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Abstract—We present a simple algorithm for complete motion especially when there is no collision-free path.

planning using deterministic sampling. Our approach relies

on computing a star-shapedroadmap of the free space. We Main Results: We present a new motion planning algo-
Eﬁg'féogotﬂ? Jéﬁi ds?ﬁgeg&';t% it:rr]'ssheipi‘?/errig';;ﬁt S}E\Ct‘héhgttaf_‘ rithm for robots with translational and rotational dof. Our work
shaped region. The resulting set of guards capture the intra- combines the simplicity of Sam_pllng-based approaches W'_th
region connectivity. We capture the inter-region connectivity the completeness of exact algorithms. We compute a sampling
by computing connectors that link guards of adjacent regions. of the free space in a deterministic manner using an adaptive
We use the guards and connectors to construct a star-shapedyvolumetric grid. We generate sufficient number of samples to
{gaggnrﬁgu?ef ttrrlni f:c?:drsnp;:?eih Vged%rteesr%ri];i:t?c erﬁﬁhennér aﬁ?ﬁg'&{“ capture the connectivity of the free space, as long as there is
computing an explicit representation of the free space. We show no tangential contact on the b(_)undary O_f Fhe free Space. As a
that the star-shaped roadmap captures the connectivity of the result, we are guaranteed to find a collision-free path if one
free space while providing sufficient information to perform exists or detect non-existence of any collision-free path.

complete motion planning. Our approach is relatively simple 0 o approach is based on the notionstér-shapedness
implement for robots with translational and rotational degrees

of freedom (dof). We highlight the performance of our algorithm region R is star-shapedf there e?('St‘,s a poinb € R', called
on challenging scenarios with narrow passages or when there is @ guard that can see every poirgt in the region, i.e., the
no collision-free path for low-dof robots. straight line segmendp does not intersect the boundary of
R. We show that star-shapedness provides a congrextding
of the connectivity of a region. We decompose the free space
Motion planning is a fundamental problem in roboticénto star-shaped regions without computing an explicit repre-
and has been extensively researched for more than thseatation of the free space. The resulting set of guards capture
decades. We address the problem of planning the path ofha intra-region connectivity for each region. Furthermore, we
robot navigating through a static environment. At a broachpture the inter-region connectivity by computic@nnectors
level, prior motion planning algorithms can be classified intthat connect guards of adjacent regions. We use these guards
exact criticality-based algorithms and approximate approachex connectors to construcstar-shapedoadmap of the free
[7]. Some of the early work on criticality-based algorithmspace.
includes exact free-space computation, roadmap methods, anflhe underlying computation in our planner is the star-
exact cell decomposition methods. These approaches perf@iaped test. We present a simple and efficient algorithm that
completeplanning — they find a collision-free path if oneyses linear programming and interval arithmetic to perform
exists, or guarantee that there is no collision-free path frofis test. Unlike prior criticality-based methods, we are able
the initial to the goal configuration. HOWGVGT, these algorithn"tg avoid exact Computation of roots of a|gebraic equations
have a high theoretical complexity and are difficult to impleand are able to perform conservative star-shaped tests for
ment in practice for general robots. As a result, most practicgdrly termination. As a result, our algorithm is relatively
algorithms for complete planning have been restricted to rigismple to implement. In the worst case, the complexity of
planar objects, 3D convex polytopes or special objects (ediyr algorithm can increase exponentially with the number
ladders, discs or spheres). Given the underlying complexity & dof. We also compare some features of our approach
exact motion planning, a number of approximate approachgih approximate cell-based decomposition and randomized
have been have been proposed. These include approxim@ipling based algorithms. We have implemented our planner
cell decomposition, potential-field methods and randomizeghd demonstrated its performance to compute collision free
sampling based methods. The approximate cell decompositjgaths for low dof robots in challenging scenarios: when there

methods can be madesolution completeprovided the resolu- are narrow-passages in free space or no collision-free paths.
tion parameters are chosen appropriately. Many of the current

planners compute a probabilistic roadmap using techniqguesganization: The rest of the paper is organized in the
based on randomized sampling [5]. These methods are simfollowing manner. We give an overview of related work in

to implement and have been successfully applied to high-dobtion planning in Section II. In Section Ill, we give a brief
motion planning problems in different applications. Howevegverview of configuration space formulation and present the
the approximate algorithms may not guarantee completenasstation used in the rest of the paper. We present star-shaped

I. INTRODUCTION



roadmaps in Section IV. We present our deterministic sari; but does not penetrate into the interior&fTherefore 0 F

pling algorithm in Section V and describe its implementatiooan be expressed in terms of a collectioncoftact surfaces

in Section VI. We compare our approach with prior approachéS-surfaces), each being the locus of configurationsdcét

in Section VIl and discuss a few limitations. which a specific feature ofd is in contact with a feature of
Il. PREVIOUS WORK B. We refer the reader to [6] for a detailed explanation of the

