
Edge: 1 May 24, 2006

Stream Programming:
Explicit Parallelism and Locality

Bill Dally
Edge Workshop
May 24, 2006

Edge: 2 May 24, 2006

Outline

• Technology Constraints Architecture
• Stream programming
• Imagine and Merrimac
• Other stream processors
• Future directions

Edge: 3 May 24, 2006

ILP is mined out – end of superscalar processors
Time for a new architecture

1e-4
1e-3
1e-2
1e-1
1e+0
1e+1
1e+2
1e+3
1e+4
1e+5
1e+6
1e+7

1980 1990 2000 2010 2020

Perf (ps/Inst)
Linear (ps/Inst)

52%/year

74%/year

19%/year30:1

1,000:1

30,000:1

Dally et al. “The Last Classsical Computer”, ISAT Study, 2001

Edge: 4 May 24, 2006

Performance = Parallelism

Efficiency = Locality

Edge: 5 May 24, 2006

Arithmetic is cheap, Communication is expensive

• Arithmetic
– Can put 100s of FPUs on a chip
– $0.50/GFLOPS, 50mW/GFLOPS
– Exploit with parallelism

• Communication
– Dominates cost

• $8/GW/s 2W/GW/s (off-chip)

– BW decreases (and cost
increases) with distance

– Power increases with distance
– Latency increases with distance

• But can be hidden with parallelism

– Need locality to conserve global
bandwidth

90nm Chip
$200
1GHz

64-bit FPU
(to scale)

12mm

0.5mm

1 clock

Increasing
power

Decreasing
BW

Edge: 6 May 24, 2006

Cost of data access varies by 1000x

200ns$501nJOff chip (node mem)

1us$5005nJGlobal

20ns$10200pJGlobal on Chip (15mm)

4ns$250pJChip Region (2mm)

1ns$0.5010pJLocal Register

TimeCost*EnergyFrom

*Cost of providing 1GW/s of bandwidth
All numbers approximate

Edge: 7 May 24, 2006

So we should build chips that look like this

Edge: 8 May 24, 2006

An abstract view

R

RM

A

R

A

R

A

Switch

R

A

R

A

R

A

Switch

R

A

R

A

R

A

Switch

RM RM

Switch

CM

LM

Switch

Global Memory

Edge: 9 May 24, 2006

Real question is:

How to orchestrate movement of data

Edge: 10 May 24, 2006

Conventional Wisdom: Use caches

R

RM

A

R

A

R

A

Switch

R

A

R

A

R

A

Switch

R

A

R

A

R

A

Switch

RM RM

Switch

CM

LM

Switch

Global Memory

Edge: 11 May 24, 2006

Caches squander bandwidth – our scarce resource

• Unnecessary data movement
• Poorly scheduled data movement

– Idles expensive resources waiting on data

• More efficient to map programs to an explicit memory
hierarchy

Edge: 12 May 24, 2006

Example – Simplified Finite-Element Code

loop over cells
flux[i] = ...

loop over cells
... = f(flux[i],...)

Edge: 13 May 24, 2006

Explicitly block into SRF

loop over cells
flux[i] = ...

loop over cells
... = f(flux[i],...)

Flux passed
through SRF,
no memory

traffic

Edge: 14 May 24, 2006

Explicitly block into SRF

loop over cells
flux[i] = ...

loop over cells
... = f(flux[i],...)

Explicit re-use
of Cells, no

misses

Edge: 15 May 24, 2006

Stream loads/stores (bulk operations) hide latency
(1000s of words in flight)

DRAM

Cells

SRFs

Cellsgather

LRFs

fn1

Flux fn2

Cells

Cells

scatter

Edge: 16 May 24, 2006

Explicit storage enables simple, efficient execution

All needed data and
instructions on-chip

no misses

Edge: 17 May 24, 2006

Caches lack predictability
(controlled via a “wet noodle”)

Edge: 18 May 24, 2006

Caches are controlled via a “wet noodle”99% hit rate, 1 miss
costs 100s of cycles,

10,000s of ops

Edge: 19 May 24, 2006

So how do we program an explicit
hierarchy?

Edge: 20 May 24, 2006

Stream Programming:
Parallelism, Locality, and Predictability

• Parallelism
– Data parallelism across stream elements
– Task parallelsm across kernels
– ILP within kernels

• Locality
– Producer/consumer
– Within kernels

• Predictability
– Enables scheduling

K1
K3

K4
K2

Edge: 21 May 24, 2006

Evolution of Stream Programming

1997 StreamC/KernelC
Break programs into kernels
Kernels operate only on input/output streams and locals
Communication scheduling and stream scheduling

2001 Brook
Continues the construct of streams and kernels
Hides underlying details
Too “one-dimensional”

2005 Sequoia
Generalizes kernels to “tasks”
Tasks operate on local data
Local data “gathered” in an arbitrary way
“Inner” tasks subdivide, “leaf” tasks compute
Machine-specific details factored out

