
Real-time Simulation of Heterogeneous Crowds
Avneesh Sud Russell Gayle Stephen Guy Erik Andersen Ming Lin Dinesh Manocha

Dept of Computer Science, University of North Carolina at Chapel Hill

Figure 1: Crowd Simulation in a City Model: Different views from a crowd simulation in a city model with 924 buildings and 200 moving
vehicles (left,middle). We can simulate the motion of 2, 000 human agents at interactive rates. Crowds react as dynamics obstacles approach
their path (right).

Abstract
We present a real-time algorithm for simulating heterogeneous
crowds with potentially distinct individual behavior characteristics
and goals. Our approach combines global motion planning with
a generalized pedestrian dynamics model to synthesize motion for
numerous groups of people in complex dynamic environments. In-
spired by self-organization phenomena in crowds, we introduce
“Pedestrian Levels of Detail” to accelerate large-scale simulation
of individual agents, while preserving natural collective behaviors
observed in real crowds. We highlight the performance of our algo-
rithm on heterogeneous crowds in urban environments.

Keywords: crowd simulation, multi-agent path planning, pedes-
trian dynamics, interactive system

1 Introduction

Modeling of crowds, multiple agents and swarm-like behaviors has
been widely studied in computer graphics, robotics, architecture,
physics, psychology, social sciences, and civil and traffic engineer-
ing. Realistic visual simulation of human crowds requires mod-
eling of pedestrian dynamics, group behaviors, motion synthesis,
and rendering. In this paper, we address the problem of real-time
motion synthesis of large-scale “heterogenous crowds” in complex
dynamic environments. In his pioneering work, Gustave Le Bon
[1895] defined heterogenous crowd as consisting of many dissim-
ilar types of groups, each with potentially independent behavior
characteristics and goals. Examples include large exposition halls,
wide festival arenas, busy urban street scenes, etc. Real-time simu-
lation of heterogenous crowds is highly challenging because pedes-
trian dynamics exhibits a rich variety of collective effects, such as
lane formations, oscillations at bottlenecks, chemotaxis and panic
effects [Schreckkenberg and Sharma 2001].

Microscopic models using agent-based methods [Schreckkenberg
and Sharma 2001] can capture pedestrian dynamics under varying
density and situations for heterogenous crowds. However, these
microscopic computations can become a bottleneck in achieving
real-time performance and may not be able to capture all aspects of
crowd movement. One of the major computational challenges for
large-scale crowd simulation is global route planning for each indi-
vidual agent. The route planning problem can become intractable,

as each individual character moving independently is essentially a
dynamic obstacle to other agents. Therefore, many existing ap-
proaches for crowd simulation only model groups of agents to min-
imize global navigation computations. However, these approaches
are typically restricted to static environments or a small, fixed num-
ber of groups. In addition, most of prior algorithms either avoid
collision checks to maintain real-time performance or they perform
local computations that can result in unnatural collective behavior
and fail to sustain interactive performance.

Main Results: In this paper, we present a new algorithm for real-
time simulation of large-scale heterogenous crowds in complex dy-
namic environments. Our approach is based on two novel concepts:

• ‘Adaptive Elastic ROadmaps” (AERO) - It is a connectiv-
ity graph structure that is lazily computed using a generalized
crowd dynamics model that simultaneously captures macro-
scopic mutual interaction among multiple moving groups
and microscopic local forces among individual pedestrians or
agents. We use AERO to perform dynamic, global path plan-
ning based on this force model.

• “Pedestrian Levels of Detail” (PLODs) – a new hierarchi-
cal data structure selectively computed on the fly and is used
to accelerate large-scale simulation of heterogenous crowds.
Our formulation is based on the observation and empiri-
cal validation in traffic engineering that crowds exhibit self-
organization in pedestrian flows [Schreckkenberg and Sharma
2001]. Depending on their dynamic states (e.g. walking
speed, heading directions), spatial proximity, and behavior
characteristics, heterogeneous crowds are adaptively clustered
and subdivided into PLODs. PLODs also help to minimize
the global path computations based on dynamically changing
factors and accelerate the overall runtime performance with-
out affecting the visual appearance of simulated crowd move-
ment.

