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Outline

e Technology Constraints =» Architecture
e Stream programming

 Imagine and Merrimac

e Other stream processors

e Future directions
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ILP i1s mined out — end of superscalar processors

Time for a new architecture
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Performance = Parallelism

Efficiency = Locality
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Arithmetic is cheap, Communication Is expensive

:-| F 0.5mm

e Arithmetic
— Can put 100s of FPUs on a chip
— $0.50/GFLOPS, 50mW/GFLOPS

e Communication
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64-
(to

Exploit with parallelism

Dominates cost
e $8/GW/s 2W/GW/s (off-chip)

BW decreases (and cost
Increases) with distance

Power increases with distance

Latency increases with distance |‘ 12mm :
e But can be hidden with parallelism

Need locality to conserve global
bandwidth
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Cost of data access varies by 1000x

From Energy Cost* Time
Local Register 10pJ $0.50 1ns
Chip Region (2mm) 50pJ $2 4ns
Global on Chip (15mm) | 200pJ $10 20ns
Off chip (node mem) 1nJ $50 200ns
Global 5nJ $500 1us

*Cost of providing 1GW/s of bandwidth

All numbers approximate
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So we should build chips that look like this
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An abstract view

Global Memory
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Real question Is:

How to orchestrate movement of data
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Conventional Wisdom: Use caches

Global Memory
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Caches squander bandwidth — our scarce resource

e Unnecessary data movement

e Poorly scheduled data movement
— ldles expensive resources waiting on data

 More efficient to map programs to an explicit memory
hierarchy
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Example — Simplified Finite-Element Code

loop over cells
flux[i1] = ...

loop over cells
. = F(flux[i1],--.)

gather

scatter C»m)

DRAM SRFs LRFs

-G,
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Explicitly block into SRF

loop over cells Flux passed
flux[i] = ...

through SRF,

loop over cells NO memory

. = f(flux[i],...) traffic

scatter Qm)

“ED

DRAM SRFs LRFs



Explicitly block into SRF

loop over cells
fluxfi] = ... Explicit re-use
loop over cells of C_e”S’ no
. = F(flux[1],--.) MISSES

scatter

“ED

DRAM SRFs LRFs
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Stream loads/stores (bulk operations) hide latency

(1000s of words in flight)

m gather m m

CEm
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Explicit storage enables simple, efficient execution

Edge: 16

LD Cells
LD Cells
LD Cells
ST Cells
LD Cells

ST Cells

All needed data and
Instructions on-chip
NO MISses
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Caches lack predictability
(controlled via a “wet noodle”)
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Caches are contro
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LD Cells

LD Cells

LD Cells

ST Cells

LD Cells

ST Cells

99% hit rate, 1 miss
costs 100s of cycles,
10,000s of ops

LD Co

LD Cells
LD Cells

ST Cells
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So how do we program an explicit
hierarchy?
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Stream Programming:
Parallelism, Locality, and Predictability

e Parallelism
— Data parallelism across stream elements
— Task parallelsm across kernels
— ILP within kernels
e Locality
— Producer/consumer
— Within kernels
e Predictability
— Enables scheduling

©
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Evolution of Stream Programming

1997

2001

2005
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StreamC/KernelC

Break programs into kernels

Kernels operate only on input/output streams and locals
Communication scheduling and stream scheduling

Brook

Continues the construct of streams and kernels
Hides underlying details

Too “one-dimensional”

Sequoia

Generalizes kernels to “tasks”

Tasks operate on local data

Local data “gathered” in an arbitrary way
“Inner” tasks subdivide, “leaf” tasks compute
Machine-specific details factored out
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StreamC/KernelC

[ @@

[ mege: |— GRED—
// STREAMPROG depth) { \
Im_stream<pixels> in, tmp;

for (i=0; i<rows; i++) {
convolve(in, tmp, ..);
convolve(tmp, conv_row, ..);

}

Depth Map |

KERNEL convolve( “\\\

istream<int> a,
ostream<int> y) {

loop_stream(a) {
int ai, out;
a >> al;

out = dotproduct(ai,..);
y << out;

for (i=0; i<rows; i++) {
SAD(conv_row, depth_row, ..);

9 )N ~
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efficient execution unit

Explicit storage enables simple,

scheduling

SW Pipeline

One Iiteration

May 24, 2006
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Stream scheduling exploits explicit storage to
reduce bandwidth demand

Read-Only Table Lookup Data
(Master Element )

StreamFEM application

e ST ST R e ]
e e e e e

==

.........................