. . . L ..__configuration space formulation and C-surfaces.
Motion planning has been extensively studied in the I|terar;gv

. e use two important properties 6f-surfaces for generat-
ture for more than three decades. A comprehensive survey, star-shaped roadmaps:

motion planning results is presented in [6], [7]. Superset property. The setl’ of C-surfaces is a superset of
A. Exact Approaches the boundaryoF of free space, i.edF C U{y; € T'}. T

There are two main approaches for exact or Comp@@fines an arrangement aridis a subset of the cells in this
motion planning. These approaches are based on roadrgi@ngement. Each cell defines one connected component of
computation and cell decomposition. Examples of a roadmap-. ) ) ) )
based approach include the visibility graph method, retractié}{ientation property : We can assign an orientation to each
approach [6], and the silhouette method [3]. Exact cell deco,ﬁ’:surface. We explain this with an intuitive argument. Con-
position methods have been extensively studied for motigifler aC-surfacey generated by the contact between a robot
planning and the first complete algorithm was proposed #§aturef; and an obstacle featurg. Points onone side ofy
Schwartz and Sharir [10]. The details of the above methof@rrespond to the case whefe has penetrated, and points
are quite involved and are not easy to implement. A number @ theother sidecorrespond to no overlap or contact between
complete algorithms have been proposed for restricted casedofnd f2. We orienty by assigning a normal at to point in
motion planning problem — including rigid planar objects witih€ direction of no overlap.
3dof, 3D convex polytopes, 3D polyhedral objects with onlf. Notation

translational dOf, and SDECiaI ObjeCtS in 3D such as IadderSWe use the fo”owing notation in the rest of the paper. We

discs, or balls [6]. use lower case bold letters suchyag to refer to points irR<.
B. Approximate Cell Decomposition and Sampling Based Ap/e use the symbopg to refer to the line segment between
proaches the pointsp and q.

A number of algorithms based on approximate cell decom-€ denotes the configuration spacé.denotes the free space

position have also been proposed [8]. These methods partitﬁﬂp. 0F . denotes Its bou.ndary. The lettg? C C denotes a
the configuration space into a collection of cells. They classiiﬁg'on in the Confl_guratlon space. denotes the set of-
the cells into three typesmptycells that lie completely in free SUTfaces that contribute to the boundary of Giebstacle.
space,full cells that are completely within C-obstacle, and A restriction of a setS w.r.t another sef’ is denoted asir
mixedcells that contain the boundary of the free space. T d is defineds m.T' We aisymeST is a closed set. .

A surface~ defined inR* is star-shapedf there exists a

set of empty cells provide a conservative approximation of the’. -

free space and are used for path computation. The approximdtd't@ € R? (called the origin) such tt‘aipﬂv ={p}vpec

cell decomposition methods aresolution completei.e., they 7 _G|ven a star-shape*d regidR, let R* = o. Similarly, if a

can find a path if one exists provided the resolution paramet@¥NtP € &, then letp™ = o .

are selected small enough [6]. They have been used for |0V\;3|ven a sets, two pointsp, g € S are _connected if there

dof robots. exists a path betweesp and q that lies in S. We use the
The probabilistic roadmap method (PRM) [5] is perhapghorthand notatiop <— ¢ to meanp andq are connected

the most widely used path planning algorithm for differerift 5. The connectivity relation is symmetric. Given a roadmap

applications. It is relatively simple to implement and has bed@n undirected grapiz = (V, E)) and two vertices), w € V,

successfully used for motion planning of high dof robota 2, w means thav andw are connected ifR, i.e., there

Since PRM-based algorithms sample the free space randorekists a path between and w consisting of a sequence of

they may fail to find paths — especially those passing throughiges inE.

narrow passages. A number of extensions have been proposed IV. STAR-SHAPED ROADMAPS

to improve the sampling in terms of handling narrow passage

3n this section, we present the concept of a star-shaped
1], [15] or using visibility-based techniques [11]. All these ' . L
En]etr[lod]s areprogabilisticglly complete nge éxtgnsions of roadmap and show that it captures the connectivity of the free

PRVS hav b 1oposed il ey b b 10 et S, SO moton i, e se ese et
existence of a path [2]. p p g9 pling

algorithm in Sec. V.
I1l. PRELIMINARIES A. Star-shapedness

A. Configuration Space and Contact Surfaces Our approach is based on the notion of star-shapedness. A
We assume that the robdtis a rigid or an articulated object region R is star-shapedf there exists a poind € R, anorigin,

moving among stationary rigid obstacl8s We also assume that canseeevery pointp in the region, i.e., the straight line

that the geometry of bottl and 5 is accurately known. The segmentop does not intersect the boundary Bf The origin

free spaceF is the set of configurations at which does not is commonly referred to as guard It is easy to show that a

collide with B. The boundary ofF, denoted a$F, consists star-shaped region is always connected. Moreover, every point

of those configurations a#l at which . A makes contact with in the region is connected to the guard along a straight line



D. Connector Computation

In Step 2, we capture the inter-region connectivity. It suffices
to only consider paths between adjacent regidsand R;
that cross their common boundaR;. We compute a point
belonging toR;;. c is a connector. Since the regions and
R; are star-shaped; is visible to the guards of?; and R;.
(a) Star-shapedness (b) Star-shaped Test Hence,c connects the guards of two adjacent regions (see Fig.

