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Fig. 1: We highlight the performance of our algorithm to generate diffraction effects from smooth objects in these complex, dynamic
scenes. We precompute diffraction kernels using wave-based methods and they are coupled with interactive ray tracing-based
propagation algorithms. The overall algorithm can simulate diffraction effects, along with specular and diffuse reflections, in
complex dynamic scenes and results in improved acoustic effects.

Abstract—We present a novel method to generate plausible diffraction effects for interactive sound propagation in dynamic scenes.
Our approach precomputes a diffraction kernel for each dynamic object in the scene and combines them with interactive ray tracing
algorithms at runtime. A diffraction kernel encapsulates the sound interaction behavior of individual objects in the free field and we
present a new source placement algorithm to significantly accelerate the precomputation. Our overall propagation algorithm can
handle highly-tessellated or smooth objects undergoing rigid motion. We have evaluated our algorithm’s performance on different
scenarios with multiple moving objects and demonstrate the benefits over prior interactive geometric sound propagation methods. We
also performed a user study to evaluate the perceived smoothness of the diffracted field and found that the auditory perception using
our approach is comparable to that of a wave-based sound propagation method.

Index Terms—sound propagation, diffraction, dynamic environments, spatial presence

1 INTRODUCTION

Research in virtual environments over the last few decades has demon-
strated that improved sound simulation and rendering can significantly
augment a user’s sense of presence [13]. Sound can induce a sense of
“object presence” and “spatial presence” at the same time, raising the
fidelity of VR and AR simulations [6]. As the characteristics of the envi-
ronment or source locations vary in real time, it is important to perform
interactive auralization that accurately captures any changes caused by
the user or the environment, and to generate smoothly rendered audio.

The most accurate algorithms for sound simulation are based on
directly solving the acoustic wave equation using numerical methods
and compute the pressure field. Recently, different precomputation-
based solvers have been proposed to compute an acoustic kernel, which
is used at runtime for interactive propagation for dynamic sources
or listeners [9, 19, 38]. However, these technique have two major
limitations: (a) the precomputation time and the memory overhead can
be very high requiring large compute clusters; (b) they are limited to
static scenes and cannot handle dynamic objects, a common scenario
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in virtual environments.
Most interactive algorithms for sound simulation and rendering

for dynamic scenes are based on geometric acoustics and ray trac-
ing [11, 14, 26, 31]. Recent ray tracing algorithms can handle a high
number of sources and compute higher order reflections at interactive
rates on commodity desktop processors [2]. It is well-known that pure
geometric-acoustics techniques work well for high frequencies, and
can’t model low-frequency wave effects such as diffraction or occlu-
sion. In practice, it is important to model these wave effects to correct
the spectral content of reflected sound from finite surfaces, such as
overhead reflectors or wall edges. Diffraction becomes very impor-
tant for listeners located inside the shadow zones of obstacles and the
inaccurate modeling of these effects can lead to a loss of realism in
VR [23].

There is significant literature on augmenting the geometric acous-
tic techniques with diffraction approximation. Most prior techniques
are designed to model edge diffraction [26, 31, 34], which includes
propagating sound around the corners as well as scattering sound in
all directions from wedges of any angle. However, current interactive
diffraction algorithms have some limitations. First, they are less accu-
rate for highly tessellated objects or smooth surfaces and can result in
discontinuous sound field in occlusion scenarios. Second, it is compu-
tationally challenging to handle highly tessellated objects because the
computational complexity increases exponentially with the number of
diffracting edges.
Main Results: We present a novel approach based on object-based
diffraction kernels to model sound propagation in dynamic environ-
ments. Our hybrid formulation combines the accuracy benefits of
wave-based computation with the efficiency and flexibility of geometric
ray-tracing methods. The resulting approach can handle virtual environ-
ments composed of highly tessellated, dynamic objects at interactive



rates and offers these benefits:

• Efficient source-placement algorithm that significantly reduces
the precomputation time by reducing the required number of
wave-based simulations needed to compute the diffraction kernel
of an object.

• Handles highly tessellated or smooth objects while modeling
diffraction and occlusion effects.

• Efficient runtime based on ray tracing with minimal overhead
enabling interactive performance for dynamic scenes.

In the preprocessing stage, we efficiently compute the diffraction
kernels that encapsulate the sound interaction behavior of individual
objects in free field. These kernels capture all the interactions of sound
waves with the objects, including reflections, diffraction, scattering and
interference, and we present a novel source placement algorithm for
efficient computation. Our algorithm exploits the symmetric proper-
ties of the scattering field and the object shape to compute diffraction
kernels at only a few incoming directions and accelerates the precom-
putation by 1−2 orders of magnitude (Section 3) for efficient desktop
computation.

We present a new coupling algorithm that integrates these diffraction
kernels with interactive ray tracing at runtime. Our modified ray tracing
algorithm uses the object-based diffraction kernels to approximate
the wave effects such as diffraction and combines them with standard
geometric ray tracing techniques to compute reflections at interactive
rates (Section 4). We demonstrate the interactive performance on many
dynamic scenes with smooth, highly tessellated objects undergoing
rigid motion (Section 5). We highlight improved accuracy as compared
to prior interactive, geometric methods for capturing diffraction effects
and also compare the performance with wave-based solvers (Section 6).
We also perform a perceptual evaluation using a user study to compare
the auditory perception of our algorithm with a wave-based propagation
algorithm (Section 7).

2 RELATED WORK

In this section, we give a brief overview of prior work on sound propa-
gation.

