
Star-shaped Roadmaps - A Deterministic Sampling
Approach for Complete Motion Planning

Gokul Varadhan Dinesh Manocha
University of North Carolina at Chapel Hill

http://gamma.cs.unc.edu/motion/
UNC Technical Report TR05-001

Email: {varadhan,dm}@cs.unc.edu

Abstract— We present a simple algorithm for complete motion
planning using deterministic sampling. Our approach relies
on computing a star-shaped roadmap of the free space. We
partition the free space into star-shaped regions such that a
single point called the guard can see every point in the star-
shaped region. The resulting set of guards capture the intra-
region connectivity. We capture the inter-region connectivity
by computing connectors that link guards of adjacent regions.
We use the guards and connectors to construct a star-shaped
roadmap of the free space. We present an efficient algorithm
to compute the roadmap in a deterministic manner without
computing an explicit representation of the free space. We show
that the star-shaped roadmap captures the connectivity of the
free space while providing sufficient information to perform
complete motion planning. Our approach is relatively simple to
implement for robots with translational and rotational degrees
of freedom (dof). We highlight the performance of our algorithm
on challenging scenarios with narrow passages or when there is
no collision-free path for low-dof robots.

I. I NTRODUCTION

Motion planning is a fundamental problem in robotics
and has been extensively researched for more than three
decades. We address the problem of planning the path of a
robot navigating through a static environment. At a broad
level, prior motion planning algorithms can be classified into
exact criticality-based algorithms and approximate approaches
[7]. Some of the early work on criticality-based algorithms
includes exact free-space computation, roadmap methods, and
exact cell decomposition methods. These approaches perform
completeplanning – they find a collision-free path if one
exists, or guarantee that there is no collision-free path from
the initial to the goal configuration. However, these algorithms
have a high theoretical complexity and are difficult to imple-
ment in practice for general robots. As a result, most practical
algorithms for complete planning have been restricted to rigid
planar objects, 3D convex polytopes or special objects (e.g.
ladders, discs or spheres). Given the underlying complexity of
exact motion planning, a number of approximate approaches
have been have been proposed. These include approximate
cell decomposition, potential-field methods and randomized
sampling based methods. The approximate cell decomposition
methods can be maderesolution complete, provided the resolu-
tion parameters are chosen appropriately. Many of the current
planners compute a probabilistic roadmap using techniques
based on randomized sampling [5]. These methods are simple
to implement and have been successfully applied to high-dof
motion planning problems in different applications. However,
the approximate algorithms may not guarantee completeness,

especially when there is no collision-free path.

Main Results: We present a new motion planning algo-
rithm for robots with translational and rotational dof. Our work
combines the simplicity of sampling-based approaches with
the completeness of exact algorithms. We compute a sampling
of the free space in a deterministic manner using an adaptive
volumetric grid. We generate sufficient number of samples to
capture the connectivity of the free space, as long as there is
no tangential contact on the boundary of the free space. As a
result, we are guaranteed to find a collision-free path if one
exists or detect non-existence of any collision-free path.

Our approach is based on the notion ofstar-shapedness. A
region R is star-shapedif there exists a pointo ∈ R, called
a guard, that can see every pointp in the region, i.e., the
straight line segmentop does not intersect the boundary of
R. We show that star-shapedness provides a compactencoding
of the connectivity of a region. We decompose the free space
into star-shaped regions without computing an explicit repre-
sentation of the free space. The resulting set of guards capture
the intra-region connectivity for each region. Furthermore, we
capture the inter-region connectivity by computingconnectors
that connect guards of adjacent regions. We use these guards
and connectors to construct astar-shapedroadmap of the free
space.

The underlying computation in our planner is the star-
shaped test. We present a simple and efficient algorithm that
uses linear programming and interval arithmetic to perform
this test. Unlike prior criticality-based methods, we are able
to avoid exact computation of roots of algebraic equations
and are able to perform conservative star-shaped tests for
early termination. As a result, our algorithm is relatively
simple to implement. In the worst case, the complexity of
our algorithm can increase exponentially with the number
of dof. We also compare some features of our approach
with approximate cell-based decomposition and randomized
sampling based algorithms. We have implemented our planner
and demonstrated its performance to compute collision free
paths for low dof robots in challenging scenarios: when there
are narrow-passages in free space or no collision-free paths.

Organization: The rest of the paper is organized in the
following manner. We give an overview of related work in
motion planning in Section II. In Section III, we give a brief
overview of configuration space formulation and present the
notation used in the rest of the paper. We present star-shaped



roadmaps in Section IV. We present our deterministic sam-
pling algorithm in Section V and describe its implementation
in Section VI. We compare our approach with prior approaches
in Section VII and discuss a few limitations.