Edge: 22 May 24, 2006

StreamC/KernelC

SAD

Image 1 convolve convolve

Image 0 convolve convolve

Depth MapSAD

Image 1 convolve convolve

Image 0 convolve convolve

Depth Map

STREAMPROG depth) {
im_stream<pixels> in, tmp;
…
for (i=0; i<rows; i++) {
convolve(in, tmp, …);
convolve(tmp, conv_row, …);

}
…
for (i=0; i<rows; i++) {
SAD(conv_row, depth_row, …);

}
…

}

KERNEL convolve(
istream<int> a,
ostream<int> y) {
…
loop_stream(a) {
int ai, out;
a >> ai;
…
out = dotproduct(ai,…);
y << out;

}
}

Edge: 23 May 24, 2006

Explicit storage enables simple, efficient execution unit
scheduling

0

10

20

30

40

50

60

70

80

90

100

110

120

0

10

20

30

40

50

60

70

80

90

100

110

120

20

30

40

50

60

70

80

90

100

110

120

20

30

40

50

60

70

80

90

100

110

120

ComputeCellInt kernel from
StreamFem3D

Over 95% of peak with simple
hardware

Depends on explicit
communication to make delays
predictable

One iteration SW Pipeline

Edge: 24 May 24, 2006

Stream scheduling exploits explicit storage to
reduce bandwidth demand

StreamFEM application

Prefetching, reuse, use/def, limited spilling

Compute
Flux

States

Compute
Numerical

Flux

Element
Faces

Gathered
Elements

Numerical
Flux

Gather
Cell

Compute
Cell

Interior

Advance
Cell

Elements
(Current)

Elements
(New)

Read-Only Table Lookup Data
(Master Element)

Face
Geometry

Cell
Orientations

Cell
Geometry

Edge: 25 May 24, 2006

• Perform actual computation
• Analogous to kernels
• “Small” working set

Sequoia – Generalize Kernels into Leaf Tasks

void __task matmul::leaf(__in float A[M][P],
__in float B[P][N],
__inout float C[M][N])

{
for (int i=0; i<M; i++) {

for (int j=0; j<N; j++) {
for (int k=0; k<P; k++) {
C[i][j] += A[i][k] * B[k][j];

}

FU

LS 0

Aggregate LS

FU

LS 7

Node memory

matmul
leaf

Edge: 26 May 24, 2006

• Decompose to smaller subtasks
– Recursively

• “Larger” working sets

Inner tasks

LS 0

Aggregate LS

LS 7

Node memory

matmul
inner

matmul
leaf

void __task matmul::inner(__in float A[M][P],
__in float B[P][N],
__inout float C[M][N])

{
tunable unsigned int U, X, V;
blkset Ablks = rchop(A, U, X);
blkset Bblks = rchop(B, X, V);
blkset Cblks = rchop(C, U, V);

mappar (int i=0 to M/U, int j=0 to N/V)
mapreduce (int k=0 to P/X)

matmul(Ablks[i][k],Bblks[k][j],Cblks[i][j]);
}

matmul
leaf

FU FU

Edge: 27 May 24, 2006

Stream Processors make communication
explicit

Enables optimization

Edge: 28 May 24, 2006

Stream architecture makes communication
explicit – exploits parallelism and locality

LRF

LRF

CL
SW

SRF
Lane

LRF

LRF

CL
SW

SRF
Lane

100χ
wire

1kχ
switch

M
SW

10kχ
switch

Cache
Bank

Cache
Bank

Chip
Pins
and

Router

DRAM
Bank

DRAM
Bank

Chip
Crossing(s)

ALU and cluster
arrays shown 1D
here may be laid
out as 2D arrays

Edge: 29 May 24, 2006

• Chip Details
– 2.56cm2 die, 0.15um process,

21M transistors, 792-pin BGA
– Collaboration with TI ASIC
– Chips arrived on April 1, 2002

• Dual-Imagine test board

Imagine VLSI Implementation

Edge: 30 May 24, 2006

Application Performance (cont.)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