2.1 Wave-Based Methods

These methods are the most accurate way of simulating sound propa-
gation as they solve the acoustic wave equation directly. Some of the
frequency domain solvers include methods based on the finite-element
method (FEM), boundary-element method (BEM), and the time domain
solvers include methods such as finite-difference time domain (FDTD)
and adaptive rectangular decomposition (ARD). However, their space
and time complexity increases as a third or fourth power of frequencies.
Many interactive propagation techniques have been proposed for static
scenes that precompute an acoustic kernels and use them to compute
the impulse responses at runtime as a function of the source or listener
positions. Equivalent source method based techniques have been used
to precompute the acoustic radiation characteristics of rigid objects [9]
or the per-object and inter-object transfer functions for sound propaga-
tion [16,17] and can also be combined with ray tracing algorithms [38].
However, the computational overhead of these methods is very high
and they require large compute clusters for pre-computations. Fur-
thermore, none of these methods can handle dynamic objects in the
scene owing to need to recompute the total field if the objects in the
scene move (i.e., the inter-object transfer function computation would
change), thereby limiting their application to static scenes. [17] can
handle moving sources and listeners but not moving objects while [16]
can handle either a moving source or a moving listener. In contrast, our
method has a lower computational overhead and can handle dynamic
source, listeners, and objects, though our accuracy is slightly lower.
Raghuvanshi et al. [19, 20] use the adaptive rectangular decomposition
method to precompute acoustic responses on a sampled spatial grid.

2.2 Geometric Acoustics and Diffraction
Geometric techniques model the acoustic effects based on ray theory
and typically work well for high-frequency sounds to model specular
and diffuse reflections [24]. Wave phenomena such as diffraction
must be modeled explicitly or separately and prior methods are limited
to edge diffraction. The Biot-Tolstoy-Medwin (BTM) model is an
accurate time-domain diffraction formulation that evaluates an integral
of diffracted sound along finite rigid edges, can be extended to higher-
order diffraction, and can be combined with wave-based methods [21,
30]. However, it is expensive to evaluate for complex scenes and
limited to offline computations. An alternative approach, the uniform
theory of diffraction (UTD), is a less accurate frequency-domain model
of diffraction for infinite edges that can generate plausible results for
interactive simulation in certain scenarios [31, 34]. The complexity
of these edge-based diffraction techniques can increase exponentially
with the maximum diffraction order, since each edge in the scene can
interact with every other edge. To reduce the cost of visibility testing
for high-order UTD diffraction, a precomputed edge-to-edge visibility
graph can be used for static scenes, but current interactive systems
are limited to low orders of edge-diffraction [26]. However, it is not
clear whether techniques based on UTD can handle complex (highly
tesselated) models that are frequently used in gaming and VR due to
the high number of potential diffraction edges [33]. An accurate sound
particle model of edge diffraction based on the Heisenberg uncertainty
principle has been proposed for high-order diffraction [29], but is not
robust for complex objects.

2.3 Hybrid Methods
Given the relative benefits of wave-based and geometric methods, hy-
brid techniques have been proposed to combine them. These include
methods based on spectral decomposition of the low frequencies (i.e.,
less than 1kHz or 2kHz) are modeled using wave-based solvers, such
as FDTD or FEM, and the high frequencies are modeled using ray
tracing or beam tracing [7, 15, 28]. The computational complexity of
these hybrid approaches is dominated by the wave-based methods that
are performed over the entire acoustic domain. Another set of hybrid
algorithms performs a spatial decomposition of the simulation domain
into near-object regions and far-field regions for precomputation [38].
It uses an equivalent source formulation to compute the per-object and
inter-object transfer functions, and combines that with a geometric ray
tracing method to handle higher frequencies. However, the computation
of per-object and inter-object transfer is expensive and also requires a
large compute cluster for precomputation. As with [16, 17], moving
objects in the scene would require recomputing the inter-object transfer
functions making this method limited to static scenes with either a
moving source or a moving listener. Furthermore, different coupling
techniques have been proposed to combine the results at the interfaces,
based on BEM [8], FDTD [37], FEM [1], and ESM [38]. However,
none of these approaches can handle dynamic scenes at interactive
rates.

3 ACOUSTIC FIELD & DIFFRACTION KERNEL

In this section, we present a high-level overview of our sound propaga-
tion algorithm based on diffraction kernels. Figure 2 shows the overall
pipeline of our approach divided into two distinct stages: precomputa-
tion to compute the diffraction kernels and runtime based on interactive
ray tracing. Table 1 gives a list of all the symbols used.

3.1 Acoustic wave equation
The acoustic wave-equation models the scattering behavior of objects.
In spherical coordinates the wave-equation can be expressed as:

∇
2 p =

∂ 2 p
∂ r2 +

2
r

∂ p
∂ r︸ ︷︷ ︸

radial part

+
1

r2sinθ

∂

∂θ
(sinθ

∂ p
∂θ

)+
1

r2sin2θ

∂ 2 p
∂φ 2︸ ︷︷ ︸

angular part

(1)

where p is the pressure and (r,θ ,φ) correspond to x in spherical coor-
dinates. The complete solution to the equation above can be expressed



Fig. 2: Interactive Sound Propagation and Rendering: We highlight different stages of our novel sound propagation and rendering pipeline,
which uses per-object diffraction kernels. In the precomputation stage, we adaptively perform BEM simulations for certain directions (computed
using our novel source placement algorithm) and measure the outgoing pressure fields produced by the scattering of plane waves at various
frequencies. These pressure fields encode the scattering as a function of frequency, the input and output directions and converted into an efficient
spherical harmonic representation called the diffraction kernel. At runtime, the diffraction kernel is coupled with an interactive path tracing
algorithm to simulate sound propagation and auralization in dynamic scenes.