Fig. 1. Left : This figure shows a star-shaped region (in white). I?(b))'

contains a guarc that can see every point within the region. A patl ;
between any two pointp € R andq € R is given bypo :: oq. }E Roadmap Computation
Right: Ifin aregionR_, all C-surfaces are star-shaped w.r.t a common |np Step 3, we combine the guards and connectors to con-
pointo, then7 N 1t is star-shaped w.ro. struct a star-shaped roadmd of the free space (see Fig.

segment. Star-shapedness is thus a compact way of enco&iﬂg)aR is;n undirected_rgr:aph. L(fét andhC deF‘Ote .tth%E of
the connectivity of a region. It provides a path between eve rds and connectors. The set of graph vertic&sis GUC .

point in the region and the guard. We exploit this proper ach connector connects wo ggardgl €Gandgz € G
for motion planning. A path between any two poinis e f two adjacent regions. This defines two graph edgeg:)

Randq € R is given by po :: og where:: denotes path aNd(¢;92). Let GUARDS(c) denote the sefgs, gz}. The

concatenation (see Fig. 1(a)). We extend this idea to compﬁf‘é of graph edge#’ is defined as:
a path between two arbitrary configurations in free space. E={(c.g) | c€C, ge GUARDS(c)}

B. Overall Approach R is the undirected graptV, E, w) where the weight function

At a conceptual level, our approach computesaa-shaped w : E — R is defined as a distance between the edge vertices
decompositiorof the free space, i.e., it partitio into a set using a suitable metric (e.g. Euclidean).
of star-shaped regions. We present our algorithm to compl'ge
the star-shaped decomposition in Sec. V. Based on star-
shapedness, we capture the intra-region connectivity. HoweverGiven the star-shaped decompositiznand the roadmap
we also need to take into account the inter-region connectivify, , path planning becomes straightforward. etind g re-
i.e. connectivity between points belonging to separate regiospectively denote the start and goal configuration respectively.
We achieve this by computingonnectors'. Our approach Assume they are connected. The star-shapedness property of
consists of the following steps: each region irk implies we can connegi andg to the guards
p* and g* respectively by straight line paths. We compute a
path betweerp* and g* in the roadmapR based on graph
search. The following theorem states that our motion planning
algorithm is complete.

Complete Path Planning

1) Compute a star-shaped decompositionof the free
space into star-shaped regioRs

2) For every pair of adjacent region8(R;) in ¥, compute
a pointc on the common boundary shared By and
R;. We refer toc as aconnector- it connects the guards

of R; and R;. THEOREM 1 A path exists between two poingsand q if
3) Construct a star-shaped roadnfausing the guards and and only if p and p* are connected inF, p* and g* are
connectors computed in Steps 1 and 2. connected irR, and g* and g are connected irf, i.e.,

We illustrate these steps in Fig. 2. Foo,
b—Pp
F x R %
p<—q <~ p —q
Step 1 computes a star-shaped decomposition of the free q 7 q
space. The resulting set of guards constitutes a sampling of

the free space and we refer to it astar-shapedsampling of 5 ¢ \we only prove that ifp P g, then the right hand side

the free space. The star-shaped sampling provides an impljci . F
descriptiorg of the free spaceF.) Ping p phoﬁds. The proof of the converse is trivial. Assume— gq.

The star-shapedness property implies that

C. Star-shaped Decomposition and Guard Computation

p € F < p is visible to at least one of the guards. F o, . F

The concept of star-shaped decomposition is related to the LR,

famous art gallery problem [9]. The art gallery problem i¥/€ only need to prove thgr* <« q*. The case wherg

concerned with finding the minimum number of guards th&ndq belong to the same region is trivial because in that case
. . .. * * H

can cover a region. In our context, computing a minimufl~ = 4"~ Suppose they belong to two separate regiéis

number of guards would be desirable, but not necessary. 2nd Rq respectively. LetP be a path betweep and g. Let
R;,i=0,...n, be the set of regions that are intersectedby

such thatR, = and R,, = R,. Consider any two adjacent
1We borrow the termgyuard and connectorfrom [11] because these are tho Rp Ry, Rq y .