DEPTH MPEG QRD RTSL Average

Ex
ec

ut
io

n
ti

m
e

host bandwidth
stalls
stream controller
overhead
memory stalls

cluster stalls

kernel non main
loop
kernel main loop
overhead
operations

Edge: 31 May 24, 2006

Applications match the bandwidth hierarchy

0.1

1

10

100

1000

Peak DEPTH MPEG QRD RTSL

Ba
nd

w
id

th
 (

G
B/

s) LRF
SRF
DRAM

Edge: 32 May 24, 2006

Merrimac – Streaming Supercomputer

Scalable from 2-TFLOP workstation to 2-PFLOP supercomputer

16 x
XDR-DRAM

2GBytes

Stream
Processor

64 FPU
128 GFLOPS

On-Board Network

Intra-Cabinet NetworkE/O
O/E

Inter-Cabinet Network

Bisection 24TBytes/s

64GBytes/s

12GBytes/s
32+32 pairs

48GBytes/s
128+128 pairs

6” Teradyne GbX

768GBytes/s
2K+2K links

Ribbon Fiber

Backplane
Board

Node

Node
2

Node
16

Board 32

Board 2
16 Nodes
1K FPUs
2TFLOPS

32GBytes

Backplane 2
32 Boards
512 Nodes
32K FPUs
64TFLOPS
1TBytes

Backplane 32

16 x
XDR-DRAM

2GBytes

Stream
Processor

64 FPU
128 GFLOPS

On-Board Network

Intra-Cabinet NetworkE/O
O/E

Inter-Cabinet Network

Bisection 24TBytes/s

64GBytes/s

12GBytes/s
32+32 pairs

48GBytes/s
128+128 pairs

6” Teradyne GbX

768GBytes/s
2K+2K links

Ribbon Fiber

Backplane
Board

Node

Node
2

Node
16

Board 32

Board 2
16 Nodes
1K FPUs
2TFLOPS

32GBytes

Backplane 2
32 Boards
512 Nodes
32K FPUs
64TFLOPS
1TBytes

Backplane 32

Edge: 33 May 24, 2006

Merrimac Application Results

Simulated on a machine with 64GFLOPS peak performance and no fused MADD
* The low numbers are a result of many divide and square-root operations

1.5M
(1.3%)

4.2M
(2.9%)

108M
(95.0%)

9.7*38.8*GROMACS

3.4M
(1.4%)

7.2M
(2.9%)

234.3M
(95.7%)

7.4*12.9*StreamFLO

0.7M
(0.8%)

1.6M
(1.7%)

90.2M
(97.5%)

12.1*14.2*StreamMD
(grid algorithm)

2.8M
(0.2%)

7.7M
(0.4%)

186.5M
(99.4%)

13.839.2StreamFEM3D
(MHD, constant)

1.8M
(1.1%)

6.3M
(3.9%)

153.0M
(95.0%)

17.131.6StreamFEM3D
(Euler, quadratic)

Mem RefsSRF RefsLRF RefsFP Ops /
Mem Ref

Sustained
GFLOPS

Application

Applications achieve high performance and
make good use of the bandwidth hierarchy

Edge: 34 May 24, 2006

Other Stream Processors

Edge: 35 May 24, 2006

Other Stream Processors

ClearSpeed CSX600
96 GFLOP/s 10W STI Cell

~200 GFLOP/s 100W
GPUs

50-100 GFLOP/s 10-30W

Edge: 36 May 24, 2006

Other Stream Processors

• Technology pushing many to build stream processors
• GPUs (Nvidia, ATI), Game Processors (Cell), Physics

Processors (Ageia), Accelerators (Clearspeed)
• Many (10s-100s) of FPUs
• Distributed local storage
• Latency hiding on access to external memory

– Block access or deeply multithreaded

• All benefit from stream programming
– But the right architecture makes it easier and more efficient

Edge: 37 May 24, 2006

Architecture Issues

• On-chip memory
– Read and write access to on-chip storage

• Producer-consumer locality demands write access

– Data movement between on-chip memories
• Without going off chip

• Off-chip memory
– No substitute for bandwidth
– Efficient gather and scatter required

Edge: 38 May 24, 2006

What’s Next?

Edge: 39 May 24, 2006

ILP is mined out – end of superscalar processors
Time for a new architecture

1e-4
1e-3
1e-2
1e-1
1e+0
1e+1
1e+2
1e+3
1e+4
1e+5
1e+6
1e+7

1980 1990 2000 2010 2020

Perf (ps/Inst)
Linear (ps/Inst)

52%/year

74%/year

19%/year30:1

1,000:1

30,000:1

Dally et al. “The Last Classsical Computer”, ISAT Study, 2001

Edge: 40 May 24, 2006

Computing landscape is changing

• Many function units
• Deep, distributed storage hierarchy
• Communication limited

• Research is needed to understand how to architect
and program these processors

• Not an incremental fix:
– Fundamental rethinking of basic architecture, programming

model, and compilers is required

Edge: 41 May 24, 2006

Software Topics

• Exposed Communication Programming Models
– Abstract storage hierarchy and communication costs
– Portable codes with predictable performance

• Compiling bulk operations
– Strategic (vs tactical) program reorganization
– Scheduling bulk data transfers
– Size and shape of blocking
– Irregular computations

• Localization of shared neighbors

– Variable size results

• Applications
– Communication-efficient algorithms

Edge: 42 May 24, 2006

Hardware Topics

• Close efficiency gap with hard-wired engines
– Gap is 10-100x today (10 for stream processors)
– Efficient data movement is first step
– Other overheads remain to be removed

• Storage hierarchies that can be abstracted
• Balancing parallelism ILP x DLP x TLP
• On-chip networks

– To connect within and between levels of the hierarchy
• Communication and synchronization mechanisms

– Drives granularity – which in turn determines available
parallelism

• Mechanisms for reuse of irregular data

Edge: 43 May 24, 2006

Summary

• Communication is expensive, arithmetic is cheap
– Parallelism to exploit arithmetic
– Locality to conserve bandwidth

• Architectures evolving toward a deep, broad storage
hierarchy
– Storage to hide latency, cover bandwidth taper
– Stream processors >10x efficiency of conventional CPUs

• Explicitly manage this hierarchy
– Makes efficient use of scarce, expensive resources
– Enables optimization

• Generalized Stream programming
– Bulk operations: data movement and kernels
– Parallelism, Locality, and Predictability