Symbols Meaning

x Incident direction
y Outgoing direction
ω Frequency

d(y,ω) Scattered pressure field
d̃(y,ω) SH representation of d(y)

D(x,y,ω) Diffraction kernel
P(y) Probability density function

Ii Incident sound intensity
Io Outgoing sound intensity

Apro j Projected area
H Visible-curvature histogram
SS Shape signature

Table 1: A table of important mathematical symbols used in the text.

in terms of the radial and angular parts:

ψlm(x,y) = Γlm h2
l (kr)︸ ︷︷ ︸
radial

Y m
l (x−y)︸ ︷︷ ︸

angular

(2)

The angular part of the solution is described using spherical harmonics
Y m

l while variation in the pressure because of distance is controlled by
the Hankel function h2

l .

3.2 Diffraction Kernels
We use a diffraction kernel representation to capture the angular portion
of the solution while the radial variation of pressure is approximated by
a geometric sound propagation technique. We consider a spherical grid
of incoming directions and generate plane-waves from each direction
of this grid. For each plane wave, we compute the scattered field
for the object on an offset surface of the object using a wave-based
method. The angular portion of this scattered field is expressed using
the diffraction kernel in a compact spherical harmonic basis. With the
angular scattering behavior of an object computed for all the plane
wave directions and frequencies, we use a geometric sound propagation
method to handle the radial portion thus approximating the solution to
the wave-equation.

Our diffraction kernel encapsulates the sound field interactions of
the object and maps the incoming sound field reaching the object to
outgoing, diffracted field emanating from the object. In contrast to the
per-object transfer function [16], the diffraction kernel formulation is
defined in the far-field of the object. This can significantly reduce the
precomputation overhead and makes it easier to integrate with inter-
active ray tracing. Mathematically, the incoming pressure field in the
far-field can be expressed in the plane-wave basis whereas the outgoing
sound field in the far-field is expressed using spherical harmonic basis,
as shown in Equation 1.

Scene Classification Our approach is based on computing the diffrac-
tion kernel for each objects in the scene. As a preprocess, we classify
the scene in terms of the object type. The scene is first classified into
static and dynamic (moving) objects. Static objects typically include
walls, buildings, and other typically large, immovable objects in the
scene. Dynamic objects can include cars, humans, chairs, and doors,
all of which can potentially undergo rigid motion in the environment.
Our approach is designed to capture the scattering behavior of dy-
namic objects, while the static environment is handled by other sound
propagation techniques.

3.3 Source Placement
Diffraction is a direction dependent phenomenon and in order to capture
the variations in the diffracted field, we need to capture the sound
interaction behavior of an object from all possible directions. This can
be naı̈vely computed by constructing a densely sampled sphere around
the object and evaluating the diffracted field for each vertex on the
sphere. However, such a method would incur a large precomputation
cost because the wave-based solvers typically used to compute the
scattering are slow and the complexity increases as a function of the
geometric tessellation and maximum frequency. In order to reduce
the pre-computation overhead, we present a novel source placement
algorithm that exploits the acoustic scattering invariance of a dynamic
object to reduce the number of sources we need to place on the sphere
to capture its scattering behavior from all incident angles. Our source
placement algorithm is used in the first stage of our precomputation
pipeline and computes the representative source positions, as shown in
Figure 2.

3.3.1 Visual Symmetry vs. Scattering Field Symmetry
The goal of our source placement tends to exploit the symmetry in the
acoustic scattering field of each object, and thereby compute a few rep-
resentative source positions. One possibility is to exploit the visual or
shape symmetry of each object. There is extensive work on symmetry
detection in computer vision and geometry processing [18], which are
used to compute a representation of their Euclidean symmetries. How-
ever, the criteria used in these methods are not sufficient for detecting
the symmetry in the acoustic scattering field of an object. For example,
there are objects that exhibit little or no shape symmetry, but still exhibit
symmetry in their acoustic scattering field. As a result, our goal is to
develop an approach that generalizes the notion of shape-similarity and
is not sensitive to the small variations in the viewed-geometry. One of
the metrics in our source placement algorithm is to use projected areas
to overcome these issues.

3.3.2 Multi-stage Algorithm
Next, we describe various stages of our source placement algorithm
including mesh simplification, computing the projected area for each



Fig. 3: Overview of our source placement algorithm: We use a novel source placement algorithm to compute the representative source
positions for each object: (a) Given a scatterer (human), we consider a densely sampled sphere around it; (b) For each point si on the sphere the
projected area and viewed curvatures are computed; (c) The curvature values are binned into histograms Hi and together with the projected area
Ai give a shape signature SSi at si. (d) These shape signatures are used to compute geometric similarity between different viewpoints. (e) Points
are grouped together if their shape signatures are within error thresholds εA and εH . The overall algorithm results in 1−2 order of magnitude
improvement in the precomputation stage.

incident direction and identifying the shape and diffraction field from
each direction. We compare the view-dependent shape information to
compute the geometric invariance among various incident directions
and clump them together.
Projected Area: The diffraction field is a strong function of the shape
and orientation of the object. In particular, for convex objects it has
been shown that diffraction is a function of the projected area of the
object [3, 36]. Formally,

Psc(x) = KApro j(x)Pin, (3)

where Apro j(x) is the projected area at x,Pin is the incident field, Psc is
the scattered field (or diffraction field), and K is a constant. We exploit
this dependence of the scattered field on the projected area and extend
it to arbitrary or non-convex objects by augmenting the projected area
with curvature histograms (described below) to uniquely identify the
shape signature.
Shape Signature: Our source placement algorithm initially considers
a densely-sampled list of possible source positions S on a sphere. For
a point si ∈ S,∀i ∈ (1..|S|), we compute an orthographic projection
matrix P(xi) and compute the projection of the vertices of the object
(v ∈V ), whose normals Nv

j satisfy the Nv
j · si > 0. Next, we construct

a boundary Bi using the al pha or α−shape of v and compute the area
enclosed by the boundary Apro j

i . α− shape is the generalization of the
notion of a convex-hull of a point set M, with α → 0 gives us M, while
α → ∞ giving us the convex-hull of M. At the end of this step, we have
computed the projected area of the object for each point on S.

