Stream Programming:
Explicit Parallelism and Locality

Bill Dally

Edge Workshop
May 24, 2006

Edge: 1 May 24, 2006

Outline

e Technology Constraints =» Architecture
e Stream programming

 Imagine and Merrimac

e Other stream processors

e Future directions

Edge: 2 May 24, 2006

ILP i1s mined out — end of superscalar processors

Time for a new architecture

le+7

le+6

le+b
le+4
le+3
le+2
le+l

le+0

le-1
le-2

le-3

le-4

1980

)
g

— Perf (ps/Inst)
Linear (ps/Inst)

~—
\\

N .
|1 T —Year
./

2010

Dally et al. “The Last Classsical Computer”, ISAT Study, 2001

Edge: 3

30,000:1

2020

May 24, 2006

Performance = Parallelism

Efficiency = Locality

Edge: 4 May 24, 2006

Arithmetic is cheap, Communication Is expensive

:-| F 0.5mm

e Arithmetic
— Can put 100s of FPUs on a chip
— $0.50/GFLOPS, 50mW/GFLOPS

e Communication

Edge: 5

64-
(to

Exploit with parallelism

Dominates cost
e $8/GW/s 2W/GW/s (off-chip)

BW decreases (and cost
Increases) with distance

Power increases with distance

Latency increases with distance |‘ 12mm :
e But can be hidden with parallelism

Need locality to conserve global
bandwidth

May 24, 2006

Cost of data access varies by 1000x

From Energy Cost* Time
Local Register 10pJ $0.50 1ns
Chip Region (2mm) 50pJ $2 4ns
Global on Chip (15mm) | 200pJ $10 20ns
Off chip (node mem) 1nJ $50 200ns
Global 5nJ $500 1us

*Cost of providing 1GW/s of bandwidth

All numbers approximate
Edge: 6

May 24, 2006

So we should build chips that look like this

Edge: 7

An abstract view

Global Memory

Switch

Switch @Switch BSwitch
RIRIRERIRIRERIRIR

AJAJARAJALARALIALA

Edge: 8 May 24, 2006

Real question Is:

How to orchestrate movement of data

Edge: 9 May 24, 2006

Conventional Wisdom: Use caches

Global Memory

Switch
LM

CM

RM RM RM

Switch @Switch BSwitch
RIRIRERIRIRERIRIR

AJAJARAJAJARALIALA

Edge: 10 May 24, 2006

Caches squander bandwidth — our scarce resource

e Unnecessary data movement

e Poorly scheduled data movement
— ldles expensive resources waiting on data

 More efficient to map programs to an explicit memory
hierarchy

Edge: 11 May 24, 2006

Example — Simplified Finite-Element Code

loop over cells
flux[i1] = ...

loop over cells
. = F(flux[i1],--.)

gather

scatter C»m)

DRAM SRFs LRFs

-G,

Edge: 12

Explicitly block into SRF

loop over cells Flux passed
flux[i] = ...

through SRF,

loop over cells NO memory

. = f(flux[i],...) traffic

scatter Qm)

“ED

DRAM SRFs LRFs

Explicitly block into SRF

loop over cells
fluxfi] = ... Explicit re-use
loop over cells of C_e”S’ no
. = F(flux[1],--.) MISSES

scatter

“ED

DRAM SRFs LRFs

Edge: 14

Stream loads/stores (bulk operations) hide latency

(1000s of words in flight)

m gather m m

CEm

Edge: 15

DRAM

SRFs

LRFs

LD Cells

LD Cells

LD Cells

ST Cells

LD Cells

ST Cells

May 24, 2006

Explicit storage enables simple, efficient execution

Edge: 16

LD Cells
LD Cells
LD Cells
ST Cells
LD Cells

ST Cells

All needed data and
Instructions on-chip
NO MISses

May 24, 2006

Caches lack predictability
(controlled via a “wet noodle”)

Edge: 17

LD Cells

LD Cells

LD Cells

ST Cells

LD Cells

ST Cells

LD Cells

LD Cells

LD Cells

ST Cells

May 24, 2006

Caches are contro

Edge: 18

LD Cells

LD Cells

LD Cells

ST Cells

LD Cells

ST Cells

99% hit rate, 1 miss
costs 100s of cycles,
10,000s of ops

LD Co

LD Cells
LD Cells

ST Cells

May 24, 2006

So how do we program an explicit
hierarchy?