We integrate AERO and PLODs to compute a dynamic roadmap for
global path planning, in order to correctly predict crowd movement
and various emergent phenomena, including dynamic lane forma-
tion, crossing flows, bi-directional traffic, and group gathering. We
demonstrate our approach on complex indoor and outdoor scenar-
ios, including a city scene consisting of 5, 000 pedestrians with 200

Figure 2: Simulation in an indoor environment Demonstration
of our crowd simulator on a tradeshow floor with 512 booths, 170K
polygons and 1,000 human agents.

moving cars and an exhibition hall with 511 stationary booths and
5, 000 individual agents on foot and avoiding each other. Our initial
proof-of-concept implementation is able to perform crowd simula-
tion for these scenes in less than 1 second per frame on a PC with
an 3Ghz Pentium D CPU and 2GB memory.

Organization: The rest of the paper is organized as follows. Sec-
tion 2 presents related work on crowd simulation and path planning.
We give an overview of our approach in Section 3. We introduce
“pedestrian levels of detail” to accelerate large-scale crowd simu-
lation in Section 4. Section 4 presents “adaptive elastic roadmap”,
coupled with a generalized dynamics force model and modeling of
agent behavior. We present the results and discuss implementation
issues in Section 6. We analyze the performance and highlight a
few limitations of our approach.

2 Related Work

In this section, we give a brief overview of prior work related to
crowd dynamics, agent planning and hierarchical methods to accel-
erate simulations.

2.1 Crowd Dynamics

Many different approaches have been proposed for modeling crowd
movement and simulation [Schreckkenberg and Sharma 2001;
Thalmann et al. 2006]. They can be classified based on specificity,
problem decomposition (discrete vs continuous), stochastic vs de-
terinistic, etc.

2.1.1 Discrete methods

Discrete methods rely on discretization of the environment or of the
agents. Some common approaches include

Agent-based methods: These are based on seminal work of
Reynolds [1987] and can generate fast, simple local rules that can
create visually plausible flocking behavior. Numerous extensions
have been proposed to account for social forces [Cordeiro et al.
2005], psychological models [Pelechano et al. 2005], directional
preferences [Sung et al. 2004], sociological factors [MUSSE and
Thalmann 1997], etc. Most agent-based techniques use local colli-
sion avoidance.

Cellular Automata methods: These methods model the pedes-
trian movement by solving a cellular automaton. The evolution of

the cellular automata at next time step is governed by static and
dynamic fields [Hoogendoorn et al. 2000]. While these algorithms
can capture emergent phenomena, they are not physically based.
Different techniques for collision avoidance have been developed
based on grid-based rules [Loscos et al. 2003] and behavior models
[Tu and Terzopoulos 1994].

Particle Dynamics: Computing physical forces on each agent is
similar to N-body particle system [Schreckkenberg and Sharma
2001; Helbing et al. 2003]. Sugiyama et al. [2001] presented a
2D optimal velocity (OV) model that generalizes the 1D OV model
used for traffic flow. Under this model each agents attempts to move
at its optimal velocity under constraints from other particles.

2.1.2 Continuous Methods

The flow of crowds has been compared with fluid flows. At low
densities crowd flow is like gases, at moderate densities it resem-
bles fluid flow, and at high densities crowd has been compared to
granular flow [Treuille et al. 2006; Helbing et al. 2005]. Most re-
cently, a novel approach for crowd simulation based on continuum
dynamics has been proposed by Treuille et al. [2006]. They com-
pute a dynamic potential field that simultaneously integrates global
navigation with local obstacle avoidance. The resulting system runs
at interactive rates and demonstrates smooth traffic flows for three
to four groups of large crowds that are moving with common goals.

2.2 Multiple Agent Planning

Extensive literature exists on path planning for multiple agents in
robot motion planning and virtual environments [LaValle 2006]. At
a broad level, these methods can be classified into global (or cen-
tralized) and local (or distributed) methods. The global paths repre-
sent the connectivity of collision-free space in terms of a graph or a
roadmap, and require search algorithms to compute a path for each
agent [Bayazit et al. 2002; Funge et al. 1999; Kamphuis and Over-
mars 2004; Lamarche and Donikian 2004; Pettre et al. 2005; Sung
et al. 2005; Sud et al. 2007]. However, these algorithms may not
scale to large scale simulation in real time. On the other hand, local
methods are mostly reactive style planners based on potential fields
[Khatib 1986]. They can handle large dynamic environments, but
suffer from ‘local-minima’ problems and may not be able to find
a collision-free path, when one exists [LaValle 2006]. Other route
planning algorithms are based on path or roadmap modification,
which allow a specified path for an agent to move or deform based
upon obstacle motion. These include Elastic Bands [Quinlan and
Khatib 1993] and Elastic Roadmaps [Yang and Brock 2006]. We
extend these algorithms to simultaneously perform route planning
computations for multiple pedestrians in dynamic scenes.