In practice, the projected area alone cannot be used as a unique
signature of the viewed shape and may result in false positives, in
terms of classifying rather different shapes as similar. Therefore, we
augment our metric by using the curvature of the object to define the
shape signature of the object for each si. This view-dependent shape
signature encapsulates the intrinsic characteristics of the shape when
viewed from different source points (or incident angles). We use well-
known techniques [4] to compute the principal curvatures κ1 and κ2 for
the scatterer, and compute them for each v. Instead of using κ1 & κ2
separately, we consider them as κv j = |κ1v j

|+ |κ2v j
| and bin them in

a histogram Hi that uses N bins. The bin values range between the
minimum and maximum values of |κ1|+ |κ2|. Using the projected area
and curvature, we get a shape signature (SSi) for each si:

SSi =

(
Apro j

i
Hi

)
(4)

Rotational symmetry: After computing the shape signature, we iterate
over the points in S. Starting with a point si, we compare its shape

Fig. 4: Similar Shape Signatures: We highlight different points that
have similar shape signatures. Each set of points with the same color
on the sphere corresponds to a set that is computed as geometrically
invariant and will be represented using a single sound source. (a) The
source placement automatically detects symmetry in the model which
is bilateral in this case; (b) shows another viewpoint and the since
no symmetry exists in that plane, the two hemispheres have different
colors.

signature SSi with every other point’s shape signature SS j by computing
the relative difference in the projected area Apro j

i and Apro j
j ; and we

also compute the difference in histogram Hi and H j using the Kullback-
Lieber divergence:

DKL(Hi||H j) =
N

∑
k

Hi(k)log(
Hi(k)
H j(k)

) (5)

This metric gives us a measure of the mutual information contained in
two shapes. A DKL value of zero indicates that the shapes are similar
and would likely have similar scattering properties. On the other hand, a
value of one would indicate that the shapes are very dis-similar. Using
appropriate thresholds for the relative projected areas and DKL, we
cluster the points that fall within the threshold bounds with respect to si.
The threshold values are used to strike a balance between the number
of sources that are selected from S and the error in computing the total
scattering function of an object. Finally, we choose one representative
point in each cluster and use that point as the source position for which
the scattering function is computed using a wave-based solver. The
scattering functions for other points in the cluster are extrapolated from
this representative point.
Reflection Symmetry: Many objects used in the real world exhibit re-
flective symmetry (e.g., a pillar). Although our algorithm can recognize
some sort of symmetry in the object, it cannot identify the nature of



Fig. 5: Reflection symmetry detection: Given a cluster of points with
similar shape signatures (a) we perform a pair-wise comparison of the
boundaries and compute Hausdorff distance; (b) Boundaries B1 and
B2 that nearly overlap after being reflected result in a large drop of
their Hausdorff distances, while B3 and B4 do not exhibit reflection
symmetry with each other or with B1 or B2’ (c) A relative change in
the distance indicates reflection symmetry between (B1 and B2).

that symmetry. The previous steps detect the invariance in geometry
which includes rotational symmetry along with insignificant changes in
shape with the change in incident angle. In order to explicitly identify
the reflection symmetries in a cluster, we perform a pair-wise compar-
ison between the points in the cluster (Fig. 5). For each such pair
of points, we compute the silhouette of the object from these points
and compute the Hausdorff distance between these boundaries. The
Hausdorff distance (dH ) between two non-empty sets (X ,Y ) that are
subsets of a metric space (M,d) is given by:

dH(X ,Y ) = max
x∈X
{min

y∈Y
{d(X ,Y )}}, (6)

where d(X ,Y ) is some measure of distance in M (L2 metric in our case).
We reflect these 2D boundaries either along X or Y axis depending
on the source positions and compare their Hausdorff distances. If the
relative Hausdorff distance is below our threshold, we consider these
boundaries as reflections of each other. (Fig. 5(b,c)). In case an object
exhibits both rotational and reflection symmetry at the same point, our
method automatically considers them to be rotationally symmetric.

3.4 Diffraction Kernel Computation
After the reflection symmetry test, we compute the set RP(S) =
{{APro j

1 ,H1},{APro j
2 ,H2}, . . . ,{APro j

n ,Hn}}, where each element of
RP is the set of points with a similar projected area (Apro j

i ) and curva-
tures (Hi). In terms of diffraction kernel computation, we perform a
single wave-based simulation for such a set, as explained below. Over-
all, our algorithm performs O(n) wave simulations, where n = |RP|
with n≤ |S|, to capture the diffracted field from all incident directions.
In practice, n is orders of magnitude smaller than |S| (Table 2). After
these n simulations, we extrapolate the field within a particular set
by rotating and/or reflecting the computed field, thereby giving us the
complete diffracted field for all si ∈ S.

For an incoming plane wave coming from direction x, the outgo-
ing sound field d(y,ω) is computed using state-of-the-art wave-based
methods (e.g. BEM) on a spherical offset surface in far-field. This
outgoing field d(y,ω) can be expressed in the spherical harmonic basis
using least-squares fitting:

d(y,ω)≈ d̃(y,ω) =
lmax

∑
l=0

l

∑
m=−l

Y m
l (y)cm

l (ω) (7)

where d(y,ω) is the outgoing sound field computed using the wave-
based solver, lmax is the spherical harmonic order, and cm

l (ω) are the
basis function coefficients as a function of frequency. This process
is repeated for all the incoming plane wave directions for all the fre-
quencies. We use a rectangular subdivision in spherical coordinates to

Fig. 6: We highlight how the diffraction kernel D(x,y,ω) can be inte-
grated into Monte Carlo path tracing using two-way coupling. When
an incoming ray with direction x strikes a diffracting object, the ray
is scattered in a randomly chosen direction y with probability density
function P(y). The diffraction kernel in the direction y is evaluated at
the four corners of the quad intersected by x, and the resulting pres-
sures D(x1,y,ω), D(x2,y,ω), D(x3,y,ω), and D(x4,y,ω) are bilin-
early interpolated according to x to yield the pressure transfer function
D(x,y,ω). The energy carried by the ray is then multiplied by D(x,y,ω)2

P(y)
to get the output ray energy.

compute the possible incoming plane wave directions. This enables
efficient bi-linear interpolation of the outgoing field for any arbitrary
incoming direction during the runtime stage of our pipeline.