-

Prefetching, reuse, use/def, limited spilling



Sequoia — Generalize Kernels into Leaf Tasks

 Perform actual computation Node memory
e Analogous to kernels
® “Sma”” WOrklng Set Aggregate LS

-

void _ task matmul::leaf( __1iIn float A[M][é;?\
__1n float B[P][N],
__1nout float C[M][N] ) LS 7

matmu
for (int 1=0; I<M; 1++) { aq

for (int j=0; j<N; j++) {
for (int k=0; k<P; k+t+) {
CLil1 += AL]LK]1 * BLKILI1:

< /
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Inner tasks

e Decompose to smaller subtasks

e “Larger” working sets

//Gg}d __task matmul::inner( __in float A[M][P1, Aggregate LS
__1in float B[P][N], matmul
__inout float C[M][N] ) { inner ]
{

tunable unsigned int U, X, V; K

blkset Ablks = rchop(A, U, X); B LY O LY 7

blkset Bblks = rchop(B, X, V); / rnaUnu“ rnannu”

blkset Cblks = rchop(C, U, V);

mappar (int i=0 to M/U, int j=0 to N/V) FU FU
mapreduce (int k=0 to P/X)

~

\\};; [matmul(Ablks[i][k],Bblks[k][j],Cblks[i][j]);
—
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Stream Processors make communication
explicit

Enables optimization
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Stream architecture makes communication

explicit — exploits parallelism and localit

Chip
Crossing(s)

Chip

Pins

and
Router

Edge: ZG

10ky
switch

ALU and cluster
arrays shown 1D
here may be laid
out as 2D arrays

1ky

100y
switch wire

/
Bl
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Imagine VLSI Implementation

e Chip Detalls

— 2.56cm? die, 0.15um process,
21M transistors, 792-pin BGA

— Collaboration with T1 ASIC
— Chips arrived on April 1, 2002

e Dual-Imagine test board
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Application Performance (cont.)
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Applications match the bandwidth hierarchy
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Merrimac — Streaming Supercomputer 23
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Merrimac Application Results

Application

StreamFEM3D
(Euler, quadratic)

Sustained
GFLOPS

LRF Refs

153.0M
(95.0%)

SRF Refs

6.3M
(3.9%)

Mem Refs

1.8M
(1.1%)

StreamFEM3D
(MHD, constant)

186.5M
(99.49%)

7.7M
(0.4%)

2.8M
(0.2%)

StreamMD
(grid algorithm)

90.2M
(97.5%)

1.6M
(1.7%)

0.7M
(0.8%)

GROMACS

108M
(95.0%)

4.2M
(2.9%)

1.5M
(1.3%)

StreamFLO

234.3M
(95.7%)

7.2M
(2.9%)

3.4M
(1.4%)

Simulated on a machine with 64GFLOPS peak performance and no fused MADD
* The low numbers are a result of many divide and square-root operations

Applications achieve high performance and

make good use of the bandwidth hierarchy



Other Stream Processors
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Other Stream Processors

SPU || SPU |

sPU SPUI
~ Processor __

#rrrr-Corest-+ [N i 11 H EEE

EIB (up to 96B/cycle)

ClearSpeed CSX600
96 GFLOP/s 10W STI Cell

~200 GFLOP/s 100w

GPUs
50-100 GFLOP/s 10-30W
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Other Stream Processors

e Technology pushing many to build stream processors

e GPUs (Nvidia, ATIl), Game Processors (Cell), Physics
Processors (Ageia), Accelerators (Clearspeed)

e Many (10s-100s) of FPUs
e Distributed local storage

e Latency hiding on access to external memory
— Block access or deeply multithreaded

e All benefit from stream programming
— But the right architecture makes it easier and more efficient
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Architecture Issues

e On-chip memory

— Read and write access to on-chip storage
e Producer-consumer locality demands write access

— Data movement between on-chip memories
e Without going off chip

e Off-chip memory

— No substitute for bandwidth
— Efficient gather and scatter required

Edge: 37 May 24, 2006



What's Next?
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ILP i1s mined out — end of superscalar processors

Time for a new architecture
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Computing landscape is changing

e Many function units
e Deep, distributed storage hierarchy
e Communication limited

e Research i1s needed to understand how to architect
and program these processors

e Not an incremental fix:

— Fundamental rethinking of basic architecture, programming
model, and compilers is required
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Software Topics

e Exposed Communication Programming Models
— Abstract storage hierarchy and communication costs
— Portable codes with predictable performance

e Compiling bulk operations
— Strategic (vs tactical) program reorganization
— Scheduling bulk data transfers
— Size and shape of blocking

— lrregular computations
e Localization of shared neighbors

— Variable size results
e Applications
— Communication-efficient algorithms
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Hardware Topics

e Close efficiency gap with hard-wired engines
— Gap is 10-100x today (10 for stream processors)
— Efficient data movement is first step
— Other overheads remain to be removed

e Storage hierarchies that can be abstracted
e Balancing parallelism ILP x DLP x TLP

e On-chip networks
— To connect within and between levels of the hierarchy

e Communication and synchronization mechanisms

— Drives granularity — which in turn determines available
parallelism

e Mechanisms for reuse of irregular data
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Summary

e Communication is expensive, arithmetic is cheap
— Parallelism to exploit arithmetic
— Locality to conserve bandwidth

e Architectures evolving toward a deep, broad storage
hierarchy
— Storage to hide latency, cover bandwidth taper
— Stream processors >10x efficiency of conventional CPUs

e Explicitly manage this hierarchy
— Makes efficient use of scarce, expensive resources
— Enables optimization

e Generalized Stream programming
— Bulk operations: data movement and kernels
— Parallelism, Locality, and Predictability
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