2.3 Hierarchical Methods for Simulation

Hierarchical methods have been used to accelerate various aspects
of crowd simulation and rendering. These include different levels of
autonomy and grouping [MUSSE and Thalmann 1997], and algo-
rithms for accelerating crowd rendering [Dobbyn et al. 2005]. Hi-
erarchical techniques have also been used to generate more realistic
animations [Ashida et al. 2001; Sung et al. 2004]. Finally, multi-
resolution techniques have also been used to accelerate dynamics
simulation, multiagent control and particle system simulation [Bro-
gan and Hodgins 2002; Carlson and Hodgins 1997; Multon et al.
1999; O’Brien et al. 2001; Popovic and Witkin 1999; O’Sullivan
and et al. 2002].

Environment
(Static Obstacles,

Dynamic Obstacles

Adaptive
Elastic Roadmap Dynamic Obstacles,

and Agents)

Scripted Behaviors

Event Queue

PLOD Tree

Local Dynamics

Event Queue

Collision DetectionLocal Dynamics Collision Detection

Figure 3: System Architecture: This figure shows the different
components of our system.

3 Overview

In this section, we first describe some salient features of human
crowds movement, introduce our notations and finally give an
overview of our approach.

Background: Our work builds upon the vast literature on pedes-
trian dynamics in psychology, transportation science, civil and traf-
fic engineering. One of the key underlying behavorial characterisics
in pedestran dynamics is the principle of least effort [Zipf 1949].
This implies that among all available options (e.g. accelerating, de-
celerating, changing direction or doing nothing), a pedestrian tries
to choose the option that will yield the smallest predicted disutil-
ity. An individual will try to adapt to its environment or will try
to change the environment to suit its needs, if easier. Under this
assumption the pedestrian flow self-evolves into a user-equilibrium
state with the emergence of several interesting collective effects at
various scales and densities of crowds [Helbing et al. 2005]. Exam-
ples of such emergent phenonmena include dynamics lane forma-
tion, oscillations at bottlenecks, banding patterns at intersections,
trail following and panic effects. In addition, pedestrian dynamics
has been compared to gas dynamics at low densities, fluid dynamics
at moderate densities and granular flow at high densities [Helbing
et al. 2005]. A heterogenous crowd may exhibit more than one
such collective behavior. We use these results in formulating our
PLOD-based approach so that it can reliably capture the collective
behaviors of pedestrians in heterogeneous crowds.

3.1 Definitions and Notation

Crowds are large groups that occupy a common location and share
a common focus. Crowds may be classified based on the level of
chaos into diferent types of gatherings and mobs [Forsyth 2006].
We assume the crowd is contained within a domain D. We restrict
our focus to human crowds, and the domain may be decomposed
into a set of 2-manifolds. The smallest individual entity in a crowd
is called an agent, denoted pi. The crowd is the set of all agents
{p1, p2, . . . , pk}, and we treat each human as an agent. Moreover,
each agent pi has a finite radius ri, a goal position denoted gi. The
dynamics state of each agent at time t consists of its position xi(t)
and velocity vi(t). For ease of notation, we shall not indicate the
time dependency of the simulation terms when implicitly defined.
In addition to the dynamics state, the dynamics of an agent is also
influenced by environmental and behavior characteristics such as
goal position, aggressiveness, etc. The combined dynamics and be-
havior characteristics define the pedestrian state, denoted qi. Each
agent is also assigned a desired velocity vd

i , with the magnitude
equal to the maximum velocity, vmax, of the agent and direction
determined by its state and the environment (see Section 5.2).

The unit normal vector from a point p ∈ D to an agent pi is given
by ni(p) = p−xi

‖p−xi‖
. The agent’s velocity bias field φi(p) is de-

fined as the angle between the normal to the agent and its velocity,
φi(p) = cos−1(ni(p) · vi

‖vi‖
). Given a pair of agents pi, pj , we de-

fine the following: separation distance dij = ‖xi−xj‖, separation
normal nij =

xi−xj

dij
. For the sake of simplicity, we assume that

all agents have same radius, ri = rj = ra and our algorithm can
be easily modified to account for varying radii. Each agent is also
associated with certain behavorial characteristics, which influence
its dynamics (see Section 5.4).

3.2 Heterogenous Crowd Simulation

Problem definition: Given the state of each agent pi

at time t0, and goal gi, we compute a sequence of states
qi(t0),qi(t1), . . . ,qi(tf), such that xi(tf) = gi. Our goal is to
compute a collision-free path for each agent and ensure that its be-
havior conforms with prior results in pedestrian dynamics.