4 INTERACTIVE RAY TRACING WITH DIFFRACTION KERNELS

In this section, we present our diffraction kernel-based technique for
object-based sound propagation in dynamic scenes. We utilize a pre-
computed diffraction kernel to model sound interactions for complex
objects and couple it with a Monte Carlo path tracing framework to
compute sound propagation for the entire scene.

For the simulation of diffuse reflections, many variants of Monte
Carlo path tracing have been proposed that simulate the propagation
of sound energy by rays in frequency bands [11]. These include back-
ward ray tracing for multisource scenes [25], and bidirectional path
tracing [2], which can also be accelerated by exploiting temporal co-
herence. Our approach extends these methods by developing new
interactive techniques for two coupling between the rays and diffraction
kernels.

The interactive ray tracing uses a bounding volume hierarchy to ac-
celerate ray intersections. These hierarchies are updated using refitting
algorithms, as the dynamic objects undergo rigid motion. After the
diffraction kernel D of a particular object is computed according to
Section 4, it can be used within any Monte Carlo path tracing sound
propagation algorithm to efficiently compute diffracted sound for the
object. This kernel information is stored in the bounding volume hier-
archy nodes associated with those dynamic objects. Our formulation
treats the diffraction kernel using a mathematical framework similar to
surface scattering modeled using bidirectional scattering distribution
functions (BSDF), which is widely used in visual rendering. BSDFs
describe the distribution of sound energy as a function of frequency
and the input and output direction of sound transport [5]. We use the
diffraction kernel in a similar way to model the wave scattering induced
by objects in all directions. Our modified path tracing algorithm uses
the diffraction kernel information to compute the new paths using D
for each ray, after it hits a dynamic object.

4.1 Coupling between ray and diffraction kernels

Our propagation algorithm exploits a two-way coupling between D that
are computed using BEM (i.e., wave-based method) and path tracing
(i.e., geometric acoustics). For the case of a single ray with input sound
intensity Ii and direction x, the outgoing sound intensity Io is given by
a spherical integral of the diffraction kernel over the outgoing direction



y:

Io(x,ω) =
∫

S
IiD(x,y,ω)2dS. (8)

Monte Carlo techniques are a simple way to numerically evaluate
integrals of this form as a weighted sum of many random samples [11].
As the number of samples approaches ∞, the expected value of the
integral converges to the exact value. The outgoing scattered intensity
can be approximated by a Monte Carlo estimator:

Io(x,ω)≈ 1
N

N

∑
j=1

Ii
D(x,y j,ω)2

P(y j)
(9)

where N is the number of samples, y j are the samples, and P(y j) is the
probability of generating sample y j. If a uniform sampling strategy is
used, P(y j) =

1
4π

. This formulation can be easily integrated with any
Monte Carlo ray tracer to compute object-based scattering. We utilize
this formulation to model the diffraction effects and approximate the
sound field in the regions that are occluded from each source.

In traditional forward path tracing, N random rays are emitted from
the surface of a sound source in the scene with energy 1

N . These
rays are then propagated through the environment until they strike a
surface, where the rays are scattered and attenuated according to the
sound material BSDF. The rays may undergo many interactions with
the geometry before either exiting the scene, reaching a maximum
interaction order or propagation time [25], or being eliminated via
Russian Roulette [10]. If a ray hits the listener, the ray’s intensity
at various frequency bands is accumulated to the impulse response
at the appropriate delay time. At each interaction, a shadow ray can
also be traced to the listener’s position to find additional propagation
paths. This is known as next-event estimation or diffuse rain [27]. This
procedure can also be conducted in reverse by emitting rays from the
listener [25], or by emitting rays from both source and listener [2].
Figure 6 demonstrates how the diffraction kernel can be integrated into
this path tracing framework. When a ray hits an object in the scene that
has an associated precomputed diffraction kernel, we scatter the ray
using the precomputed scattering function rather than the usual BSDF.
This is performed by randomly sampling the outgoing ray direction y
according to probability density function P(y). The diffraction kernel
is evaluated at y for the four precomputed scattering functions that are
closest to the incident ray direction x, then the evaluated pressure is
bilinearly interpolated. The energy carried by the outgoing ray is then
given by:

Io(x,ω)≈ Ii
D(x,y,ω)2

P(y)
. (10)

When many rays hit the scattering object, the integral of the outgoing
energy over all rays converges to the exact solution.

5 IMPLEMENTATION & RESULTS

In this section, we discuss our implementation and highlight the results
on complex benchmarks.

5.1 Performance and Comparisons
The preprocessing algorithm has been implemented using MATLAB.
We used available MATLAB code for computing the curvatures of
our objects. FastBEM is used as the boundary element method solver.
The runtime interactive ray-tracer is based on the geometric sound
propagation algorithm described in [26] and written in C++. We do not
use the original UTD-based method proposed in [26], and rather use
the coupled algorithm described in Section 4.2.1 for path tracing with
diffraction kernels.
Precomputation: Table 2 gives the geometric details of the objects
used in our scenes and the performance of our source placement al-
gorithm. Since BEM computation can be expensive and increases as
cubic function of the frequency, our novel source placement algorithm
makes it possible to handle complex, smooth objects with thousands of
triangles. We observe 8−137X speedups due to our source placement

algorithm. That enables us to perform the diffraction kernel precompu-
tations on a desktop PC, as opposed to using a large compute cluster.
Most prior wave-based methods [16, 20, 38] have significantly higher
memory and computational requirements.
Runtime System: Our interactive sound propagation algorithm has
been integrated with the Unreal Engine and used to evaluate the per-
formance of complex, dynamic benchmarks shown in Fig. 1. All the
timings were generated on a multi-core desktop PC CPU. The overall
system with integrated visual and sound rendering runs at 60Hz or more,
as shown in the video. The additional overhead of handling diffraction
kernels is very small and the overall performance is comparable to
UTD-based interactive propagation algorithms [26, 34].