Edge: 19 May 24, 2006

Stream Programming:
Parallelism, Locality, and Predictability

e Parallelism
— Data parallelism across stream elements
— Task parallelsm across kernels
— ILP within kernels
e Locality
— Producer/consumer
— Within kernels
e Predictability
— Enables scheduling

©

Edge: 20 May 24, 2006

Evolution of Stream Programming

1997

2001

2005

Edge: 21

StreamC/KernelC

Break programs into kernels

Kernels operate only on input/output streams and locals
Communication scheduling and stream scheduling

Brook

Continues the construct of streams and kernels
Hides underlying details

Too “one-dimensional”

Sequoia

Generalizes kernels to “tasks”

Tasks operate on local data

Local data “gathered” in an arbitrary way
“Inner” tasks subdivide, “leaf” tasks compute
Machine-specific details factored out

May 24, 2006

StreamC/KernelC

[@@

[mege: |— GRED—
// STREAMPROG depth) { \
Im_stream<pixels> in, tmp;

for (i=0; i<rows; i++) {
convolve(in, tmp, ..);
convolve(tmp, conv_row, ..);

}

Depth Map |

KERNEL convolve(“\\\

istream<int> a,
ostream<int> y) {

loop_stream(a) {
int ai, out;
a >> al;

out = dotproduct(ai,..);
y << out;

for (i=0; i<rows; i++) {
SAD(conv_row, depth_row, ..);

9)N ~

Edge: 22 May 24, 2006

efficient execution unit

Explicit storage enables simple,

scheduling

SW Pipeline

One Iiteration

May 24, 2006

2
= ©
& O
o £ o
— n |m_m
K m ©
= = = £
D) %)
— © o
c <) x £
=0 o v ©
—_) +—
SE S G&8u
L 2 9cEg
-] 5a O S5 =
E o c O
EO 0T 2€73
O Oc OO o

[
[0
| 0
oo

__________________________.“_________

0000000000000000000000000

mﬂ ﬁﬂ %@.gz%%%ﬁ

Stream scheduling exploits explicit storage to
reduce bandwidth demand

Read-Only Table Lookup Data
(Master Element)

StreamFEM application

e ST ST R e]
e e e e e

==

.........................

-

Prefetching, reuse, use/def, limited spilling

Sequoia — Generalize Kernels into Leaf Tasks

 Perform actual computation Node memory
e Analogous to kernels
® “Sma”” WOrklng Set Aggregate LS

-

void _ task matmul::leaf(__1iIn float A[M][é;?\
__1n float B[P][N],
__1nout float C[M][N]) LS 7

matmu
for (int 1=0; I<M; 1++) { aq

for (int j=0; j<N; j++) {
for (int k=0; k<P; k+t+) {
CLil1 += AL]LK]1 * BLKILI1:

< /

Edge: 25 May 24, 2006

{

Inner tasks

e Decompose to smaller subtasks

e “Larger” working sets

//Gg}d __task matmul::inner(__in float A[M][P1, Aggregate LS
__1in float B[P][N], matmul
__inout float C[M][N]) { inner]
{

tunable unsigned int U, X, V; K

blkset Ablks = rchop(A, U, X); B LY O LY 7

blkset Bblks = rchop(B, X, V); / rnaUnu“ rnannu”

blkset Cblks = rchop(C, U, V);

mappar (int i=0 to M/U, int j=0 to N/V) FU FU
mapreduce (int k=0 to P/X)

~

\\};; [matmul(Ablks[i][k],Bblks[k][j],Cblks[i][j]);
—

Edge: 26 May 24, 2006

Stream Processors make communication
explicit

Enables optimization

Edge: 27 May 24, 2006

Stream architecture makes communication

explicit — exploits parallelism and localit

Chip
Crossing(s)

Chip

Pins

and
Router

Edge: ZG

10ky
switch

ALU and cluster
arrays shown 1D
here may be laid
out as 2D arrays

1ky

100y
switch wire

/
Bl

May 24, 2006

Imagine VLSI Implementation

e Chip Detalls

— 2.56cm? die, 0.15um process,
21M transistors, 792-pin BGA

— Collaboration with T1 ASIC
— Chips arrived on April 1, 2002

e Dual-Imagine test board

Edge: 29 May 24, 2006

Application Performance (cont.)

100% = B host bandwidth
= =
. O stream controller
80% 1 overhead
o 70% < O memory stalls
S oom — '
- 60% =
- @ cluster stalls
[= 50% =
H -
o 40% = 8 kernel non main
(b}
X 30% - loop |
L . O kernel main loop
20% 1 overhead
10% - O operations
0% Y T T Y]

DEPTH MPEG QRD RTSL Average

Edge: 30 May 24, 2006

Applications match the bandwidth hierarchy

1000

100

Bandwidth (GB/s)
H
o

|

0.1

Peak DEPTH MPEG QRD RTSL

Edge: 31 May 24, 2006

Merrimac — Streaming Supercomputer 23

Backplane —__
Board ~
Node __

> Node oo Node Board 2

64GBytes/s 2 16
16 Nodes Backplane 2
1K FPUS [) Board 32 32 Boards
2TFLOPS
512 Nodes
32GBytes 39K EPUs ® ® Backplane 32
64TFLOPS
s [
12GBytes/s
32+32 pairs /[On-Board Network
= | |
48GBytes/s
128+128 pairs g [| .]
ntra-Cabinet Network
6” Teradyne GbX O ! W
768GBytes/s | | | |
2K+2K links [Inter-Cabinet Network]
Ribbon Fiber

