector notation as:

� =
1

3n

nX
i=0

(pi + qi + ri);

Cjk =
1

3n

nX
i=0

(pijp
i
k + qijq

i
k + rijr

i
k); 1 � j; k � 3

where n is the number of triangles, pi = pi � �, qi =
qi��, and ri = ri��. Each of them is a 3� 1 vector,

e.g. pi = (pi
1
;pi

2
;pi

3
)T and Cjk are the elements of the

3 by 3 covariance matrix.

The eigenvectors of a symmetric matrix, such as C,

are mutually orthogonal. After normalizing them, they
are used as a basis. We �nd the extremal vertices along
each axis of this basis, and size the bounding box, ori-
ented with the basis vectors, to bound those extremal

vertices. Two of the three eigenvectors of the covari-
ance matrix are the axes of maximumand of minimum
variance, so they will tend to align the box with the
geometry of a tube or a
at surface patch.

Figure 4: Building the OBBTree: recursively partition the

bounded polygons and bound the resulting groups.

The basic failing of the above approach is that ver-
tices on the interior of the model, which ought not in-

uence the selection of a bounding box placement, can

have an arbitrary impact on the eigenvectors. For ex-
ample, a small but very dense planar patch of vertices

Collision Detection: Algorithms & Applications

(a)

(b)

(c)

Figure 3: Feature classi�cation based on the overlap between convex hulls

in the interior of the model can cause the bounding box

to align with it.

We improve the algorithm by using the convex hull
of the vertices of the triangles. The convex hull is the

smallest convex set containing all the points and e�-
cient algorithms of O(n lgn) complexity and their ro-
bust implementations are available as public domain
packages [4]. This is an improvement, but still suf-
fers from a similar sampling problem: a small but very

dense collection of nearly collinear vertices on the con-
vex hull can cause the bounding box to align with that
collection.

Given an algorithm to compute tight-�tting OBBs
around a group of polygons, we need to represent
them hierarchically. Most methods for building hierar-
chies fall into two categories: bottom-up and top-down.
Bottom-up methods begin with a bounding volume for

each polygon and merge volumes into larger volumes
until the tree is complete. Top-down methods begin
with a group of all polygons, and recursively subdivide
until all leaf nodes are indivisible. In our current imple-

mentation, we have used a simple top-down approach.

Our subdivision rule is to split the longest axis of

a box with a plane orthogonal to one of its axes, par-

titioning the polygons according to which side of the
plane their center point lies on (a 2-D analog is shown
in Figure 4). The subdivision coordinate along that
axis was chosen to be that of the mean point, �; of

the vertices. If the longest axis cannot not be subdi-
vided, the second longest axis is chosen. Otherwise, the
shortest one is used. If the group of polygons cannot
be partitioned along any axis by this criterion, then the

group is considered indivisible.

4.2.2 Fast Overlap Test for OBBs

Given OBBTrees of two objects, the interference al-
gorithm typically spends most of its time testing pairs

of OBBs for overlap. A simple algorithm for testing
the overlap status for two OBB's performs 144 edge-
face tests. In practice, it is an expensive test. OBBs
are convex polytopes and therefore, algorithms based
on linear programming and closest features computa-

tion can be applied to check for overlap. However, they
are relatively expensive.

One trivial test for disjointness is to project the
boxes onto some axis (not necessarily a coordinate axis)

leftmark

in space. This is an `axial projection.' Under this pro-

jection, each box forms an interval on the axis. If the
intervals don't overlap, then the axis is called a `sep-
arating axis' for the boxes, and the boxes must then
be disjoint. If the intervals do overlap, then the boxes

may or may not be disjoint { further tests may be re-
quired. We make use of the separating axis theorem

presented in [18] to check for overlaps. According to
it, two convex polytopes in 3-D are disjoint i� there
exists a separating axis orthogonal to a face of either

polytope or orthogonal to an edge from each polytope.
Each box has 3 unique face orientations, and 3 unique
edge directions. This leads to 15 potential separating
axes to test (3 faces from one box, 3 faces from the

other box, and 9 pairwise combinations of edges). If
the polytopes are disjoint, then a separating axis ex-
ists, and one of the 15 axes mentioned above will be a
separating axis. If the polytopes are overlapping, then

clearly no separating axis exists. So, testing the 15
given axes is a su�cient test for determining overlap
status of two OBBs.