Please refer to the supplementary video to see the capabilities of our
system for the benchmarks described below.

5.2 Benchmarks

We have evaluated our approach on various scenarios to highlight the
performance of our diffraction kernels in challenging environments
(Table 3). To accentuate the effect of diffraction kernels, we turn off
reflections in each of our benchmarks.

Concert: The concert scene shows the effectiveness of our diffrac-
tion kernels in handling complex diffracting objects such as humans
in an open environment. Each human model is represented using 11K
triangles and prior interactive UTD-based methods can’t handle such
scenes for plausible diffraction effects. The listener moves among a
crowd of people attending a concert and ducks to pick up a dropped
phone. The complex interactions of the sound source and human bodies
are efficiently and plausibly calculated using diffraction kernels.

City Block: This scene shows the listener moving through a modern
metropolis with various high-rise buildings. A helicopter flying over the
city goes behind one of the high-rises (cylindrical) causing the sound to
diffract around highly-tessellated objects. This scene demonstrates the
ability of our method to handle highly-tessellated, curved objects and
generate a smooth diffraction field around them. This results in smooth
audio rendering.

Parking Garage: This benchmark consists of a typical parking
garage with multiple pillars and cars. We use the pillars in the garage
and a moving ambulance as the diffracting objects. The listener moves
through the garage experiencing diffraction effects as the pillars ob-
struct the line-of-sight between the listener and various sources. Then
an ambulance comes into the garage to park and acts as a dynamic
diffraction object.

Oculus® First Contact: This benchmark is a modified version of
the famous First Contact demonstration that is being shipped by Oculus
®, along with their HMD. In this scenario, a playful robot acts as the
object and comes in between the sound source and the listener and
creates diffraction effects dynamically due to no line-of-sight. The 3D
printer in the scene generates an interactive object that also results in
diffraction effects along with a static monitor. Our approach can model
the diffraction effects due to these dynamic objects and generate smooth
audio rendering effects. We highlight these benefits in the video, by
only playing the diffracted sound with no reflections.

Multi-player Game: We showcase the efficiency of our approach
in this multi-player networked game. In this scenario, two players play
against each other in a networked environment and are trying to shoot
at each other. As the players move around, the sound gets diffracted
around different objects in the scene. As a result, simulating object-
based diffraction is important to simulate a continuous sound field. We
highlight these benefits in the video, by only playing the diffracted
sound with no reflections.

6 ANALYSIS

In this section, we analyze the various steps of our pipeline and high-
light the approximations and possible sources of error in the computa-
tions. We also compare the accuracy of our precomputation algorithm
with a wave-based solver (BEM) to evaluate the numeric accuracy of
the computed sound pressure field. There are three main sources of
error in our pipeline: Error in source placement, error introduced by



Fig. 7: The plot shows the heat map error introduced by our source placement algorithm for three different objects. The error is computed on
a sphere representing all the incoming directions for the diffraction (S). Given the source positions (RP) computed by our source placement
algorithm, we run BEM at these points and interpolate the field for the rest of the points in S using reflection and/or rotation. The plots here
show the MAE at each point on S by unwrapping it on to a 2D plane. The horizontal axis represents the latitude while the vertical represents the
longitude. As can been seen, even for complex objects at high frequencies, the error introduced by our source placement algorithm is < 2 dB.

Object #Vert. Size(m) freq(Hz) |RP| Speedup
Ellipsoid 10242 2 1000 50 38X

Ambulance 21746 3.9 1000 150 13X
Human 11250 1.8 2000 254 8X

Column 29954 4.7 1000 118 16X
Tower 44168 15 500 14 137X

Ball 2562 0.5 2000 1 1922X
Monitor 3650 0.46 2000 99 19X

Robot 23971 0.44 1000 229 8X
Pillar 25746 3 500 221 8X

Planter 11114 2.78 500 323 6X

Table 2: Diffraction Kernel Computations: The table highlights the
geometric complexity, size of objects (meter), maximum frequency,
running times for computing the diffraction kernel of different objects.
The value of |S| is 1922 in all the benchmarks. The speedups obtained
using our source placement algorithm are highlighted in the last column.

the band-limited diffraction kernel, and error incurred as a result of
Monte-Carlo ray-tracing at runtime.

6.1 Source Placement

The source placement algorithm introduces errors due to simplification
and metrics used to detect rotational and reflection symmetry. This
error is also governed by the underlying mesh representation and the
initial choice of source positions on the sphere. This could result in
changes or errors in the final pressure field that is computed using BEM
using those source cluster positions. This error is more at the higher
frequencies, because the diffracted component of the sound field is a
lot more ”focused”, as compared to that at the lower frequencies, and is
sensitive to spatial variation. In our benchmarks, we limit the maximum
frequency to 2kHz.

