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Outline

• Technology Constraints Architecture
• Stream programming
• Imagine and Merrimac
• Other stream processors
• Future directions
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ILP is mined out – end of superscalar processors
Time for a new architecture
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Performance = Parallelism

Efficiency = Locality
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Arithmetic is cheap, Communication is expensive

• Arithmetic
– Can put 100s of FPUs on a chip
– $0.50/GFLOPS, 50mW/GFLOPS
– Exploit with parallelism

• Communication
– Dominates cost

• $8/GW/s 2W/GW/s (off-chip)

– BW decreases (and cost 
increases) with distance

– Power increases with distance
– Latency increases with distance

• But can be hidden with parallelism

– Need locality to conserve global 
bandwidth

90nm Chip
$200
1GHz

64-bit FPU
(to scale)

12mm

0.5mm

1 clock

Increasing
power

Decreasing
BW
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Cost of data access varies by 1000x

200ns$501nJOff chip (node mem)

1us$5005nJGlobal

20ns$10200pJGlobal on Chip (15mm)

4ns$250pJChip Region (2mm)

1ns$0.5010pJLocal Register

TimeCost*EnergyFrom

*Cost of providing 1GW/s of bandwidth
All numbers approximate
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So we should build chips that look like this
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An abstract view
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Real question is:

How to orchestrate movement of data
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Conventional Wisdom: Use caches
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Caches squander bandwidth – our scarce resource

• Unnecessary data movement
• Poorly scheduled data movement

– Idles expensive resources waiting on data

• More efficient to map programs to an explicit memory 
hierarchy
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Example – Simplified Finite-Element Code

loop over cells
flux[i] = ...

loop over cells
... = f(flux[i],...)
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Explicitly block into SRF

loop over cells
flux[i] = ...

loop over cells
... = f(flux[i],...)

Flux passed 
through SRF, 
no memory 

traffic
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Explicitly block into SRF

loop over cells
flux[i] = ...

loop over cells
... = f(flux[i],...)

Explicit re-use 
of Cells, no 

misses
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Stream loads/stores (bulk operations) hide latency
(1000s of words in flight)

DRAM

Cells

SRFs

Cellsgather

LRFs

fn1

Flux fn2

Cells

Cells

scatter
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Explicit storage enables simple, efficient execution

All needed data and 
instructions on-chip 

no misses
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Caches lack predictability 
(controlled via a “wet noodle”)
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Caches are controlled via a “wet noodle”99% hit rate, 1 miss 
costs 100s of cycles, 

10,000s of ops
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So how do we program an explicit 
hierarchy?
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Stream Programming: 
Parallelism, Locality, and Predictability

• Parallelism
– Data parallelism across stream elements
– Task parallelsm across kernels
– ILP within kernels

• Locality
– Producer/consumer
– Within kernels

• Predictability
– Enables scheduling

K1
K3

K4
K2
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Evolution of Stream Programming

1997 StreamC/KernelC
Break programs into kernels
Kernels operate only on input/output streams and locals
Communication scheduling and stream scheduling

2001 Brook
Continues the construct of streams and kernels
Hides underlying details
Too “one-dimensional”

2005 Sequoia
Generalizes kernels to “tasks”
Tasks operate on local data 
Local data “gathered” in an arbitrary way
“Inner” tasks subdivide, “leaf” tasks compute
Machine-specific details factored out
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StreamC/KernelC

SAD

Image 1 convolve convolve

Image 0 convolve convolve

Depth MapSAD

Image 1 convolve convolve

Image 0 convolve convolve

Depth Map

STREAMPROG depth) {
im_stream<pixels> in, tmp;
…
for (i=0; i<rows; i++) {
convolve(in, tmp, …);
convolve(tmp, conv_row, …);

}
…
for (i=0; i<rows; i++) {
SAD(conv_row, depth_row, …);

}
…

}

KERNEL convolve(
istream<int> a,
ostream<int> y) {
…
loop_stream(a) {
int ai, out;
a >> ai;
…
out = dotproduct(ai,…);
y << out;

}
}
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Explicit storage enables simple, efficient execution unit 
scheduling
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Stream scheduling exploits explicit storage to 
reduce bandwidth demand

StreamFEM application

Prefetching, reuse, use/def, limited spilling
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• Perform actual computation
• Analogous to kernels
• “Small” working set

Sequoia – Generalize Kernels into Leaf Tasks

void __task matmul::leaf( __in    float A[M][P],
__in    float B[P][N],
__inout float C[M][N] )