similar concepts. However, our definitions are different from the ones usedROiONS Ry, and Ry11. P passes fromRy, to Ry4q throth_
[11]. the common boundary. This means the boundary contains a



(a) Star-Shaped Decomposition (b) Star-Shaped Roadmap (c) Path Planning

Fig. 2. Star-shaped Roadmap: This figure shows how to construct a star-shaped roadmap and its application to path planéirapbstaele

is shown in gray while the free space is shown in white. We first compute a star-shaped decomposition of the free space (Fig. (a)). Each
region in the decomposition contains a guard (green star) that can see every point in the region. We connect guards of adjacent regions by
computing connectors (blue circles) on the common boundary between the two regions. The guards and connectors are used to create the

star-shaped roadmap as shown in Fig. (b). Fig (c) shows how a path is computed between twg @ndtg by connecting them to the
roadmap and finding a path along the roadmap.

connectore that is visible to bothR; as well asR;_ ;. This A. Configuration Space Subdivision

implies The approach presented in Sec. IV relied on a star-shaped
. . decomposition of the free space. In practice, we do not have
e cC c—— Ry, an explicit representation of and hence it is not possible to
R compute such a decomposition explicitly. In fact, an explicit

* *
= Ry Rt decomposition of the free space is not even required. Instead,

. . . . . we compute a subdivision of the configuration spéc@to
Since this |s7tzrue for eyery pair of adjacent regions aléhg regions R such thatFz — F N R is star-shaped. Such a
we havep* < g*. This concludes the proof. o subdivision is sufficient for complete motion planning.
In Sec. V-C, we present a simple algorithm for computing
An important consequence of the above theorem is tgech a subdivision adaptively. Our algorithm relies on the
following corollary which enables us to find a collision-freeability to perform two queries:
path. 1) Free Space Existence queryGiven a regionR, deter-
mine if R contains a part of free space, iEr # 0.
s 2) Star-shaped query Given a regionR, determine ifFz
COROLLARY 1 Path Planning: if p <— ¢, then is star-shaped.

1) There exists a straight line path betweenp and p*. Our goal is to perform these queries without computing an
Similarly, there exists a straight line path betweeng explicit representation of the free space. Instead of performing

and g*. exact tests, we present a sufficient condition/mnd use it
2) There exists a path betweernp* and g* in the roadmap to answer these queries.
R B. Star-shaped Test

3) A .path betweem and g is given by« :: § :: 8 where::

. Consider all the”-surfacesy; that intersect? and compute
denotes path concatenation.

their restrictiory; N R to regionR. Let "' denote the resulting

) set of surfaces. We can answer the above querigssitisfies
We use the following corollary of Theorem 1 as a test fqf,o following condition:

non-existence of any collision-free path for complete Motiog,r-shaped Test Are all the surfaces i’ 5 star-shaped w.r.t
planning. a common poinb?

See Fig. 1(b). IfR satisfies the above test, then we can
COROLLARY 2 Path Non-Existence: If there is no path answer both the querie& contains a part of” if and only if

betweenp* and ¢* in the roadmapR, then there is no © € F. Moreover, if this is true, theFy is star-shaped w.r.t
collision-free path betweep and g ' o. Formally, we have the following lemma:

LEMMA 1 If there exists a poinb € R such that every
~ € 'y is star-shaped w.r.to, then

In this section, we present an algorithm to compute a star-1) Free Space Existence quetyFr # ) < o€ F
shaped roadmap by sampling the free space in a deterministi2) Star-shaped query If o € F then Fy is star-shaped
manner. W.r.t o.

V. A DETERMINISTIC SAMPLING ALGORITHM



B C

(a) Adaptive Subdivision (b) Star-Shaped Roadmap (c) Path Planning

Fig. 3. Star-Shaped Roadmap Construction: This figure shows how we compute a star-shaped roadmap using adaptive subdivision of the
configuration space. We subdivide the configuration space into regiossch that the free space contained witti given by F N R, is
star-shaped. Fig. (b) shows the star-shaped roadmap that was obtained from the resulting subdivision. Fig. (c) shows how the roadmap is
used for path computation.