Merrimac Application Results

Application

StreamFEM3D
(Euler, quadratic)

Sustained
GFLOPS

LRF Refs

153.0M
(95.0%)

SRF Refs

6.3M
(3.9%)

Mem Refs

1.8M
(1.1%)

StreamFEM3D
(MHD, constant)

186.5M
(99.49%)

7.7M
(0.4%)

2.8M
(0.2%)

StreamMD
(grid algorithm)

90.2M
(97.5%)

1.6M
(1.7%)

0.7M
(0.8%)

GROMACS

108M
(95.0%)

4.2M
(2.9%)

1.5M
(1.3%)

StreamFLO

234.3M
(95.7%)

7.2M
(2.9%)

3.4M
(1.4%)

Simulated on a machine with 64GFLOPS peak performance and no fused MADD
* The low numbers are a result of many divide and square-root operations

Applications achieve high performance and

make good use of the bandwidth hierarchy

Other Stream Processors

Edge: 34 May 24, 2006

Other Stream Processors

SPU || SPU |

sPU SPUI
~ Processor __

#rrrr-Corest-+ [N i 11 H EEE

EIB (up to 96B/cycle)

ClearSpeed CSX600
96 GFLOP/s 10W STI Cell

~200 GFLOP/s 100w

GPUs
50-100 GFLOP/s 10-30W

Edge: 35 May 24, 2006

Other Stream Processors

e Technology pushing many to build stream processors

e GPUs (Nvidia, ATIl), Game Processors (Cell), Physics
Processors (Ageia), Accelerators (Clearspeed)

e Many (10s-100s) of FPUs
e Distributed local storage

e Latency hiding on access to external memory
— Block access or deeply multithreaded

e All benefit from stream programming
— But the right architecture makes it easier and more efficient

Edge: 36 May 24, 2006

Architecture Issues

e On-chip memory

— Read and write access to on-chip storage
e Producer-consumer locality demands write access

— Data movement between on-chip memories
e Without going off chip

e Off-chip memory

— No substitute for bandwidth
— Efficient gather and scatter required

Edge: 37 May 24, 2006

What's Next?

Edge: 38 May 24, 2006

ILP i1s mined out — end of superscalar processors

Time for a new architecture

le+7

le+6

le+b
le+4
le+3
le+2
le+l

le+0

le-1
le-2

le-3

le-4

1980

)
g

— Perf (ps/Inst)
Linear (ps/Inst)

~—
\\

N .
|1 T —Year
./

2010

Dally et al. “The Last Classsical Computer”, ISAT Study, 2001

Edge: 39

30,000:1

2020

May 24, 2006

Computing landscape is changing

e Many function units
e Deep, distributed storage hierarchy
e Communication limited

e Research i1s needed to understand how to architect
and program these processors

e Not an incremental fix:

— Fundamental rethinking of basic architecture, programming
model, and compilers is required

Edge: 40 May 24, 2006

Software Topics

e Exposed Communication Programming Models
— Abstract storage hierarchy and communication costs
— Portable codes with predictable performance

e Compiling bulk operations
— Strategic (vs tactical) program reorganization
— Scheduling bulk data transfers
— Size and shape of blocking

— lrregular computations
e Localization of shared neighbors

— Variable size results
e Applications
— Communication-efficient algorithms

Edge: 41 May 24, 2006

Hardware Topics

e Close efficiency gap with hard-wired engines
— Gap is 10-100x today (10 for stream processors)
— Efficient data movement is first step
— Other overheads remain to be removed

e Storage hierarchies that can be abstracted
e Balancing parallelism ILP x DLP x TLP

e On-chip networks
— To connect within and between levels of the hierarchy

e Communication and synchronization mechanisms

— Drives granularity — which in turn determines available
parallelism

e Mechanisms for reuse of irregular data

Edge: 42 May 24, 2006

Summary

e Communication is expensive, arithmetic is cheap
— Parallelism to exploit arithmetic
— Locality to conserve bandwidth

e Architectures evolving toward a deep, broad storage
hierarchy
— Storage to hide latency, cover bandwidth taper
— Stream processors >10x efficiency of conventional CPUs

e Explicitly manage this hierarchy
— Makes efficient use of scarce, expensive resources
— Enables optimization

e Generalized Stream programming
— Bulk operations: data movement and kernels
— Parallelism, Locality, and Predictability

Edge: 43 May 24, 2006