II. PREVIOUS WORK

Motion planning has been extensively studied in the litera-
ture for more than three decades. A comprehensive survey of
motion planning results is presented in [6], [7].

A. Exact Approaches

There are two main approaches for exact or complete
motion planning. These approaches are based on roadmap
computation and cell decomposition. Examples of a roadmap-
based approach include the visibility graph method, retraction
approach [6], and the silhouette method [3]. Exact cell decom-
position methods have been extensively studied for motion
planning and the first complete algorithm was proposed by
Schwartz and Sharir [10]. The details of the above methods
are quite involved and are not easy to implement. A number of
complete algorithms have been proposed for restricted cases of
motion planning problem – including rigid planar objects with
3dof, 3D convex polytopes, 3D polyhedral objects with only
translational dof, and special objects in 3D such as ladders,
discs, or balls [6].

B. Approximate Cell Decomposition and Sampling Based Ap-
proaches

A number of algorithms based on approximate cell decom-
position have also been proposed [8]. These methods partition
the configuration space into a collection of cells. They classify
the cells into three types:emptycells that lie completely in free
space,full cells that are completely within C-obstacle, and
mixedcells that contain the boundary of the free space. The
set of empty cells provide a conservative approximation of the
free space and are used for path computation. The approximate
cell decomposition methods areresolution complete, i.e., they
can find a path if one exists provided the resolution parameters
are selected small enough [6]. They have been used for low
dof robots.

The probabilistic roadmap method (PRM) [5] is perhaps
the most widely used path planning algorithm for different
applications. It is relatively simple to implement and has been
successfully used for motion planning of high dof robots.
Since PRM-based algorithms sample the free space randomly,
they may fail to find paths – especially those passing through
narrow passages. A number of extensions have been proposed
to improve the sampling in terms of handling narrow passages
[1], [15] or using visibility-based techniques [11]. All these
methods areprobabilistically complete. Some extensions of
PRMs have been proposed that may be able to detect non-
existence of a path [2].

III. PRELIMINARIES

A. Configuration Space and Contact Surfaces

We assume that the robotA is a rigid or an articulated object
moving among stationary rigid obstaclesB. We also assume
that the geometry of bothA andB is accurately known. The
free spaceF is the set of configurations at whichA does not
collide with B. The boundary ofF , denoted as∂F , consists
of those configurations ofA at whichA makes contact with

B, but does not penetrate into the interior ofB. Therefore,∂F
can be expressed in terms of a collection ofcontact surfaces
(C-surfaces), each being the locus of configurations ofA at
which a specific feature ofA is in contact with a feature of
B. We refer the reader to [6] for a detailed explanation of the
configuration space formulation and C-surfaces.

We use two important properties ofC-surfaces for generat-
ing star-shaped roadmaps:
Superset property: The setΓ of C-surfaces is a superset of
the boundary∂F of free space, i.e.,∂F ⊆

⋃
{γi ∈ Γ}. Γ

defines an arrangement andF is a subset of the cells in this
arrangement. Each cell defines one connected component of
F .
Orientation property : We can assign an orientation to each
C-surface. We explain this with an intuitive argument. Con-
sider aC-surfaceγ generated by the contact between a robot
featuref1 and an obstacle featuref2. Points onone side ofγ
correspond to the case wheref1 has penetratedf2 and points
on theother sidecorrespond to no overlap or contact between
f1 andf2. We orientγ by assigning a normal atp to point in
the direction of no overlap.
B. Notation

We use the following notation in the rest of the paper. We
use lower case bold letters such asp, q to refer to points inRd.
We use the symbolpq to refer to the line segment between
the pointsp andq.
C denotes the configuration space.F denotes the free space

and ∂F denotes its boundary. The letterR ⊆ C denotes a
region in the configuration space.Γ denotes the set ofC-
surfaces that contribute to the boundary of theC-obstacle.

A restriction of a setS w.r.t another setT is denoted asST

and is definedS ∩ T . We assumeST is a closed set.
A surfaceγ defined inRd is star-shapedif there exists a

point o ∈ Rd (called the origin) such thatop∩γ = {p} ∀ p ∈
γ. Given a star-shaped regionR, let R? = o. Similarly, if a
point p ∈ R, then letp? = o

Given a setS, two pointsp, q ∈ S are connected if there
exists a path betweenp and q that lies in S. We use the
shorthand notationp

S←→ q to meanp and q are connected
in S. The connectivity relation is symmetric. Given a roadmap
(an undirected graph)R = (V,E) and two verticesv,w ∈ V ,

v
R←→ w means thatv andw are connected inR, i.e., there

exists a path betweenv and w consisting of a sequence of
edges inE.