B

A

B

Ar

a1 1

a2 2

rB

b2 2

1 1b

L

T

LT

A
A

B

Figure 5: ~L is a separating axis for OBBs A and B because

A and B become disjoint intervals under projection onto ~L.

To perform the test, our strategy is to project the

centers of the boxes onto the axis, and also to compute
the radii of the intervals. If the distance between the
box centers as projected onto the axis is greater than
the sum of the radii, then the intervals (and the boxes
as well) are disjoint. This is shown in 2D in Fig. 5.

In practice, this corresponds to at most 200 arithmetic
operations in the worst case [18]. Due to early exit

(when the boxes are not overlapping), the algorithm

takes about half the operations in practice. This algo-
rithm for overlap detection between OBBs is about one
order of magnitude faster than previous algorithms and
implementations to check for overlap between OBBs.

5 Implementation and Performance

All these algorithms have been implemented and avail-
able as part of general purpose public domain packages.
These are:

I COLLIDE collision detection package available at

http://www.cs.unc.edu/~geom/I COLLIDE.html.
It contains routines for the sweep and prune as well
as the closest distance pair algorithm for convex poly-
topes. This package is applicable to environments,

which can be described as union of convex polytopes.
It has been widely used for dynamic simulation, archi-
tecture walkthrough and other applications.

RAPID interference detection package available at
http://www.cs.unc.edu/~geom/OBB/OBBT.html.

It contains routines for building the OBBTree data
structure and fast overlap tests between two OBB-
Trees. It has been used for virtual prototyping and
simulation-based design applications. More details on

their performance and robustness issues are given in
[12, 18].

In practice, the algorithms based on OBBs asymp-
totically perform much better than hierarchies based
on sphere trees or axis-aligned bounding boxes (like Oc-

trees). The I COLLIDE routines are able to compute
all contacts between environments composed of hun-
dred of convex polytopes at interactive rates (about
1=20 of a second). The OBBTree based interference

detection algorithm (available as part of RAPID) has
been applied to two complex synthetic environments to
demonstrate its e�ciency (as highlighted in Table 1).
These �gures are for an SGI Reality Engine (90 MHz
R8000 CPU, 512 MB).

A simple dynamics engine exercised the collision de-
tection system. At each time step, the contact poly-
gons were found by the collision detection algorithm,
an impulse was applied to the object at each contact

before advancing the clock.

In the �rst scenario, the pipes model was used as
both the environment and the dynamic object, as

Collision Detection: Algorithms & Applications

Scenario Pipes Torus

Environ Size 143690 pgns 98000 pgns

Object Size 143690 pgns 20000 pgns
Num of Steps 4008 1298
Num of Contacts 23905 2266
Num of Box-Box Tests 1704187 1055559

Num of Tri-Tri Tests 71589 7069
Time 16.9 secs 8.9 secs

Ave. Int. Detec. Time 4.2 msecs 6.9 msecs

Ave. Time per Box Test 7.9 usecs 7.3 usecs
Ave. Contacts per Step 6.0 1.7

Table 1: Timings for simulations

shown in Fig. 7. Both object and environment con-
tain 140,000 polygons. The object is 15 times smaller
in size than the environment. We simulated a grav-

itational �eld directed toward the center of the large
cube of pipes, and permitted the smaller cube to fall
inward, tumbling and bouncing. Its path contained
4008 discrete positions, and required 16:9 seconds to
determine all 23905 contacts along the path. This is a

challenging scenario because the smaller object is en-
tirely embedded within the larger model. The mod-
els contain long thin triangles in the straight segments
of the pipes, which cannot be e�ciently approximated

by sphere trees, octrees, and trees composed of axis-
aligned bounding boxes , in general. It has no obvious
groups or clusters, which are typically used by spatial
partitioning algorithms like BSP's.