Our approach for real-time simulation of heterogenous crowds uses
a global planner along with a local dynamics model for updating
the state of each agent. The global planning and local dynamics are
efficiently computed using an adaptively simplified approximation
of pedestrian dynamics for route planning - called pedestrian levels
of detail (PLOD).

A PLOD is a cluster of agents with similar a pedestrian state - i.e.
they have a similar dynamics state (position, velocity) and behavior
(e.g. intermediate goals, path selection). We construct a pedes-
trian state-based subdivision hierarchy of the entire crowd, called
the PLOD-tree. The PLOD-tree facilitates decoupling between
global planning and local dynamics, and scales well for heteroge-
nous crowds. Our local dynamics model computes the dynamics
of each agent within a PLOD, and the influence of agents outside
the PLOD is approximated by the PLOD-tree. In general construct-
ing a PLOD-tree is an O(k log k) operation, where k is the size of
the input. However, we use a priority queue and lazy updates to
amortize this cost over several simulation time-steps.

Our local dynamics model is based on the generalized force model
of Helbing et al. [2005]. This force model has been shown to cap-
ture various collective phenomenon in crowd simulation and has
been demonstrated across varying densities of crowds: from low
density gatherings to densely packed panic mobs. We assign each
PLOD a maximum velocity based on its behavior characteristics.
We compute the desired velocity of each PLOD based on a force
term computed using the 2D optimum velocity model [Sugiyama
et al. 2001].

Our algorithm computes the path of each agent and PLODs using a
global roadmap-based representation. In terms of path planning, a
PLOD is treated as a single entity or an agent, and thereby reduces
the complexity of route planning in terms of total number of enti-
ties. We extend the Elastic Roadmap algorithm [Yang and Brock
2006] and compute an AERO (Adpative Elastic ROadmap) for all
moving agents and PLODs in a dynamic scene. The AERO is repre-
sented as a graph, where the vertices correspond to milestones and
the links represent collision-free paths between the milestones. At
each time-step, we deform the links based on the position of other
agents and PLODs, while taking into account their local dynamics.

The overall simulation algorithm consists of the following steps:
(see Fig. 3):

1. Update the environment: This includes updating the state
of (non-simulated) dynamic obstacles, the goals and behavior
parameters of each agent. Details are presented in Section 5.4.

P3(t1)

g1 g2 g2 g2g1 g1

m2m2

P1(t0)

P1b (t0)
P2 (t1)

P1(t1)

m2

P1a (t0)

m1 m1
m1

Figure 4: PLODs: g1 is the goal of the square agents, and g2 is
the goal of the circular agents. (left) A coarse resolution PLOD P1

at time t0 of agents with similar pedestrian state. (middle) At finer
resolutions, agents may be grouped into multiple PLODs - P1a and
P1b. (right) At time t1, as agents pass the intermediate milestone
m2, they split into separate PLODs P2 and P3.

2. Update PLOD-tree: An event queue is constructed based on
the estimated time to the next critical event when a recluster-
ing is needed. The PLOD-tree is then updated accordingly.
This step is described in Section 4.

3. Compute inter-cluster force fields: This corresponds to
forces exerted by a PLOD on the environment, i.e. the elastic
roadmap and other PLODs. We also compute the force field
from other dynamic obstacles.

4. Update AERO: The roadmap is adaptively recomputed based
on the force fields and position of the obstacles. Details are
given in Section 5.1.

5. Path computation: A cost function is assigned to each link
in AERO, and a minimum weight path is computed for each
agent or PLOD. This step also updates the intermediate goal
for each agent or PLOD. Details are given in Section 5.1.

6. Apply local dynamics. This updates the dynamics state for
each agent in the cluster using a physically-based micro-
scopic pedestrian dynamics model. At end of this step, the
PLOD state of each agent is recomputed to update the PLOD-
tree. This invloves the following steps for each cluster (sec-
tion 5.2):

• Compute the roadmap force field. This is an attractive
force field that guides the agents along the path.

• Compute scripted and intra-cluster forces, and advance
one simulation step.

• Perform collision detection and contact resolution.

• Update the priority queue for PLOD hierarchy update.