Fig. 7 shows the error introduced by our source placement algorithm
expressed as mean absolute error (MAE) in dB. MAE is computed as:

MAE =
∑

n
i=1 |P(i)computed −P(i)re f |

n
(11)

where Pcomputed is the interpolated field computed by our algorithm
at an incoming source direction and Pre f is the reference pressure at the

Scene #Vert. #D PreC(Hr) Runtime(ms)
Concert 10242 11 4 53

City-Block 21746 2 1 101
Parking-Garage 11250 4 7 115

First-Contact 29954 1 2 43
Game 44168 2 6 84

Table 3: Runtime Performance Analysis: We highlight the perfor-
mance of our interactive sound propagation algorithm on a desktop
multi-core PC. We highlight the number of diffraction objects (D-
objects), precomputation time (PreC) in hours and the average frame
time (ms) on a multi-core desktop CPU. Our algorithm can perform
interactive sound propagation in dynamic scenes with specular and
diffuse reflections and diffraction effects.

source direction. n is the number of the points on which the scattered
pressure is computed.

As can be seen in Fig. 7, the error introduced for complex objects
such as human and robot is below 2 dB even at frequencies as high as 1
kHz.

6.2 Diffraction Kernel
Diffraction Kernels represent the BEM pressure computed on a sphere
based on a spherical harmonic basis (Eq. 7). Theoretically, spherical
harmonics can fully represent a spherical function with Lmax→ ∞, but
in practice they have to be band-limited for practical reasons. This
introduces an error given be εd = d(y,ω)− d̃(y,ω) in our diffraction
kernels (Fig. 8). We highlight how this error increases in the diffraction
kernel with increasing spherical harmonic order. In our current imple-
mentation, we use 9th order spherical harmonics and they generate
plausible sound effects in our benchmarks.

6.3 Monte-Carlo Sampling
We show the plot (Fig. 9) of the pressure field generated by a densely
sampling of the diffraction kernel and compare to the pressure field
generated by BEM for the human models. This comparison highlights
the numerical accuracy of the sound pressure that is approximated using
the diffraction kernels. We use dense ray sampling to generate this plot
for the diffraction field of an object. In this case, each point on the
grid is used to trace a ray backwards from that position towards the



Fig. 8: The plot shows the variation of the relative error when trying to
represent a diffracted field of a human in a spherical harmonic basis.
As can be seen, the error increases sharply with frequency and low
SH-order but stays close to zero with high order spherical harmonic.
High-order spherical harmonics are more expensive to evaluate and
tend to be numerically unstable

object. This ray is filtered by the diffraction kernel, depending on the
angle of incidence y and used to compute the pressure at that position.
This process is akin to Monte-Carlo sampling in the limit with a very
high sampling density. As mentioned in Section 4.2, Monte-Carlo
path tracing methods converge to the value of the sampled function
as the number of samples approach infinity. As shown in the figure,
the diffraction kernels converge to the BEM computed pressure field
for different frequencies. This indicates the accuracy of our diffraction
kernel based method is governed by the underlying sampling criterion
used in path tracing.

7 PERCEPTUAL EVALUATION

We performed a user study to evaluate the perceptual efficacy of
diffraction-kernel-based sound propagation algorithm. Our study is
based on the psycho-acoustic evaluation of numeric and geometric
sound propagation algorithms [22, 23]. In particular, that study com-
pared UTD-based interactive sound propagation algorithm with a wave-
based sound propagation algorithm by evaluating the diffracted sound
field around an obstacle by placing the subjects along a semi-circle.
The study [23] demonstrated that auditory perception improves due to
wave-based sound propagation and the computed diffracted field decays
nearly linearly with an increasing diffraction angle. On the other hand,
the diffracted field computed using UTD-based diffraction exhibited
an erratic behavior. Given the known benefits of wave-based sound
propagation algorithms, we perform a 2-way comparison between the
diffracted sound fields computed using diffraction kernels and BEM
based sound propagation.

7.1 Participants
Fourteen subjects participated in this study with informed consent.
The ages ranged from 23 to 28 (Mean = 25.7 with SD = 3.22). The
participants were recruited at a university campus. All participants
reported normal hearing.

7.2 Apparatus
The setup consisted of a Dell T7600 workstation with the sound deliv-
ered through a pair of Beyerdynamic DT990 PRO headphones. The
subjects wore a blindfold.

7.3 Stimuli
As in [23], the source was a ringing bell that was low-pass filtered
with a cut-off frequency of 300 Hz, so that the diffraction effects are
prominent. The sound source was placed 2m from the origin. The

Fig. 9: We compare the sound pressure field for an object (human)
computed using our modified ray tracing algorithm (Section 4) vs.
BEM (wave-based solver). We perform a dense ray sampling using
the diffraction kernel to compute the pressure field in the left figures.
The red arrows indicate the incident direction of the plane-wave. We
use 100×100 grid to sample at each point and filter them through the
diffraction kernel to compute the angular variation in the diffracted
sound field. The pressure values are in Pascals and we demonstrate
the results for two different frequencies, where diffraction effects are
prominent. These benchmarks show a close match between the sound
fields computed using our method vs. BEM. In practice, our approach
can perform these computations at interactive rates, where BEM solver
can take minutes.

subjects were placed at 5 equispaced positions along an arc with a
radius 3.5m of from the origin as shown in Fig. 10. The resulting sound
was prerecorded at each of these 5 positions and two diffraction methods
(diffraction kernel and BEM) and stored. On each trial the subject was
randomly placed at one these 5 positions with the diffraction method
randomized, too.

7.4 Design and Procedure

This was a within-subject study with the subjects wearing a blindfold.
The audio was delivered through headphones and rendered monaurally.
Before starting the experiments, the source sound clip was played to
familiarize the subjects with it. A 1.2m×1m×4m column served as
the diffraction object for the experiment.

The scene was open to make sure no reflections interfere with the
experiments. The subjects were placed in the ‘shadow-zone’ of the
diffracting object (Fig. 10) which is a region where the source is not in
the line-of-sight and only the diffracted sound can reach the listener.