The other scenario has a complex wrinkled torus en-
circling a stalagmite in a dimpled, toothed landscape.
Di�erent steps from this simulation are shown in Fig.
8. The spikes in the landscape prevent large bounding
boxes from touching the
oor of the landscape, while

the dimples provide numerous shallow concavities into
which an object can enter. Likewise, the wrinkles and
the twisting of the torus makes it impractical to de-
compose into convex polytopes, and di�cult to e�-

ciently apply bounding volumes. The wrinkled torus
and the environment are also smooth enough to come
into parallel close proximity, increasing the number of
bounding volume overlap tests. Notice that the average
number of box tests per step for the torus scenario is

almost twice that of the pipes, even though the number
of contacts is much lower.

We have also applied the RAPID library to detect

collision between a moving torpedo on a pivot model
(as shown in Fig. 6). These are parts of a torpedo stor-
age and handling room of a submarine. The torpedo
model is 4780 triangles. The pivot structure has 44921

triangles. There are multiple contacts along the length
of the torpedo as it rests among the rollers. A typical
collision query time for the scenario shown in Fig. 6 is
100 ms on a 200MHz R4400 CPU, 2GB SGI Reality
Engine.

6 Acknowledgements

Thanks to Greg Angelini, Jim Boudreaux, and Ken
Fast at Electric Boat for the model of torpedo stor-

age and handling room. We would like to thank
John Canny, Brian Mirtich and Krish Ponamgi for in-
teresting discussions. Brian Mirtich and Krish Pon-
amgi also helped in the implementation of I COLLIDE

library. This research has been supported in part
by a Sloan foundation fellowship, ARO Contract
P-34982-MA, DARPA contract DABT63-93-C-0048,
NSF grant CCR-9319957, NSF Grant CCR-9625217,

ONR contract N00014-94-1-0738, NSF/ARPA Science
and Technology Center for Computer Graphics &
Scienti�c Visualization and NSF Prime contract No.
8920219.

References

[1] A.Garica-Alonso, N.Serrano, and J.Flaquer. Solv-

ing the collision detection problem. IEEE Com-

puter Graphics and Applications, 13(3):36{43,
1994.

[2] J. Arvo and D. Kirk. A survey of ray tracing ac-
celeration techniques. In An Introduction to Ray

Tracing, pages 201{262, 1989.

[3] D. Bara�. Dynamic simulation of non-penetrating

rigid body simulation. PhD thesis, Cornell Univer-
sity, 1992.

[4] B. Barber, D. Dobkin, and H. Huhdanpaa. The
quickhull algorithm for convex hull. Technical Re-
port GCG53, The Geometry Center, MN, 1993.

[5] N. Beckmann, H. Kriegel, R. Schneider, and

B. Seeger. The r*-tree: An e�cient and robust
access method for points and rectangles. Proc.

leftmark

Figure 6: Interactive Interference Detection for a Torpedo (shown on the top) on a Pivot Structure { Torpedo has 4780 triangles;

Pivot has 44921 triangles; Average time to perform collision query: 100 msec on SGI Reality Engine with 200MHz R4400 CPU

SIGMOD Conf. on Management of Data, pages
322{331, 1990.

[6] S. Cameron. Collision detection by four-
dimensional intersection testing. Proceedings of

International Conference on Robotics and Au-

tomation, pages 291{302, 1990.

[7] S. Cameron. Approximation hierarchies and s-
bounds. In Proceedings. Symposium on Solid Mod-

eling Foundations and CAD/CAM Applications,

pages 129{137, Austin, TX, 1991.

[8] S. Cameron and R. K. Culley. Determining the
minimum translational distance between two con-
vex polyhedra. Proceedings of International Con-
ference on Robotics and Automation, pages 591{
596, 1986.

[9] J. F. Canny. Collision detection for moving poly-

hedra. IEEE Trans. PAMI, 8:200{209, 1986.

[10] H. Chang and T. Li. Assembly maintainability
study with motion planning. In Proceedings of In-

ternational Conference on Robotics and Automa-

tion, 1995.

[11] B. Chazelle and D. P. Dobkin. Intersection of con-
vex objects in two and three dimensions. J. ACM,

34:1{27, 1987.