IV. STAR-SHAPEDROADMAPS

In this section, we present the concept of a star-shaped
roadmap and show that it captures the connectivity of the free
space for complete motion planning. We use these properties
of star-shaped roadmaps to design a deterministic sampling
algorithm in Sec. V.
A. Star-shapedness

Our approach is based on the notion of star-shapedness. A
regionR is star-shapedif there exists a pointo ∈ R, anorigin,
that canseeevery pointp in the region, i.e., the straight line
segmentop does not intersect the boundary ofR. The origin
is commonly referred to as aguard. It is easy to show that a
star-shaped region is always connected. Moreover, every point
in the region is connected to the guard along a straight line
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(a) Star-shapedness (b) Star-shaped Test
Fig. 1. Left : This figure shows a star-shaped region (in white). It
contains a guardo that can see every point within the region. A path
between any two pointsp ∈ R and q ∈ R is given bypo :: oq.
Right: If in a regionR, all C-surfaces are star-shaped w.r.t a common
point o, thenF ∩R is star-shaped w.r.to.

segment. Star-shapedness is thus a compact way of encoding
the connectivity of a region. It provides a path between every
point in the region and the guard. We exploit this property
for motion planning. A path between any two pointsp ∈
R and q ∈ R is given by po :: oq where :: denotes path
concatenation (see Fig. 1(a)). We extend this idea to compute
a path between two arbitrary configurations in free space.

B. Overall Approach

At a conceptual level, our approach computes astar-shaped
decompositionof the free space, i.e., it partitionsF into a set
of star-shaped regions. We present our algorithm to compute
the star-shaped decomposition in Sec. V. Based on star-
shapedness, we capture the intra-region connectivity. However,
we also need to take into account the inter-region connectivity,
i.e. connectivity between points belonging to separate regions.
We achieve this by computingconnectors1. Our approach
consists of the following steps:

1) Compute a star-shaped decompositionΣ of the free
space into star-shaped regionsR.

2) For every pair of adjacent regions (Ri,Rj) in Σ, compute
a point c on the common boundary shared byRi and
Rj . We refer toc as aconnector– it connects the guards
of Ri andRj .

3) Construct a star-shaped roadmapR using the guards and
connectors computed in Steps 1 and 2.

We illustrate these steps in Fig. 2.

C. Star-shaped Decomposition and Guard Computation

Step 1 computes a star-shaped decomposition of the free
space. The resulting set of guards constitutes a sampling of
the free space and we refer to it as astar-shapedsampling of
the free space. The star-shaped sampling provides an implicit
description of the free space.

p ∈ F ⇐⇒ p is visible to at least one of the guards.

The concept of star-shaped decomposition is related to the
famous art gallery problem [9]. The art gallery problem is
concerned with finding the minimum number of guards that
can cover a region. In our context, computing a minimum
number of guards would be desirable, but not necessary.

1We borrow the termsguard and connectorfrom [11] because these are
similar concepts. However, our definitions are different from the ones used in
[11].

D. Connector Computation

In Step 2, we capture the inter-region connectivity. It suffices
to only consider paths between adjacent regionsRi and Rj

that cross their common boundaryRij . We compute a pointc
belonging toRij . c is a connector. Since the regionsRi and
Rj are star-shaped,c is visible to the guards ofRi and Rj .
Hence,c connects the guards of two adjacent regions (see Fig.
2(b)).

E. Roadmap Computation

In Step 3, we combine the guards and connectors to con-
struct a star-shaped roadmapR of the free space (see Fig.
2(b)).R is an undirected graph. LetG andC denote the set of
guards and connectors. The set of graph vertices isV = G∪C.
Each connectorc connects two guardsg1 ∈ G and g2 ∈ G
of two adjacent regions. This defines two graph edges(c, g1)
and (c, g2). Let GUARDS(c) denote the set{g1, g2}. The
set of graph edgesE is defined as:

E = {(c, g) | c ∈ C, g ∈ GUARDS(c)}

R is the undirected graph(V,E, w) where the weight function
w : E → R is defined as a distance between the edge vertices
using a suitable metric (e.g. Euclidean).

F. Complete Path Planning

Given the star-shaped decompositionΣ and the roadmap
R , path planning becomes straightforward. Letp and q re-
spectively denote the start and goal configuration respectively.
Assume they are connected. The star-shapedness property of
each region inΣ implies we can connectp andq to the guards
p? and q? respectively by straight line paths. We compute a
path betweenp? and q? in the roadmapR based on graph
search. The following theorem states that our motion planning
algorithm is complete.

THEOREM 1 A path exists between two pointsp and q if
and only if p and p? are connected inF , p? and q? are
connected inR, and q? and q are connected inF , i.e.,

p
F←→ p?

p
F←→ q ⇐⇒ p? R←→ q?

q? F←→ q

Proof: We only prove that ifp
F←→ q, then the right hand side

holds. The proof of the converse is trivial. Assumep
F←→ q.