Proof: The proof uses the superset and orientation propertiesis problem is almost identical to the free space existence
of C-surfaces (Sec. Ill). We first prove 1). problem discussed in the previous section with one difference
— the dimension of?;; is one less than the dimension of the
0€F = 0€Fr = Fr#l configuration space — hence we can use the same approach

We now prove the converse. Assumfg, # . We show that presented in the previous section to solve this problem. We
o € F. Consider a poinp € Fr. We prove thab can seep, SubdivideR;; into subregions that satisfy the star-shaped test
i.e., line segmenpo lies completely inF. We prove this by and then check if any of the origins of any su_b-reglon I|e_s
contradiction. Suppose does not see. In other words, the in the free space. We merely need to compute just one point
line segmenpo is intersected by the free space boundagy. N F (rather than capture all of them). As soon as we find
The superset property @f-surfaces (Sec. I1l) implies that the@n€ such point, we stop the subdivision process. This point is
line segmenppo is intersected by &-surfacey;. Let q € classified as a connector. H;; contains no point i, then

be the intersection point on the line segmpntthat is closest the_ subdivision process will continue until all the sub-reglon_s
to p. Sinceq lies on aC-surface, we have; ¢ F. Suppose satisfy the star-shaped test and none of the corresponding
we start at pointp € F and march along the rago, q is ©°rigins lie in the free space. In this case, the free space of
the first point that does not belong %. Henceq belongs to F: and R; belong to two separate components of the free
OF. Furthermore, the orientation property ©fsurfaces (Sec. SPace.

1) ensures that the normal at q satisfies(p — q) -n > 0. E. Efficient Implementation of the Star-shaped Test

This implies (o — p) - n < 0 which contradicts the fact that  Gjven a regionR, we need to determine if all the surfaces

Yk Is star-shaped w.rd. Thuspo lies completely in which i 1. are star-shaped w.r.t a common point. Here we present

meanso € F. ) ) ) an algorithm to test if a singl€'-surface~ is star-shaped or
Furthermore, since can see any poinp € 7, Fp is star- not. This technique extends directly to the case of multiple

shaped w.r.b.  C-surfaces. In general, the-surface is a non-linear algebraic

surface defined in a high dimensional configuration space. The

We present a simple technique for performing the stagxact test is as follows: is there a poinsuch that-(o—x) >

shaped test in Sec. V-E and to compllitg in Sec. V-F. 0, = € v wheren is the normal at point. This test reduces

C. Adaptive Subdivision and Guard Computation to solving a system of high degree algebraic equations. Instead
We generate an adaptive subdivision®f Our algorithm of computing an exact solution to the algebraic equations,

starts with a regiork that bounds the boundary &, It applies W& US€ a simple and efficient technique to perform the test
the star-shaped test . If this test is satisfied, our algorithm colr;]servgtl\r/elly.th fiqin is not ni int. Given a C-
sets the guard for the regioR to be the origin with respect general, the orngin 1S not a unique point. en a

; ind i d
to which Fx is star-shaped. Otherwise, if the star-shaped t rfac;etfy glef;ned 'ER ’ thdere exists a se_ﬁer(ég#g R
fails, the algorithm subdivides? into a set of sub-regions. of points hat can be used as an origin. the () is

Then the algorithm is recursively applied to the sub—region%a”ed the kernel ofy. v is star-shaped if and only if it has

; ; e ; ; a’'non-empty kernel. The central idea behind our technique is
Fig. 3(a) illustrates the subdivision algorithm in 2D. to guessa candidate point for the origin and then verify that

D. Connector Computation the candidate point indeed lies within the kernel. Verifying
The objective of connector computation is to determinghether a surface is star-shaped w.r.t a fixed point is much
if the free space of two adjacent region8; and R;, are easier than performing the exact test. The method proceeds
connected through a point on their common boundBsy. by estimating a candidate point that lies in the interior of an
In other words, we wish to test if2;; has a point inF. approximate kernel of a sampled version of the surface. The
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(a) Gears 1 (b) Configuration Space (c) Narrow Passage (d) Gears 2 (No path)

Fig. 4. 3-DOF Planning with 2T and 1R: This figure highlights application of our algorithm to planar motion planning with both translational

as well as rotational dof. Fig. (a) shows a gear-shaped robot navigating amongst two gear-shaped obftade#4) (shown in gray).

The initial and final locations of the robot are shown in red and green respectivély&( Ay resp.). The robot is allowed to move only

within a bounded workspace (shown as a black rectangle). The figure also shows a number of positions of the robot during its motion along
the path. Fig. (b) shows the path in the configuration space (drawn translucently). Fig. (c) shows a zommed view of the narrow passage.
Fig. (d) shows a similar environment where the two obstacles are moved closer to each other and as a result, no collision-free path exists.

candidate point is computed by linear programming. We thaeoeme level of the subdivision aR, all the subregions of?
verify if it belongs to the kernel of the surface by intervaWill satisfy the star-shaped test. This holds because as a sub-
arithmetic. A detailed explanation of this technique is giveregion@ shrinks, the approximate kernel (@ approaches
in [14]. We provide a summary here. the exact kernel. As a result, the probability that the candidate
We take advantage of a parametrization of the C-surfagesint lies within the kernel increases as the sub-regions shrink.
[6]. Using the parametric representation, we enumerate a seln this manner, we are able to use a conservative test and
of points on~. By the orientation property o”-surfaces still guarantee complete path planning as long as there are no
(Sec. 1), each pointr has a well defined normak. The tangential contacts on the boundary of fee space. Moreover,
star-shapedness property requires that the opgémould see we don't use any exact non-linear equation solver. A tangential
point x; this defines the constraint - (o — =) > 0. In contact occurs when tw@-surfaces touch each other at a point
this manner, each point defines a linear constrainbolVe thus forming a narrow passage of width zero in the free space.
use linear programming to check if the resulting constrain@ur algorithm cannot handle them because the free space in
admit a feasible solution. The feasible region correspondsdmeighborhood of a tangential contact is never star-shaped —
an approximate kernel of the C-surface. If the feasible regidor any arbitrary neighborhood of nonzero volume.
is non-empty, then we can choose the center of the feasiple|ntersection Computation