4 Pedestrian Levels of Detail

Inspired by the work on cluster analysis of dynamic pedes-
trian grouping [Helbing et al. 2005; Schreckkenberg and Sharma
2001], we introduce PLODs for crowd simulation to capture self-
organization of pedestrian flows. Specifically, a PLOD is formed
based on the pedestrian state of the agents. The pedestrian state is a
6-DOF vector that consists of the dynamics state, the next interme-
diate goal and link the agent is traversing, qi = {xi,vi, g

′
i, li}. A

PLOD Pm is computed based on the following rules: Two agents
pi, pj with state vectors qi, qj belong to the same PLOD Pm if

1. They share same intermediate goals and links, i.e g′i = g′j and
li = lj .

2. They have similar velocity, i.e. ‖vi − vj‖ ≤ δ1.

Figure 5: PLODs coupled with AERO: Illustration on a crowd
simulation with 50 agents. The static obstacles are shown in blue,
dynamic obstacles in cyan. The AERO is shown in green curves
(links), and they deform as the dynamic obstacles approach in or-
der to maintain valid paths. Each PLOD is circled and shown in a
different color. The PLOD represents a cluster of agents with sim-
ilar physical state and intermediate goal on the roadmap. (a) Two
PLODs (in grey and red) moving along the center link. (b) As the
grey PLOD reaches the intermediate goals, it splits into 2 PLODs
(grey and light blue).

3. The distance between their positions is sufficiently small, i.e.
‖xi − xj‖ ≤ δ2.

The first criteria ensures that all the agents in a PLOD would nat-
urally move in the same direction. The second and third criteria
ensure that the PLODs are small and similar enough such that the
global behavior of each agent can be reliably approximated by a
single entity.

4.1 Clustering Data Structure

We create PLODs by grouping the agents in state space using the
clustering criteria described above. It is important that we use a
clustering method that is quick and scales well to a large number
of agents. To fulfill these criteria, we cluster using a 3-dimensional
KD-tree, where all the agents lie at the leaf nodes of the tree. Agents
that share a leaf are considered together as part of the same PLOD.

The 3-dimensions of the KD-tree represent the state space of po-
sition and direction of velocity. This subset of pedestrian space is
chosen because it is the minimum subset that allows KD-trees to
consistently group nearby agents with similar goals in one cluster.
The state space dimensionality is kept small so that we can compute
and update the KD-tree quickly.

The splitting plane is chosen using the well known sliding mid-
point rule, where we find the longest dimension of the current cell
and split at a plane that bisects the cell along that dimension. This
splitting rule is fast to compute, and works well with clustered data
without leaving any empty cells.

The splitting rule is recursively re-applied to each cell until the
above mentioned conditions are met for every leaf node. The result
is a fast construction of several PLODs, each containing a group of
agents with similar dynamics states and shared goals. In Section 5
we show how PLODs are used for crowd simulation.

4.2 Hierarchy Updates

We perform lazy bottom-up updates of the hierarchy, the PLOD-
tree. Instead of updating the PLOD-tree at each time step, we up-
date the hierarchy when an event occurs. We maintain a priority
queue of events. Our algorithm relies on the fact that all agents

within a PLOD have similar goals and should arrive at an interme-
diate goal at approximately the same time. As a consequence of the
principle of least effort [Zipf 1949], the agents tend to move with
the same velocity unless an external change or force is applied. A
PLOD-tree update event is performed when a PLOD arrives at an
intermediate goal, or its behavior characteristics or the immediate
environment change. Based on PLOD velocities, we compute the
time to the next update event for each PLOD and maintain them in
the priority queue.

The priority queue for updating events is based on finding the min-
imum time until a reclustering of the KD-tree will be needed. A
lower bound on when this situation will happen is computed based
on the position and velocity of each PLOD. There are two events
for which an update of a PLOD-tree is needed: (1) when a PLOD
reaches its current goal, and (2) when two or more PLODs inter-
sect each other. For each PLOD the earliest of these two potential
events is stored in a priority queue along with the ID of the PLODs
involved in that event. The crowd simulation can then proceed with-
out reclustering until the time stored at the top of the priority queue
is reached. At that instance the PLODs in the neighborhood of the
ones that caused the update are reclustered locally, affecting only a
local region of the KD-tree.

5 Crowd Simulation using PLODs

In this section, we use PLODs for path planning and local dynam-
ics computations on large-scale crowds. First, we present adaptive
elastic roadmaps (AERO) for crowd simulation. Next, we describe
the force model for crowd dynamics and how it is integrated with
PLODs. The dynamics of the agents is computed using intra-PLOD
forces, as well as external forces. The intra-PLOD forces, de-
noted f int, influence the microscopic local dynamics of the agents,
whereas the external forces, denoted fext, influence the links in
AERO.