A total of 14 participants took part in each group. For each of the
5 positions, the subjects were asked to rate the loudness of the sound
heard. The loudness was rated on an arbitrary, non-physical scale
ranging from 1−20. The scale was explained to the subjects before
the start of the experiment: the extrema of our scale was relative to a
verbal standard with 1 corresponding to a very quiet sound such as that
of a falling leaf, while 20 was a loud sound akin to someone shouting
in one’s ears. It should be noted that loudness perception was not the
focus of our experiment; rather, the smoothness of change in perceived
loudness across spatial variations as measure of the quality of each



Fig. 10: The figure shows the setup used for the user study that com-
pared the psychoacoustic characteristic of our diffraction kernel based
algorithm with BEM-based wave propagation algorithm. We consid-
ered 5 equi-spaced points in the shadow region (black) of the obsta-
cle(green). The obstacle is a column and only the diffracted sounds are
audible in the shadow region. We evaluated the auditory perception
using diffraction kernel and BEM-based sound propagation.

diffraction method. The loudness of the sounds for the two diffraction
methods was level-matched by matching the root mean square (rms) of
the sounds generated by the two methods at a reference position in the
line-of-sight of the source.

A block consisted of 10 (5 positions × 2 diffraction methods) trials
with three blocks per subject giving a total of 30 (5 positions × 2
diffraction methods × 3 blocks) readings. The subjects were placed
randomly at one of the 5 positions with the sound played through two
diffraction methods which were chosen randomly, as well. The subjects
were allowed to take any many breaks as needed. Subjects took an
average of 10−15 minutes for the entire experiment.

7.5 Results

Fig. 11: Mean subject scores for different positions for the two methods
of diffraction.

A two-way, repeated measures ANOVA (factors: diffraction method
and listener positions) was performed on the subject’s ratings which
were averaged over the three blocks, normalized by the subject’s mean
score for all listener positions and diffraction methods, and scaled
by the grand-mean. The test failed to show significance for position
and diffraction method. Fig. 11 shows the mean values of the subject
ratings for the two methods. The results show that our diffraction kernel
algorithm performs comparably to the BEM-based wave propagation
algorithm.

8 CONCLUSIONS, LIMITATIONS AND FUTURE WORK

We present a novel approach to model diffraction effects for ray trac-
ing based plausible sound generation algorithms. We introduce the

notion of diffraction kernels that can capture many wave effects like
diffraction, reflections, scattering, intra-object interference and other
interactions using wave-based precomputation. These kernels are com-
puted independently for each dynamic object in the scene in a few
minutes based on a novel source placement algorithm. Moreover, we
can easily integrate these kernels with ray tracing based interactive
geometric propagation algorithms and have small runtime overhead.
We demonstrate the benefits over prior sound propagation algorithms
on complex dynamic scenes. We also performed a user study to evalu-
ate the perceived smoothness of the diffracted field and observed that
the auditory perception using our approach is comparable to that of a
wave-based sound propagation method. To the best of our knowledge,
this is the first practical method to generate diffraction effects from a
smooth object in dynamic scenes for VR applications.

Our approach has some limitations. While our hybrid approach
offers many benefits over geometric acoustic methods, it is less accu-
rate than wave-based propagation methods. Our approach is mainly
designed for scenes with well-separated rigid objects, whose scatter-
ing behavior does not change at runtime. The diffraction kernels only
encapsulate the sound interaction behavior of individual objects in the
free field and do not account for phase or inter-object interactions. As
a result, they may not work well in certain scenarios. Our formulation
of diffraction kernels only take into account the magnitude and the
direction, and not the phase.

There are many avenues for future work. It would be useful to model
other interactions such as first order surface scattering based on Kir-
choff approximation [33] or wave-based geometric acoustics [12] to
model other wave interactions. It would be useful to design approxi-
mate schemes that can also model phase, as that is needed for certain
applications, such as seat-dip effects in concert halls. The main goal is
to estimate the propagation delays for all possible paths. Finally, we
would like to perceptually evaluate our approach in other applications
such as social VR and telepresence, where it is important to simulate
diffraction effects and generate smooth sound fields.
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[14] T. Lentz, D. Schröder, M. Vorländer, and I. Assenmacher. Virtual reality
system with integrated sound field simulation and reproduction. EURASIP
Journal on Advances in Singal Processing, 2007:187–187, January 2007.

[15] T. Lokki, A. Southern, S. Siltanen, and L. Savioja. Studies of epidaurus
with a hybrid room acoustics modelling method. Acoustics of Ancient
Theaters Patras, Greece, 2011.

[16] R. Mehra, N. Raghuvanshi, L. Antani, A. Chandak, S. Curtis, and
D. Manocha. Wave-based sound propagation in large open scenes us-
ing an equivalent source formulation. ACM Transactions on Graphics
(TOG), 32(2):19, 2013.

[17] R. Mehra, A. Rungta, A. Golas, M. Lin, and D. Manocha. Wave: Interac-
tive wave-based sound propagation for virtual environments. IEEE trans-
actions on visualization and computer graphics, 21(4):434–442, 2015.

[18] N. J. Mitra, L. J. Guibas, and M. Pauly. Partial and approximate symmetry
detection for 3d geometry. In ACM Transactions on Graphics (TOG),
vol. 25, pp. 560–568. ACM, 2006.

[19] N. Raghuvanshi, A. Allen, and J. Snyder. Numerical wave simulation
for interactive audio-visual applications. The Journal of the Acoustical
Society of America, 139(4):2008–2009, 2016.

[20] N. Raghuvanshi, J. Snyder, R. Mehra, M. Lin, and N. Govindaraju. Pre-
computed wave simulation for real-time sound propagation of dynamic
sources in complex scenes. In ACM Transactions on Graphics (TOG),
vol. 29, p. 68. ACM, 2010.

[21] S. R. M. Román, U. P. Svensson, J. Šlechta, and J. O. Smith. A hybrid
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