The star-shapedness property implies that

p
F←→ p? q? F←→ q

We only need to prove thatp? R←→ q?. The case wherep
andq belong to the same region is trivial because in that case
p? = q?. Suppose they belong to two separate regionsRp

and Rq respectively. LetP be a path betweenp and q. Let
Ri, i = 0, . . . n, be the set of regions that are intersected byP
such thatR0 = Rp andRn = Rq. Consider any two adjacent
regionsRk and Rk+1. P passes fromRk to Rk+1 through
the common boundary. This means the boundary contains a
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(a) Star-Shaped Decomposition (b) Star-Shaped Roadmap (c) Path Planning

Fig. 2. Star-shaped Roadmap: This figure shows how to construct a star-shaped roadmap and its application to path planning. TheC-obstacle
is shown in gray while the free space is shown in white. We first compute a star-shaped decomposition of the free space (Fig. (a)). Each
region in the decomposition contains a guard (green star) that can see every point in the region. We connect guards of adjacent regions by
computing connectors (blue circles) on the common boundary between the two regions. The guards and connectors are used to create the
star-shaped roadmap as shown in Fig. (b). Fig (c) shows how a path is computed between two pointsp and q by connecting them to the
roadmap and finding a path along the roadmap.

connectorc that is visible to bothR?
k as well asR?

k+1. This
implies

R?
k

R←→ c c
R←→ R?

k+1

=⇒ R?
k

R←→ R?
k+1

Since this is true for every pair of adjacent regions alongP.
we havep? R←→ q?. This concludes the proof.

�

An important consequence of the above theorem is the
following corollary which enables us to find a collision-free
path.

COROLLARY 1 Path Planning : if p
F←→ q, then

1) There exists a straight line pathα betweenp and p?.
Similarly, there exists a straight line pathβ betweenq
and q?.

2) There exists a pathδ betweenp? andq? in the roadmap
R.

3) A path betweenp and q is given byα :: δ :: β where::
denotes path concatenation.

We use the following corollary of Theorem 1 as a test for
non-existence of any collision-free path for complete motion
planning.

COROLLARY 2 Path Non-Existence: If there is no path
betweenp? and q? in the roadmapR, then there is no
collision-free path betweenp and q

V. A D ETERMINISTIC SAMPLING ALGORITHM

In this section, we present an algorithm to compute a star-
shaped roadmap by sampling the free space in a deterministic
manner.

A. Configuration Space Subdivision

The approach presented in Sec. IV relied on a star-shaped
decomposition of the free space. In practice, we do not have
an explicit representation ofF and hence it is not possible to
compute such a decomposition explicitly. In fact, an explicit
decomposition of the free space is not even required. Instead,
we compute a subdivision of the configuration spaceC into
regions R such thatFR = F ∩ R is star-shaped. Such a
subdivision is sufficient for complete motion planning.

In Sec. V-C, we present a simple algorithm for computing
such a subdivision adaptively. Our algorithm relies on the
ability to perform two queries:

1) Free Space Existence query: Given a regionR, deter-
mine if R contains a part of free space, i.e.FR 6= ∅.

2) Star-shaped query: Given a regionR, determine ifFR

is star-shaped.
Our goal is to perform these queries without computing an
explicit representation of the free space. Instead of performing
exact tests, we present a sufficient condition onR and use it
to answer these queries.

B. Star-shaped Test

Consider all theC-surfacesγi that intersectR and compute
their restrictionγi∩R to regionR. Let ΓR denote the resulting
set of surfaces. We can answer the above queries ifR satisfies
the following condition:
Star-shaped Test: Are all the surfaces inΓR star-shaped w.r.t
a common pointo?

See Fig. 1(b). IfR satisfies the above test, then we can
answer both the queries.R contains a part ofF if and only if
o ∈ F . Moreover, if this is true, thenFR is star-shaped w.r.t
o. Formally, we have the following lemma:

LEMMA 1 If there exists a pointo ∈ R such that every
γ ∈ ΓR is star-shaped w.r.t.o, then

1) Free Space Existence query: FR 6= ∅ ⇐⇒ o ∈ F
2) Star-shaped query: If o ∈ F thenFR is star-shaped

w.r.t o.
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(a) Adaptive Subdivision (b) Star-Shaped Roadmap (c) Path Planning
Fig. 3. Star-Shaped Roadmap Construction: This figure shows how we compute a star-shaped roadmap using adaptive subdivision of the
configuration space. We subdivide the configuration space into regionsR such that the free space contained withinR, given byF ∩ R, is
star-shaped. Fig. (b) shows the star-shaped roadmap that was obtained from the resulting subdivision. Fig. (c) shows how the roadmap is
used for path computation.