5.1 Adaptive Elastic ROadmap (AERO)

In this section we describe our algorithm to compute AERO and
update its links during each time-step. AERO is a roadmap, or a
connectivity graph of milestones and links, R = {M,L}, and is
used to compute the collision-free path for each agent or PLOD.
Each milestone is a position xi ∈ D, and each link lab connects two
milestones xa,xb along a path. Each entity queries the roadmap to
compute a path between two configurations in D by using a graph
search algorithm (such as A*) . For agent pi let the first link on path
fi be lab. Then, the next milestone, xb, is the intermediate goal g′i
for agent pi.

The AERO is computed and updated using a physically-based parti-
cle simulation. Specifically, particle mi is a point-mass in D which
responds to applied forces. The state of the particle at time t is de-
scribed by its position and velocity. The AERO is represented by
dynamic milestones, each represented as a particle. The adaptive
links are represented using a sequence of particles connected by lin-
ear springs. As the obstacles (which may include other agents and
PLODs) move, the repulsive forces cause the milestones to move,
and the links to deform towards the open areas of the domain (as
shown in Fig. 6).

Force field computation: There are two main forces applied to
each particle: roadmap internal forces and repulsive external forces.
The internal forces shrink or minimize the length of the links, and
are simulated using standard damped Hookean spring. The external
force is based on a repulsive potential field due to the obstacles or
other entities (including PLODs). For each entity Ej , we apply a

force on particle qi if it is sufficiently close to Ej . This force given
is:

f ext
i =

b

d(qi, Ej)2

where d(qi, Ej) is the minimum distance between particles qi and
entity Ej , and b is a repulsive scaling constant.

Given the applied forces for each particle, we update the AERO
using a quasi-static forward Euler integration step. This variation
considers the particles to be at rest during integration and prevents
undesired oscillation in the links.

We use generalized Voronoi diagram computation to compute the
initial position of the milestones in the AERO. The Voronoi di-
agram provides optimal clearance from the obstacles and can be
computed using graphics hardware. The Voronoi edges become
adaptive links, and intersections of these edges are the dynamic
milestones.

Roadmap modification: At times roadmap deformation by itself
cannot always ensure that a path is valid. To maintain the roadmap,
we remove the links when they collide with other entities. We per-
form this computation using spring potential energy and proximity
to the other entities. The spring potential energy is a measure of the
amount of deformation of a spring. For an adaptive link li with n
springs S = {s1, s2, . . . , sn}, the average potential is

PEi =
1

n

nX
si∈S

ki
s

2
(‖si‖ − Li)

2,

where ki
s is the spring constant of spring i, ‖si‖ is its current length,

and Li is its rest length. A link is removed when PEi > εs, for
a spring energy threshold εs. Proximity is measured by the near-
est distance from an adaptive link li to the entities. Links are re-
moved when this distance is less than the largest radius assigned to
an agent.

We add links to the AERO when the entities are unable to find a
collision-free path using graph search. Our first approach involves
repairing (or recomputing) the links that were removed in the pre-
vious time-steps. When the straight-line path between previously
connected milestones lies in the collision-free space, an adaptive
link is added along this path.

The main advantage of AERO for crowd simulation is that multiple
agents or PLODs can use the same roadmap. As a result, we only
need to modify AERO to respond to the motion of the other agents
or PLODs. Each agent applies a repulsive force to the particles.
To ensure that agents do not alter their own path, particles on the
agent’s path are not affected.

Using a single roadmap like AERO for all the agents and PLODs
can result in coordination problems. This can happen when when
multiple agents try to use or occupy the same link at the same time
while traveling in opposing directions (see Figure 6). To handle this
situation, an additional lane is created between the two milestones
by adding another adaptive link. Agents or PLODs in lane i then
each apply repulsive forces to the other lanes, causing them to move
away from lane i.

5.2 Intra-PLOD forces

Our local dynamics model is based on the generalized force model
of pedestrian dynamics by Helbing et al [2003]. This force model
has been shown to capture emergent crowd behavior at varying
densities of crowds and is thus a suitable choice for hetergoenous
crowds. This force model is used to compute the dynamics of

P

l2
m2

m3
P2

l2 m3 l2m2

m3

lP2

l1
v2

v1

m2 m2

l1a
l1b

P1
l1a

l
P1

1

O1

m1

P1
m1

P2

m1

l1b

Figure 6: AERO: This figure highlights the milestones and links
used in AERO. (Left) P1 moves towards milestone m2 and P2

moves towards the same milestone. (Middle) When two PLODs
want to use the same link (l1) in opposite directions, the algorithm
performs lane-splitting to generate two new lanes or links: l1a and
l1b. The link l1b physically deforms in presence of obstacle O1