[12] J. Cohen, M. Lin, D. Manocha, and M. Ponamgi.
I-collide: An interactive and exact collision de-
tection system for large-scale environments. In
Proc. of ACM Interactive 3D Graphics Confer-

ence, pages 189{196, 1995.

[13] D. P. Dobkin and D. G. Kirkpatrick. A linear
algorithm for determining the separation of convex
pol yhedra. J. Algorithms, 6:381{392, 1985.

[14] R.O. Duda and P.E. Hart. Pattern Classi�cation

and Scene Analysis. John Wiley and Sons, 1973.

[15] TomDu�. Interval arithmetic and recursive subdi-
vision for implicit functions and constructive solid

geometry. ACM Computer Graphics, 26(2):131{
139, 1992.

Collision Detection: Algorithms & Applications

Figure 7: Interactive Interference Detection on Complex Interweaving Pipeline : 140; 000 polygons each; Average time to

perform collision query: 4.2 msec on SGI Reality Engine with 90MHz R8000 CPU

[16] P. Dworkin and D. Zeltzer. A new model for
e�cient dynamics simulation. Proceedings Euro-

graphics workshop on animation and simulation,
pages 175{184, 1993.

[17] J. Snyder et. al. Interval methods for multi-point
collisions between time dependent curved surfaces.
In Proceedings of ACM Siggraph, pages 321{334,
1993.

[18] S. Gottschalk, M. Lin, and D. Manocha. Obb-tree:
A hierarchical structure for rapid interference de-
tection. To Appear in Proc. of ACM Siggraph'96,
1996.

[19] J. K. Hahn. Realistic animation of rigid bodies.
Computer Graphics, 22(4):pp. 299{308, 1988.

[20] P. M. Hubbard. Interactive collision detection.

In Proceedings of IEEE Symposium on Research

Frontiers in Virtual Reality, October 1993.

[21] J.C. Latombe. Robot Motion Planning. Kluwer
Academic Publishers, 1991.

[22] M.C. Lin. E�cient Collision Detection for An-

imation and Robotics. PhD thesis, Department
of Electrical Engineering and Computer Science,
University of California, Berkeley, December 1993.

[23] M.C. Lin and John F. Canny. E�cient algorithms

for incremental distance computation. In IEEE

Conference on Robotics and Automation, pages
1008{1014, 1991.

[24] M.C. Lin and Dinesh Manocha. E�cient contact

determination between geometric models. Inter-

national Journal of Computational Geometry and

Applications, 1996. To appear.

[25] M. Moore and J. Wilhelms. Collision detection

and response for computer animation. Computer
Graphics, 22(4):289{298, 1988.

leftmark

[26] M.Shamos and D.Hoey. Geometric intersection

problems. Proc. 17th An. IEEE Symp. Found. on

Comput. Science, pages 208{215, 1976.

[27] B. Naylor, J. Amanatides, and W. Thibault.
Merging bsp trees yield polyhedral modeling re-
sults. In Proc. of ACM Siggraph, pages 115{124,
1990.

[28] M. Ponamgi, D. Manocha, and M. Lin. Incremen-
tal algorithms for collision detection between gen-

eral solid models. In Proc. of ACM/Siggraph Sym-

posium on Solid Modeling, pages 293{304, 1995.

[29] F.P. Preparata and M. I. Shamos. Computational
Geometry. Springer-Verlag, New York, 1985.

[30] S. Quinlan. E�cient distance computation be-
tween non-convex objects. In Proceedings of Inter-
national Conference on Robotics and Automation,

pages 3324{3329, 1994.

[31] H. Samet. Spatial Data Structures: Quadtree, Oc-

trees and Other Hierarchical Methods. Addison
Wesley, 1989.

[32] W.Bouma and G.Vanecek. Collision detection and
analysis in a physically based simulation. Pro-

ceedings Eurographics workshop on animation and

simulation, pages 191{203, 1991.

[33] W.Bouma and G.Vanecek. Modeling contacts in
a physically based simulation. Second Symposium

on Solid Modeling and Applications, pages 409{
419, 1993.

Figure 8: Interactive Interference Detection for a Complex

Torus { Torus has 20000 polygons; Environment has 98000

polygons; Average time to perform collision detection: 6.9

msec on SGI Reality Engine