Proof: The proof uses the superset and orientation properties
of C-surfaces (Sec. III). We first prove 1).

o ∈ F =⇒ o ∈ FR =⇒ FR 6= ∅

We now prove the converse. AssumeFR 6= ∅. We show that
o ∈ F . Consider a pointp ∈ FR. We prove thato can seep,
i.e., line segmentpo lies completely inF . We prove this by
contradiction. Supposeo does not seep. In other words, the
line segmentpo is intersected by the free space boundary∂F .
The superset property ofC-surfaces (Sec. III) implies that the
line segmentpo is intersected by aC-surfaceγk. Let q ∈ γk

be the intersection point on the line segmentpo that is closest
to p. Sinceq lies on aC-surface, we haveq /∈ F . Suppose
we start at pointp ∈ F and march along the ray~po, q is
the first point that does not belong toF . Henceq belongs to
∂F . Furthermore, the orientation property ofC-surfaces (Sec.
III) ensures that the normaln at q satisfies(p − q) · n > 0.
This implies(o − p) · n < 0 which contradicts the fact that
γk is star-shaped w.r.to. Thuspo lies completely inF which
meanso ∈ F .

Furthermore, sinceo can see any pointp ∈ F , FR is star-
shaped w.r.to.

�

We present a simple technique for performing the star-
shaped test in Sec. V-E and to computeΓR in Sec. V-F.

C. Adaptive Subdivision and Guard Computation

We generate an adaptive subdivision ofC. Our algorithm
starts with a regionR that bounds the boundary ofF . It applies
the star-shaped test toR. If this test is satisfied, our algorithm
sets the guard for the regionR to be the origin with respect
to whichFR is star-shaped. Otherwise, if the star-shaped test
fails, the algorithm subdividesR into a set of sub-regions.
Then the algorithm is recursively applied to the sub-regions.
Fig. 3(a) illustrates the subdivision algorithm in 2D.

D. Connector Computation

The objective of connector computation is to determine
if the free space of two adjacent regions,Ri and Rj , are
connected through a point on their common boundaryRij .
In other words, we wish to test ifRij has a point inF .

This problem is almost identical to the free space existence
problem discussed in the previous section with one difference
– the dimension ofRij is one less than the dimension of the
configuration space – hence we can use the same approach
presented in the previous section to solve this problem. We
subdivideRij into subregions that satisfy the star-shaped test
and then check if any of the origins of any sub-region lies
in the free space. We merely need to compute just one point
in F (rather than capture all of them). As soon as we find
one such point, we stop the subdivision process. This point is
classified as a connector. IfRij contains no point inF , then
the subdivision process will continue until all the sub-regions
satisfy the star-shaped test and none of the corresponding
origins lie in the free space. In this case, the free space of
Ri and Rj belong to two separate components of the free
space.
E. Efficient Implementation of the Star-shaped Test

Given a regionR, we need to determine if all the surfaces
in ΓR are star-shaped w.r.t a common point. Here we present
an algorithm to test if a singleC-surfaceγ is star-shaped or
not. This technique extends directly to the case of multiple
C-surfaces. In general, theC-surface is a non-linear algebraic
surface defined in a high dimensional configuration space. The
exact test is as follows: is there a pointo such thatn·(o−x) >
0, x ∈ γ wheren is the normal at pointx. This test reduces
to solving a system of high degree algebraic equations. Instead
of computing an exact solution to the algebraic equations,
we use a simple and efficient technique to perform the test
conservatively.

In general, the origin is not a unique point. Given a C-
surfaceγ defined in Rd, there exists a setKer(γ) ⊆ Rd

of points that can be used as an origin. The setKer(γ) is
called the kernel ofγ. γ is star-shaped if and only if it has
a non-empty kernel. The central idea behind our technique is
to guessa candidate point for the origin and then verify that
the candidate point indeed lies within the kernel. Verifying
whether a surface is star-shaped w.r.t a fixed point is much
easier than performing the exact test. The method proceeds
by estimating a candidate point that lies in the interior of an
approximate kernel of a sampled version of the surface. The
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(a) Gears 1 (b) Configuration Space (c) Narrow Passage (d) Gears 2 (No path)

Fig. 4. 3-DOF Planning with 2T and 1R: This figure highlights application of our algorithm to planar motion planning with both translational
as well as rotational dof. Fig. (a) shows a gear-shaped robot navigating amongst two gear-shaped obstacles (B1 & B2) (shown in gray).
The initial and final locations of the robot are shown in red and green respectively (Ai & Af resp.). The robot is allowed to move only
within a bounded workspace (shown as a black rectangle). The figure also shows a number of positions of the robot during its motion along
the path. Fig. (b) shows the path in the configuration space (drawn translucently). Fig. (c) shows a zommed view of the narrow passage.
Fig. (d) shows a similar environment where the two obstacles are moved closer to each other and as a result, no collision-free path exists.

candidate point is computed by linear programming. We then
verify if it belongs to the kernel of the surface by interval
arithmetic. A detailed explanation of this technique is given
in [14]. We provide a summary here.