(rightmost figure).

agents within a PLOD. For efficient computation on parallel hard-
ware (i.e. GPUs), we define the social force model in terms of force
fields that are defined over the spatial extent of a PLOD. We modify
the social force model, to include a force fr that attracts an agent
towards the elastic roadmap. In addition, there is a repulsive force
fsoc to nearby agents, an attractive force fatt to simulate joining
behavior of groups, and a repulsive force from dynamic obstacles
fobs. Let the current link of PLOD Pm be l, then internal force
field at a point p is given as

f int
m (p) =

X
j

ˆ
fsoc
j (p) + fatt

j (p)
˜
+ fr

l (p), pj ∈ Pm (1)

where,

fr
l (p) =

vd
l (p)− vi

τi
,

fsoc
j (p) =Ai exp(2ra−‖p−xj‖)/Bi nj(p),×„

λi + (1− λi)
1 + cos(φj(p))

2

«
,

fatt
j (p) =− Cjnj(p),

where Ai and Bi denote interaction strength and range of repulsive
interactions, which are culture-dependent and individual parame-
ters. λi reflects anisotropic character of pedestrian interaction. The
roadmap force field fr

l guides the agent towards its intermediate
goal along the link l. The desired velocity vd

l (p) = vmaxel(p),
where el(p) is a unit vector field pointing in direction of the inter-
mediate goal. For points not lying on the link l, we add the dis-
placement of from the link. Thus el(p) =

(g′
i−p)+nl(p)

‖(g′
i−p)+nl(p)‖ , where

nl(p) is the perpendicular vector from p to link l. The term τi

is a ’relaxation time’ for the agent to achieve the desired velocity,
while moving under constant acceleration. This time is influenced
by the aggressive behavior. This force field is defined at points cor-
responding to the position of each agent pi in Pm. The roadmap
force fr

il is similar to the acceleration term used in the social force
model.

The social force field fsoc
j (p) represents the repulsive force from

agent pj at a point p. The velocity bias field cos(φj(p)) is used
to model the anisotropic nature of repulsive forces (the repulsion is
higher from agents in front). However, in contrast to the standard
social repulsive force presented in [Helbing et al. 2003], we use
a modified term to compute the anisotropic nature of the forces.

At position of agent pi, p = xi, the velocity bias cos(φji) =
cos(φj(xi)), the repulsive force is fsoc

ij = fsoc
j (xi). The force fsoc

ij

is biased along the velocity vj of agent pj , instead of the velocity
vi of agent pi as described in [Helbing et al. 2003]. This is done
for efficiently computing the force fields in parallel using graphics
hardware in the near future. However, this simplification does not
significantly change the internal social forces. This is due to the fact
that, by definition, all agents within a PLOD have similar velocities,
thus vi ≈ vj and cos(φji) ≈ − cos(φij).

The attractive force field fatt
j (p) simulates the nature of agents be-

longing to same behavorial groups (e.g. families, tourist groups) to
stay in close proximity and attract each other. This force is applied
between two agents pi and pj , only if they are apriori defined to be
within the same group.

5.3 External Forces

In the previous section, we described the internal forces acting on
an agent within a PLOD. We now describe the external forces fext

interacting on a PLOD. This includes the forces exerted by other
PLODs and dynamic obstacles. These forces are computed as a
sum of various force fields over the spatial extent of the PLOD. Fi-
nally, the PLOD itself exerts forces on the environment, notably the
AERO. The external force fields acting on a PLOD Pm are com-
puted as follows. Let N denote the set of PLODs in close prox-
imity to Pm, and O denote the set of dynamic obstacles in close
proximity to Pm. Then the external force field on a PLOD Pm is
given by

fext
m (p) = Σn∈N fext

n (p) + Σo∈Ofobs
o (p) (2)

where

fext
n (p) =Σjf

soc
j (p), ∀ pj ∈ Pn

fobs
o (p) =Ai exp(ra−d(p,o))/Bi no(p)×„

λo + (1− λo)
1 + cos(φb(p))

2

«

The obstacle force field fobs simulates the repulsion of the agents in
a PLOD from other obstacles in the environment. Since the obsta-
cles may be dynamic, we introduce an additional anisotropic term
which biases the repulsive forces along the motion of the obstacles.
This effect has also been modeled in other approaches by creating
a ’discomfort zone’ in front of dynamic obstacles [Treuille et al.
2006]. The set of neighboring PLODs N may also be treated as
dynamic obstacles for the current PLOD Pm. Hence the repulsive
force from remaining PLODs is similarly computed. In particular,
this repulsive force field is equivalent to the sum of the internal so-
cial force fields of neighboring PLODs. The total repulsive force on
each agent computed using this approach would be consistent with
treating all agents as a single PLOD and using the general social
force model for computing dynamics of all agents.