region to be the candidate point (see [14]). . - i
If a candidate poinb is computed, it is likely to be a valid The above approach relies on determining whetheg-a

origin provided we enumerated a sufficient number of pOinfgerfag?iin'lgirescetcﬁs b:rltjr:)?iﬂ;dgm?QSQOQth;eiﬁgng;igin
on . In general, we do not know how many such points a g/om uted We’ notepthaR is axis aligned andy, has a
needed; so we choose a fixed number of points. To ensiite P X 9 !

correctness, we check for the validity of the resulting candiddigrametric representation, We determingiintersectsi by
point by testing ity is indeed star-shaped w.pt We check performing interval arithmetic. Interval arithmetic is cheap,

: : : : .. conservative, and suffices for our purpose.
if n-(o—ax)>0Vax €~. Sincey is an algebraic surface, it L )
is represented ag(z,y,z) — 0. Therefore, the expression To obtain~; N R, we take advantage of two facts: 1) The

reduces tov fT(o—x) > 0 Va € +. We compute a set C-surfacesy; are parameterized in terms of the coordinates of

of intervals aroundy and verify that the above expressior;the configuration space and B)is an axis aligned region in

is positive within each interval. We use interval arithmeti((fonf'guratIon space. Hence we obtain™ 1 by considering

[12] to perform this test. Using interval arithmetic, we ca arrzsntqne(;:?cd dr;z;r}zmetnc domaiit 1 & where D) is the entire
conservatively check if this property holds for all the pointg )

on ~. If a candidate point is computed and verified by the V1. IMPLEMENTATION & RESULTS
interval arithmetic test, theR is said to have passed the star- In this section, we describe the implementation of our
shaped test, otherwisk has failed the star-shaped test. algorithm and demonstrate its performance on several motion

As noted earlier, the test is conservative — a surfagey be planning scenarios. We used C++ programming language with
star-shaped, but as per our technigiienay fail the test. IfR  the GNU g++ compiler under Linux operating system. Table
fails the test, we then subdivide into sub-regions and repeatl reports the performance of our algorithm. All timings are on
the test on the sub-regions. Thus, the conservative test naag GHz Pentium IV PC with a GeForce 4 graphics card and
result in some additional subdivisions. However, computatidii2MB RAM. Our current implementation is unoptimized.
of additional subdivisions does not affect the correctness ofFig. 4 highlights application of our algorithm to planar
the algorithm. This is because f is star-shaped w.r2, at motion planning with both translational as well as rotational



gﬂh is closer to the robot. As a result, no path exists between the
"4 initial and goal configurations. Our algorithm to@k secs to
compute a roadmap for the modified environment and detected
non-existence of a path 14 secs.
Table | provides the timings of our algorithm on these
“ models. It also provides statistics such as the number of guards
& and connectors in the roadmap for each model.

‘i‘v’ [[_Approx. Cell Decomposition [ Star-Shaped Roadmaps |
| V Decomposition ofC into Decomposition ofC into regions
. empty full and mixedcells satisfying star-shaped property
Conservative approximation of Complete connectivity ofF;

. . every point inF is captured implicitly
(a) Assembly (b) Conflguratmn Space Need to subdivide mixed cells Not necessary to subdivide mixed regions
. . . ina: Thi le sh l that satisfy the star-shaped property
Fig. 5. 3D Translational motion planning: This example shows appliCa- —zrge storage and search requiremenjisStorage and search varies based on fred

tion of our algorithm to motion planning of a three-dimensional robg t. function of resolution parameter space complexity; Lower requirements
with translational degrees of freedom. It consists of two identicdtCheck for paths through empty Check for paths through empty regions
parts each with pegs and holes. The goal is to assemble the tWaells and not mixed cells. as well as mixed regions that

arts so that the pegs of one part fit into the holes of the other. The satisfy the star-shaped property

eft image shows a path that the robot can take so that the two parts
could be assembled. The right image shows the path in configuration TABLE I
space (drawn transluscently). Comparison: This table compares a number of aspects of our
degrees of freedom. The robot must pass through a very approach with approximate cell decomposition.
narrow passage to reach its goal. Moreover, it must undergo VIl. COMPARISON AND DISCUSSION

both translation as well as rotation. Our algorithm toak hi . h with .
secs to construct a star-shaped roadmap. Using this roadmap, this section, we compare our approach with some prior
it took only 0.22 secs to compute a path (shown as a bl pro_aches. We also discuss certain aspects of our motion
curve). Fig. 4 (d) highlights the use of our algorithm to dete anning algorithm.