We take advantage of a parametrization of the C-surfaces
[6]. Using the parametric representation, we enumerate a set
of points on γ. By the orientation property ofC-surfaces
(Sec. III), each pointx has a well defined normaln. The
star-shapedness property requires that the origino should see
point x; this defines the constraintn · (o − x) > 0. In
this manner, each point defines a linear constraint ono. We
use linear programming to check if the resulting constraints
admit a feasible solution. The feasible region corresponds to
an approximate kernel of the C-surface. If the feasible region
is non-empty, then we can choose the center of the feasible
region to be the candidate point (see [14]).

If a candidate pointo is computed, it is likely to be a valid
origin provided we enumerated a sufficient number of points
on γ. In general, we do not know how many such points are
needed; so we choose a fixed number of points. To ensure
correctness, we check for the validity of the resulting candidate
point by testing ifγ is indeed star-shaped w.r.to. We check
if n · (o− x) > 0 ∀x ∈ γ. Sinceγ is an algebraic surface, it
is represented asf(x, y, z) = 0. Therefore, the expression
reduces to5fT (o− x) > 0 ∀x ∈ γ. We compute a set
of intervals aroundγ and verify that the above expression
is positive within each interval. We use interval arithmetic
[12] to perform this test. Using interval arithmetic, we can
conservatively check if this property holds for all the points
on γ. If a candidate point is computed and verified by the
interval arithmetic test, thenR is said to have passed the star-
shaped test, otherwiseR has failed the star-shaped test.

As noted earlier, the test is conservative – a surfaceγ may be
star-shaped, but as per our techniqueR may fail the test. IfR
fails the test, we then subdivideR into sub-regions and repeat
the test on the sub-regions. Thus, the conservative test may
result in some additional subdivisions. However, computation
of additional subdivisions does not affect the correctness of
the algorithm. This is because ifγ is star-shaped w.r.tR, at

some level of the subdivision ofR, all the subregions ofR
will satisfy the star-shaped test. This holds because as a sub-
regionQ shrinks, the approximate kernel ofγ∩Q approaches
the exact kernel. As a result, the probability that the candidate
point lies within the kernel increases as the sub-regions shrink.

In this manner, we are able to use a conservative test and
still guarantee complete path planning as long as there are no
tangential contacts on the boundary of fee space. Moreover,
we don’t use any exact non-linear equation solver. A tangential
contact occurs when twoC-surfaces touch each other at a point
thus forming a narrow passage of width zero in the free space.
Our algorithm cannot handle them because the free space in
a neighborhood of a tangential contact is never star-shaped –
for any arbitrary neighborhood of nonzero volume.
F. Intersection Computation

The above approach relies on determining whether aC-
surfaceγi intersects a boundedd−dimensional regionR; if
they do intersect, the part of the surface contained withinR
is computed. We note thatR is axis aligned andγi has a
parametric representation. We determine ifγi intersectsR by
performing interval arithmetic. Interval arithmetic is cheap,
conservative, and suffices for our purpose.

To obtainγi ∩ R, we take advantage of two facts: 1) The
C-surfacesγi are parameterized in terms of the coordinates of
the configuration space and 2)R is an axis aligned region in
configuration space. Hence we obtainγi ∩ R by considering
a restricted parametric domainD ∩ R whereD is the entire
parametric domain.

VI. I MPLEMENTATION & RESULTS

In this section, we describe the implementation of our
algorithm and demonstrate its performance on several motion
planning scenarios. We used C++ programming language with
the GNU g++ compiler under Linux operating system. Table
I reports the performance of our algorithm. All timings are on
a 2 GHz Pentium IV PC with a GeForce 4 graphics card and
512MB RAM. Our current implementation is unoptimized.

Fig. 4 highlights application of our algorithm to planar
motion planning with both translational as well as rotational
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(a) Assembly (b) Configuration Space

Fig. 5. 3D Translational motion planning: This example shows applica-
tion of our algorithm to motion planning of a three-dimensional robot
with translational degrees of freedom. It consists of two identical
parts each with pegs and holes. The goal is to assemble the two
parts so that the pegs of one part fit into the holes of the other. The
left image shows a path that the robot can take so that the two parts
could be assembled. The right image shows the path in configuration
space (drawn transluscently).

degrees of freedom. The robot must pass through a very
narrow passage to reach its goal. Moreover, it must undergo
both translation as well as rotation. Our algorithm took111
secs to construct a star-shaped roadmap. Using this roadmap,
it took only 0.22 secs to compute a path (shown as a blue
curve). Fig. 4 (d) highlights the use of our algorithm to detect
nonexistence of a collision-free path. The two obstacles are
too close to each other and consequently, the robot cannot
pass between them. Our algorithm took90 secs to compute a
roadmap for this environment and detected non-existence of a
path in0.18 secs.