{
for (int i=0; i<M; i++) {

for (int j=0; j<N; j++) {
for (int k=0; k<P; k++) {
C[i][j] += A[i][k] * B[k][j];

}

FU

LS 0

Aggregate LS

FU

LS 7

Node memory

matmul
leaf
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• Decompose to smaller subtasks
– Recursively

• “Larger” working sets

Inner tasks

LS 0

Aggregate LS

LS 7

Node memory

matmul
inner

matmul
leaf

void __task matmul::inner( __in    float A[M][P],
__in    float B[P][N],
__inout float C[M][N] )

{
tunable unsigned int U, X, V;
blkset Ablks = rchop(A, U, X);
blkset Bblks = rchop(B, X, V);                   
blkset Cblks = rchop(C, U, V);

mappar (int i=0 to M/U, int j=0 to N/V)
mapreduce (int k=0 to P/X)

matmul(Ablks[i][k],Bblks[k][j],Cblks[i][j]);
}

matmul
leaf

FU FU
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Stream Processors make communication 
explicit

Enables optimization



Edge: 28 May 24, 2006

Stream architecture makes communication 
explicit – exploits parallelism and locality
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• Chip Details
– 2.56cm2 die, 0.15um process, 

21M transistors, 792-pin BGA
– Collaboration with TI ASIC
– Chips arrived on April 1, 2002

• Dual-Imagine test board

Imagine VLSI Implementation
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Application Performance (cont.)
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Applications match the bandwidth hierarchy
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Merrimac – Streaming Supercomputer

Scalable from 2-TFLOP workstation to 2-PFLOP supercomputer
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Merrimac Application Results

Simulated on a machine with 64GFLOPS peak performance and no fused MADD
* The low numbers are a result of many divide and square-root operations
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Applications achieve high performance and 
make good use of the bandwidth hierarchy
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Other Stream Processors
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Other Stream Processors

ClearSpeed CSX600
96 GFLOP/s  10W STI Cell

~200 GFLOP/s 100W
GPUs

50-100 GFLOP/s  10-30W
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Other Stream Processors

• Technology pushing many to build stream processors
• GPUs (Nvidia, ATI), Game Processors (Cell), Physics 

Processors (Ageia), Accelerators (Clearspeed)
• Many (10s-100s) of FPUs
• Distributed local storage
• Latency hiding on access to external memory

– Block access or deeply multithreaded

• All benefit from stream programming
– But the right architecture makes it easier and more efficient
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Architecture Issues

• On-chip memory
– Read and write access to on-chip storage

• Producer-consumer locality demands write access

– Data movement between on-chip memories
• Without going off chip

• Off-chip memory
– No substitute for bandwidth
– Efficient gather and scatter required
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What’s Next?
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ILP is mined out – end of superscalar processors
Time for a new architecture
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Computing landscape is changing

• Many function units
• Deep, distributed storage hierarchy
• Communication limited

• Research is needed to understand how to architect 
and program these processors

• Not an incremental fix:
– Fundamental rethinking of basic architecture, programming 

model, and compilers is required
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Software Topics

• Exposed Communication Programming Models
– Abstract storage hierarchy and communication costs
– Portable codes with predictable performance

• Compiling bulk operations
– Strategic (vs tactical) program reorganization
– Scheduling bulk data transfers
– Size and shape of blocking
– Irregular computations

• Localization of shared neighbors

– Variable size results

• Applications
– Communication-efficient algorithms
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Hardware Topics

• Close efficiency gap with hard-wired engines
– Gap is 10-100x today (10 for stream processors)
– Efficient data movement is first step
– Other overheads remain to be removed

• Storage hierarchies that can be abstracted
• Balancing parallelism ILP x DLP x TLP
• On-chip networks

– To connect within and between levels of the hierarchy
• Communication and synchronization mechanisms

– Drives granularity – which in turn determines available 
parallelism

• Mechanisms for reuse of irregular data
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Summary

• Communication is expensive, arithmetic is cheap
– Parallelism to exploit arithmetic
– Locality to conserve bandwidth

• Architectures evolving toward a deep, broad storage 
hierarchy
– Storage to hide latency, cover bandwidth taper
– Stream processors >10x efficiency of conventional CPUs

• Explicitly manage this hierarchy 
– Makes efficient use of scarce, expensive resources
– Enables optimization

• Generalized Stream programming
– Bulk operations: data movement and kernels
– Parallelism, Locality, and Predictability