nonexistence of a collision-free path. The two obstacles ake Comparison with Prior Approaches

too close to each other and consequently, the robot cannogr aigorithm performs adaptive subdivision similar to cell
pass between them. Our algorithm ta@k secs to compute a gecomposition algorithms [6]. However, there is one major
roadmap for this environment and detected non-existence Qiierence; unlike exact cell decomposition methods, we do
path in0.18 secs. o _ not compute an explicit decomposition of the free space.
_Fig. 5 shows application of our algorithm to a threemgsiead, we compute a subdivision of the entire configuration
dimensional assembly planning scenario. The goal is t0 @gsace, which represents the free space implicitly. The main
semble two parts such that the pegs of one part fit into thgyantage of our approach is that we are able to perform
holes of the other. Our algorithm tool6 secs to construct the sybdivision without an explicit representation of the free
a roadmap and was able to find a path (shown in blue) épace. Most practical algorithms are based on approximate cell
0.22 secs. This is a challenging example because the g@glomposition algorithms, which try to find a path through
configuration, wherin the pegs fit into the holes, is Iodge&npty cells in the configuration space. By definition, the
within a very narrow passage in the configuration space. empty cells lie in the free space and result in a conserva-
tive approximation of the free space. We perform a detailed
comparison with approximate cell decomposition algorithm in
Start Table Il. While approximate cell-decomposition algorithms are
resolution completeour algorithm is able to perform complete
motion planning. One important benefit of our approach is
that we do not always have to subdivide the mixed regions. If
a mixed region satisfies the star-shaped test, then we do not
subdivide it. We can plan paths through mixed cells directly by
exploiting the star-shapedness property — this reduces the total
number of subdivisions considerably making our approach
practical for high-dof robots. Most applications of approximate
Fig. 6. 3R Articulated Robot: This example shows application ofce” decomposition have been limited to robots with three or
our algorithm to motion planning of a planar articulated robot withfour dof.
3 revolute joints. The figure shows a start configuration, a goal We generate samples in the free space that are represented
configuration and two intermediate configurations. by guards and connectors. Table Il compares our determin-
Fig. 6 shows application of our algorithm to3R planar istic sampling approach with randomized sampling approach
articulated robot witt8 revolute joints. Our algorithm took7 by showing the different steps of the two approaches. Our
secs to construct a star-shaped roadmap. Using this roadneggproach does not need to perform explicit local planning
it took only 0.43 secs to compute a path. The robot mugb connect nearby samples. The star-shaped property ensures
pass through a narrow passage to reach its goal. We alsat the connectors link guards belonging to adjacent regions
experimented with a modified environment where the obstadheus providing local planning implicitly. The main benefit of

Goal




Complexity Performance Statistics |
Model Robot | Obstacle [ # Surf | Subdivision & Guard| Connector [ Planning | # Guards| # Connectors
() ) ) |
Gears 1 36 72 3,929 62 49 0.22 6,764 11362
Gears 2 (No path)] 36 72 3,929 58 32 0.18 3,412 5,348
Assembly 224 224 256 10.1 5.8 0.22 6137 15,399
3R1 3 32 140 12.3 4.9 0.43 11,349 30,566
3R 2 (No path) 3 32 176 12.2 4.4 0.14 10,062 25,270
TABLE |

Performance: This table highlights the performance of our algorithm on different models. The model complexity is provided in terms of
the size of the robot and the obstacle as well as the number of contact surfaces. The size of an object refers to the number of vertices for
the planarGearsexample and the number of triangles for the BBsemblyexample. The performance is measured in terms of the
roadmap construction time and the time to answer a single planning query. The roadmap construction time is the sum of the time taken to
compute an adaptive subdivision (includes guard computation) and the time to compute the connectors. The table also provides statistics
on the number of guards and connectors in the roadmap.

PRM-based methods is that they easily extend to very high duis been applied to path planning. The focus of our work
robots, whereas our approach has additional overhead in teismmglifferent — to use the star-shaped property to perform
of adaptive subdivision and conservative star-shaped tests.deterministic sampling for complete motion planning.