Fig. 5 shows application of our algorithm to a three-
dimensional assembly planning scenario. The goal is to as-
semble two parts such that the pegs of one part fit into the
holes of the other. Our algorithm took16 secs to construct
a roadmap and was able to find a path (shown in blue) in
0.22 secs. This is a challenging example because the goal
configuration, wherin the pegs fit into the holes, is lodged
within a very narrow passage in the configuration space.

Fig. 6. 3R Articulated Robot: This example shows application of
our algorithm to motion planning of a planar articulated robot with
3 revolute joints. The figure shows a start configuration, a goal
configuration and two intermediate configurations.

Fig. 6 shows application of our algorithm to a3R planar
articulated robot with3 revolute joints. Our algorithm took17
secs to construct a star-shaped roadmap. Using this roadmap,
it took only 0.43 secs to compute a path. The robot must
pass through a narrow passage to reach its goal. We also
experimented with a modified environment where the obstacle

is closer to the robot. As a result, no path exists between the
initial and goal configurations. Our algorithm took16 secs to
compute a roadmap for the modified environment and detected
non-existence of a path in0.14 secs.

Table I provides the timings of our algorithm on these
models. It also provides statistics such as the number of guards
and connectors in the roadmap for each model.

Approx. Cell Decomposition Star-Shaped Roadmaps
Decomposition ofC into Decomposition ofC into regions
empty, full andmixedcells satisfying star-shaped property
Conservative approximation ofF Complete connectivity ofF ;

every point inF is captured implicitly
Need to subdivide mixed cells Not necessary to subdivide mixed regions

that satisfy the star-shaped property
Large storage and search requirements;Storage and search varies based on free
function of resolution parameter space complexity; Lower requirements
Check for paths through empty Check for paths through empty regions
cells and not mixed cells. as well as mixed regions that

satisfy the star-shaped property

TABLE II

Comparison: This table compares a number of aspects of our
approach with approximate cell decomposition.

VII. C OMPARISON AND DISCUSSION

In this section, we compare our approach with some prior
approaches. We also discuss certain aspects of our motion
planning algorithm.

A. Comparison with Prior Approaches

Our algorithm performs adaptive subdivision similar to cell
decomposition algorithms [6]. However, there is one major
difference; unlike exact cell decomposition methods, we do
not compute an explicit decomposition of the free space.
Instead, we compute a subdivision of the entire configuration
space, which represents the free space implicitly. The main
advantage of our approach is that we are able to perform
the subdivision without an explicit representation of the free
space. Most practical algorithms are based on approximate cell
decomposition algorithms, which try to find a path through
empty cells in the configuration space. By definition, the
empty cells lie in the free space and result in a conserva-
tive approximation of the free space. We perform a detailed
comparison with approximate cell decomposition algorithm in
Table II. While approximate cell-decomposition algorithms are
resolution complete, our algorithm is able to perform complete
motion planning. One important benefit of our approach is
that we do not always have to subdivide the mixed regions. If
a mixed region satisfies the star-shaped test, then we do not
subdivide it. We can plan paths through mixed cells directly by
exploiting the star-shapedness property – this reduces the total
number of subdivisions considerably making our approach
practical for high-dof robots. Most applications of approximate
cell decomposition have been limited to robots with three or
four dof.

We generate samples in the free space that are represented
by guards and connectors. Table III compares our determin-
istic sampling approach with randomized sampling approach
by showing the different steps of the two approaches. Our
approach does not need to perform explicit local planning
to connect nearby samples. The star-shaped property ensures
that the connectors link guards belonging to adjacent regions
thus providing local planning implicitly. The main benefit of
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Complexity Performance Statistics
Model Robot Obstacle # Surf Subdivision & Guard Connector Planning # Guards # Connectors

(s) (s) (s)
Gears 1 36 72 3,929 62 49 0.22 6,764 11362

Gears 2 (No path) 36 72 3,929 58 32 0.18 3,412 5,348
Assembly 224 224 256 10.1 5.8 0.22 6137 15,399

3R 1 3 32 140 12.3 4.9 0.43 11,349 30,566
3R 2 (No path) 3 32 176 12.2 4.4 0.14 10,062 25,270

TABLE I

Performance: This table highlights the performance of our algorithm on different models. The model complexity is provided in terms of
the size of the robot and the obstacle as well as the number of contact surfaces. The size of an object refers to the number of vertices for

the planarGearsexample and the number of triangles for the 3DAssemblyexample. The performance is measured in terms of the
roadmap construction time and the time to answer a single planning query. The roadmap construction time is the sum of the time taken to
compute an adaptive subdivision (includes guard computation) and the time to compute the connectors. The table also provides statistics

on the number of guards and connectors in the roadmap.

