Stream Programming: Explicit Parallelism and Locality

Bill Dally Edge Workshop May 24, 2006

Outline

- Technology Constraints → Architecture
- Stream programming
- Imagine and Merrimac
- Other stream processors
- Future directions

ILP is mined out – end of superscalar processors Time for a new architecture

Dally et al. "The Last Classsical Computer", ISAT Study, 2001

Performance = Parallelism

```
Efficiency = Locality
```

Arithmetic is cheap, Communication is expensive

- Arithmetic
 - Can put 100s of FPUs on a chip
 - \$0.50/GFLOPS, 50mW/GFLOPS
 - Exploit with parallelism
- Communication
 - Dominates cost
 - \$8/GW/s 2W/GW/s (off-chip)
 - BW decreases (and cost increases) with distance
 - Power increases with distance
 - Latency increases with distance
 - But can be hidden with parallelism
 - Need **locality** to conserve global bandwidth

Cost of data access varies by 1000x

From	Energy	Cost*	Time
Local Register	10pJ	\$0.50	1ns
Chip Region (2mm)	50pJ	\$2	4ns
Global on Chip (15mm)	200pJ	\$10	20ns
Off chip (node mem)	1nJ	\$50	200ns
Global	5nJ	\$500	1us

*Cost of providing 1GW/s of bandwidth All numbers approximate

So we should build chips that look like this

An abstract view

Real question is:

How to orchestrate movement of data

Conventional Wisdom: Use caches

Caches squander bandwidth – our scarce resource

- Unnecessary data movement
- Poorly scheduled data movement
 - Idles expensive resources waiting on data

 More efficient to map programs to an explicit memory hierarchy

Example – Simplified Finite-Element Code

```
loop over cells
  flux[i] = \dots
loop over cells
  \dots = f(flux[i], \dots)
                             gather
                                        Cells
                     Cells
                                                            fn1
                                        Flux
                                                            fn2
                                        Cells
                       scatter
                     Cells
                    DRAN
                                        SRFs
                                                           LRFs
```

Explicitly block into SRF

Explicitly block into SRF

Stream loads/stores (bulk operations) hide latency (1000s of words in flight)

Explicit storage enables simple, efficient execution

Caches lack predictability (controlled via a "wet noodle")

So how do we program an explicit hierarchy?

Stream Programming: Parallelism, Locality, and Predictability

- Parallelism
 - Data parallelism across stream elements
 - Task parallelsm across kernels
 - ILP within kernels
- Locality
 - Producer/consumer
 - Within kernels
- Predictability
 - Enables scheduling

Evolution of Stream Programming

1997 StreamC/KernelC Break programs into kernels Kernels operate only on input/output streams and locals Communication scheduling and stream scheduling

2001 Brook

Continues the construct of streams and kernels Hides underlying details Too "one-dimensional"

2005 Sequoia

Generalizes kernels to "tasks" Tasks operate on local data Local data "gathered" in an arbitrary way "Inner" tasks subdivide, "leaf" tasks compute Machine-specific details factored out

StreamC/KernelC

Explicit storage enables simple, efficient execution unit scheduling

SW Pipeline

ComputeCellInt kernel from StreamFem3D

Over 95% of peak with simple hardware

Depends on explicit communication to make delays predictable

Stream scheduling exploits explicit storage to reduce bandwidth demand

Prefetching, reuse, use/def, limited spilling

Sequoia – Generalize Kernels into Leaf Tasks

Inner tasks

- Decompose to smaller subtasks
 Recursively
- "Larger" working sets

Stream Processors make communication explicit

Enables optimization

Stream architecture makes communication explicit – exploits parallelism and locality

May 24, 2006

Imagine VLSI Implementation

- Chip Details
 - 2.56cm² die, 0.15um process,
 21M transistors, 792-pin BGA
 - Collaboration with TI ASIC
 - Chips arrived on April 1, 2002

• Dual-Imagine test board

Application Performance (cont.)

Applications match the bandwidth hierarchy

Merrimac – Streaming Supercomputer

Merrimac Application Results

Application	Sustained GFLOPS	FP Ops / Mem Ref	LRF Refs	SRF Refs	Mem Refs
StreamFEM3D (Euler, quadratic)	31.6	17.1	153.0M (95.0%)	6.3M (3.9%)	1.8M (1.1%)
StreamFEM3D (MHD, constant)	39.2	13.8	186.5M (99.4%)	7.7M (0.4%)	2.8M (0.2%)
StreamMD (grid algorithm)	14.2*	12.1*	90.2M (97.5%)	1.6M (1.7%)	0.7M (0.8%)
GROMACS	38.8*	9.7*	108M (95.0%)	4.2M (2.9%)	1.5M (1.3%)
StreamFLO	12.9*	7.4*	234.3M (95.7%)	7.2M (2.9%)	3.4M (1.4%)

Simulated on a machine with 64GFLOPS peak performance and no fused MADD * The low numbers are a result of many divide and square-root operations

Applications achieve high performance and make good use of the bandwidth hierarchy

Other Stream Processors

Other Stream Processors

GPUs 50-100 GFLOP/s 10-30W

Other Stream Processors

- Technology pushing many to build stream processors
- GPUs (Nvidia, ATI), Game Processors (Cell), Physics Processors (Ageia), Accelerators (Clearspeed)
- Many (10s-100s) of FPUs
- Distributed local storage
- Latency hiding on access to external memory
 - Block access or deeply multithreaded
- All benefit from stream programming
 - But the right architecture makes it easier and more efficient

Architecture Issues

- On-chip memory
 - Read and write access to on-chip storage
 - Producer-consumer locality demands write access
 - Data movement between on-chip memories
 - Without going off chip
- Off-chip memory
 - No substitute for bandwidth
 - Efficient gather and scatter required

What's Next?

ILP is mined out – end of superscalar processors Time for a new architecture

Dally et al. "The Last Classsical Computer", ISAT Study, 2001

Computing landscape is changing

- Many function units
- Deep, distributed storage hierarchy
- Communication limited

- Research is needed to understand how to architect and program these processors
- Not an incremental fix:
 - Fundamental rethinking of basic architecture, programming model, and compilers is required

Software Topics

- Exposed Communication Programming Models
 - Abstract storage hierarchy and communication costs
 - Portable codes with predictable performance
- Compiling bulk operations
 - Strategic (vs tactical) program reorganization
 - Scheduling bulk data transfers
 - Size and shape of blocking
 - Irregular computations
 - Localization of shared neighbors
 - Variable size results
- Applications
 - Communication-efficient algorithms

Hardware Topics

- Close efficiency gap with hard-wired engines
 - Gap is 10-100x today (10 for stream processors)
 - Efficient data movement is first step
 - Other overheads remain to be removed
- Storage hierarchies that can be abstracted
- Balancing parallelism ILP x DLP x TLP
- On-chip networks
 - To connect within and between levels of the hierarchy
- Communication and synchronization mechanisms
 - Drives granularity which in turn determines available parallelism
- Mechanisms for reuse of irregular data

Summary

- Communication is expensive, arithmetic is cheap
 - Parallelism to exploit arithmetic
 - Locality to conserve bandwidth
- Architectures evolving toward a deep, broad storage hierarchy
 - Storage to hide latency, cover bandwidth taper
 - Stream processors >10x efficiency of conventional CPUs
- Explicitly manage this hierarchy
 - Makes efficient use of scarce, expensive resources
 - Enables optimization
- Generalized Stream programming
 - Bulk operations: data movement and kernels
- Parallelism, Locality, and Predictability