Our approach shares some similarities with the visibilitg. Discussion
based probabilistic roadmap method (Visibility-PRM) [11]. The deterministic samoli : .

oo . A pling algorithm presented in Sec. V
V|S|b|||éy-F_>RMhmeth3d takej |nter-|§ample V'S'b'\l/'\t/{].l'nt?] aCherforms an adaptive subdivision of the configuration space. At
chnt durlng the ran c|>m|3e S%mg.l'_“g prpcg_sﬁs. |fe the it Heh step, we subdivide a region into sub-regions and different
S apef pf"%‘?lfty Is relate dtobv's'lj'_'ty{/\'/th'.ls |herent _rohm t ypes qf subdivigion.strategies coqld be employed. We_ could
type of visibility computed by [ .]'. While the star-shaped, i ige a region intal?> equal sized regions wherg is
property _|r_an|C|tIy determines the visibility Of_ an entire regiony, o gimension of the configuration space. Another alternative
thedwsul:nllty—PRM rgethod Icompﬁtes the V'S'b'lr':y of @ NeW, 4 pe to perform a d-dimensional tetrahedral or simplicial
randomly computed sample with respect to the current sk, i ision of the region. We could also randomly select a

of samples. Finally, the goals of the two methods are Veﬁ()int in the interior of the region and subdivide the region

different: The objective of the visibility-PRM method is Ointo tetrahedral regions with the point as an apex.

generatle.atpr(ébablllsu(l: troadrtr;]aplwnh fewer nodes, Wherea%ur adaptive subdivision algorithm automatically performs
our goal IS to do compiete path planning. additional subdivisions in the vicinity of the narrow passages
in the free space. The number of subdivisions depends on the

[ Randomized Sampling [ Our Algorithm: Deterministic Samphng' _ ”WIdth of the narrow passages. Asymptotically speaking, the
Compute samples randomly Compute guards & connectors deterministically . . . a
Check whether samples are in | The guards and connectors are in free space] number of subdivisions is propor_tlonal to the log of the Wldt_h:
free space by construction Our star-shaped roadmap algorithm captures the connectivity
Perform Tocal planning between | No explicit Tocal planning star-shaped
nearby samples property guarantees local collision-free paths through the narrow passages and ConsequenUY: we are able to

Easily extends to high-dof robotg Storage complexity and cost of star-shaped || find a path without generating avery |arge number of samples
tests increases with number of dof bdivisi At th {i | ithm i ble t
May not terminate with narrow | Guaranteed to terminate if there are no or SL.J IVISIOI’IS.. € _Same |me.‘v our algorithm 1s able 10
passages or no collision-free path tangential contacts in free space terminate early if there is no collision free path_
TABLE Il C. Limitations

Comparison: This table compares the steps of our approach with Our algorithm assumes that the free space does not have
those of the randomized sampling approach. any tangential contacts. Hence it cannot handle cases where
Our current work builds on our prior work on isosurfacdn® robot must touch an obstacle in order to pass through

extraction and translational motion planning [14], [13]. Ouf harrow passage to get to the goal configuration. A related

previous motion planning algorithm was limited to translaiMitation of our approach is that it does not support motion

tional dof and usedcomplex celland star-shaped tests. out" :Ee cgn;taclt spglce_ - Te rolt)_ot is not allowed to touch any
new approach is relatively simpler and uses only the sté)rf- € ots aches (ij'?gtl sbmo (IjOI’]. i . q
shaped test. Overall, the star-shaped roadmap based sampliﬁg]rur star-shaped test based on finear programming an

is less conservative, easily extensible to higher dimensiona _val arithmetic is conservative — thg free space w!thm a
fgion may be star-shaped, but the region may not satisfy our

configuration spaces with translations and rotational dof afi L :
less prone to degeneracy. test and hence may be subdivided unnecessarily.
Our current work shares some similarities with the recent VIII. CONCLUSIONS AND FUTURE WORK

work of Delanoue et al. [4], which was developed indepen- We have presented a simple approach for complete motion

dently. Their work is aimed at proving topological propertieplanning that relies on computing a star-shaped roadmap of
such as connectedness of sets. Their approach uses the #tarfree space. We construct this roadmap using deterministic
shaped property to check if a set defined by a collecti@mampling. We show that the star-shaped roadmap generated
of non-linear inequalities is path-connected. Delanoue et aig our algorithm captures the connectivity of the free space

current results are for two-dimensional sets defined by a femabling us to perform complete path planning. Our approach

non-linear constraints. It is not clear whether their approaéh simple to implement and primarily relies on a star-shaped




test which can easily be implemented. We have demonstrated
the performance of our planner in complex scenarios with low
dof robots. Our preliminary results are encouraging.

There are many avenues for future work. We are interested
in the application of our algorithm to higher DOF motion
planning. Our approach uses linear programming and interval
arithmetic. Both these techniques are extensible to higher
dimensional spaces. We would like to combine our approaches
with randomized sampling techniques in order to generate
better subdivisions for high-dof robots. We would also like
to handle cases, where the robot is allowed to be in contact
with the boundary of the obstacle.
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