PRM-based methods is that they easily extend to very high dof
robots, whereas our approach has additional overhead in terms
of adaptive subdivision and conservative star-shaped tests.

Our approach shares some similarities with the visibility
based probabilistic roadmap method (Visibility-PRM) [11].
Visibility-PRM method takes inter-sample visibility into ac-
count during the randomized sampling process. While the star-
shaped property is related to visibility, it is different from the
type of visibility computed by [11]. While the star-shaped
property implicitly determines the visibility of an entire region,
the visibility-PRM method computes the visibility of a new
randomly computed sample with respect to the current set
of samples. Finally, the goals of the two methods are very
different: The objective of the visibility-PRM method is to
generate a probabilistic roadmap with fewer nodes, whereas
our goal is to do complete path planning.

Randomized Sampling Our Algorithm: Deterministic Sampling
Compute samples randomly Compute guards & connectors deterministically
Check whether samples are in The guards and connectors are in free space
free space by construction
Perform local planning between No explicit local planning; star-shaped
nearby samples property guarantees local collision-free paths
Easily extends to high-dof robots Storage complexity and cost of star-shaped

tests increases with number of dof
May not terminate with narrow Guaranteed to terminate if there are no
passages or no collision-free path tangential contacts in free space

TABLE III

Comparison: This table compares the steps of our approach with
those of the randomized sampling approach.

Our current work builds on our prior work on isosurface
extraction and translational motion planning [14], [13]. Our
previous motion planning algorithm was limited to transla-
tional dof and usedcomplex celland star-shaped tests. Our
new approach is relatively simpler and uses only the star-
shaped test. Overall, the star-shaped roadmap based sampling
is less conservative, easily extensible to higher dimensional
configuration spaces with translations and rotational dof and
less prone to degeneracy.

Our current work shares some similarities with the recent
work of Delanoue et al. [4], which was developed indepen-
dently. Their work is aimed at proving topological properties
such as connectedness of sets. Their approach uses the star-
shaped property to check if a set defined by a collection
of non-linear inequalities is path-connected. Delanoue et al’s
current results are for two-dimensional sets defined by a few
non-linear constraints. It is not clear whether their approach

has been applied to path planning. The focus of our work
is different – to use the star-shaped property to perform
deterministic sampling for complete motion planning.
B. Discussion

The deterministic sampling algorithm presented in Sec. V
performs an adaptive subdivision of the configuration space. At
each step, we subdivide a region into sub-regions and different
types of subdivision strategies could be employed. We could
subdivide a region intod2 equal sized regions whered is
the dimension of the configuration space. Another alternative
would be to perform a d-dimensional tetrahedral or simplicial
subdivision of the region. We could also randomly select a
point in the interior of the region and subdivide the region
into tetrahedral regions with the point as an apex.

Our adaptive subdivision algorithm automatically performs
additional subdivisions in the vicinity of the narrow passages
in the free space. The number of subdivisions depends on the
width of the narrow passages. Asymptotically speaking, the
number of subdivisions is proportional to the log of the width.
Our star-shaped roadmap algorithm captures the connectivity
through the narrow passages and consequently, we are able to
find a path without generating a very large number of samples
or subdivisions. At the same time, our algorithm is able to
terminate early if there is no collision free path.
C. Limitations

Our algorithm assumes that the free space does not have
any tangential contacts. Hence it cannot handle cases where
the robot must touch an obstacle in order to pass through
a narrow passage to get to the goal configuration. A related
limitation of our approach is that it does not support motion
in the contact space – the robot is not allowed to touch any
of the obstacles during its motion.

Our star-shaped test based on linear programming and
interval arithmetic is conservative – the free space within a
region may be star-shaped, but the region may not satisfy our
test and hence may be subdivided unnecessarily.

VIII. C ONCLUSIONS ANDFUTURE WORK

We have presented a simple approach for complete motion
planning that relies on computing a star-shaped roadmap of
the free space. We construct this roadmap using deterministic
sampling. We show that the star-shaped roadmap generated
by our algorithm captures the connectivity of the free space
enabling us to perform complete path planning. Our approach
is simple to implement and primarily relies on a star-shaped
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test which can easily be implemented. We have demonstrated
the performance of our planner in complex scenarios with low
dof robots. Our preliminary results are encouraging.

There are many avenues for future work. We are interested
in the application of our algorithm to higher DOF motion
planning. Our approach uses linear programming and interval
arithmetic. Both these techniques are extensible to higher
dimensional spaces. We would like to combine our approaches
with randomized sampling techniques in order to generate
better subdivisions for high-dof robots. We would also like
to handle cases, where the robot is allowed to be in contact
with the boundary of the obstacle.
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