5.4 Behavior Modeling

Our model allows for the addition of specific behaviors in order to
simulate real human motion as accurately as possible. Behaviors
can be implemented on a crowd, group or individual level. Crowd
behaviors reflect the presence of certain features within the envi-
ronment that might affect the motion of the agents. These features
are modeled as points of interest which cause the agents walking in
that area to exhibit some behavior, such as slowing down or con-
gregating. The regions of interest are modeled by assigning them
as milestones and goals.

of
Agents

Local Dynamics
(ms)

Path Search
(ms)

AERO Update
(ms)

Re‐clustering
(ms)

Total Time
(ms)

500 127.45345 7.3859 207.3626 23.88565 366.0876

1000 270.4083 13.12385 218.8375 60.364 562.73365

2000 519.6833 20.5502 203.411 123.14625 866.79075000 5 9.6833 0.550 03. 3. 6 5 866. 90 5

of Local Dynamics Path Search AERO Update Re clustering Total Time# of
Agents

Local Dynamics
(ms)

Path Search
(ms)

AERO Update
(ms)

Re‐clustering
(ms)

Total Time
(ms)

500 8.92104 0.31776 10.9428 5.3505 25.5322

1000 51 7944 0 41490 9 6564 1 1218 62 98771000 51.7944 0.41490 9.6564 1.1218 62.9877

2000 86.0107 0.39252 10.7010 2.5304 99.6347

Figure 7: Performance on the big city model: Peformance on
a city with 924 buildings and 200 moving cars. All these timings
were generated with 2,000 agents. Timings are the average simula-
tion step time broken down by local dynamics, searching for paths,
AERO updates, reclustering of the KD-Tree, and total time.

Group behaviors affect a particular group, as defined by the cluster-
ing system. Groups can be made to walk faster or slower, depending
on user-specified characteristics for that group. The aggressiveness
of an agent is modeled by updating the maximum speed vmax and
the time to relaxation τi. In addition each link in the AERO stores
the crowd density across the link. More aggressive groups assign
a higher weight to crowded links and commute paths through less
dense regions.

6 Implementation and Results

In this section we describe the implementation of our heteroge-
neous crowd simulation system and highlight its performance on
various environments. We have implemented our algorithm on a
PC running Windows XP operating system, with an 3Ghz Pentium
D CPU, 2GB memory and an NVIDIA 7900 GPU. We used Visual
C++ 7 programming language and OpenGL as the graphics API for
rendering the environments. The initial Adaptive Elastic Roadmap
(AERO) for an environment is initialized by computing the Voronoi
diagram of the static obstacles in the environment. We project the
positions of each agent in a PLOD along the link, and the list of
agents is sorted by the distance traveled along the link. This enables
efficient search of the closest agents within the PLOD. In addition,
since all agents within a PLOD have similar velocities, the list is al-
most sorted and can be resorted in expected linear time. In addition,
the sorted list enables efficient collision detection among agents us-
ing a sweep and prune technique. The interaction range for social
forces in the microscopic model is determined by the average den-
sity of the agents within the PLOD. To simulate particle dynamics
of the agents, we used a semi-implicit verlet integrator. Proximity
computations to the obstacles are accelerated using a spatial hash
data structure.

6.1 Benchmarks

We demonstrate our system on two complex scenarios. The first
scenario is an outdoor environment consisting of multiple city
blocks. The model consists of 924 buildings and 235K triangles.
The initial roadmap for the environment consists of 4K links. The
environment also consists of 200 cars as dynamic obstacles. As
the cars move through the environment, links on the path deform
around the obstacles and get invalidated. When links get invali-
dated, the agents recompute alternate paths. We add a high potential
in front of the cars along their direction of motion, which decreases
the probability of the agents from selecting paths in front of mov-
ing obstacles. The environment is populated with a non-uniform
density of agents. The heterogeneous crowds in the scene consists
of many groups of agents who are assigned independent goals. The
behavior characteristics of each agent are assigned at run-time. This
includes updating the goals, the maximum speed, and interaction
range of the agents. As agents move along the roadmap, we ob-
serve several emergent phenomenon of crowd simulation - such as
formations of lanes across the same link and banding patterns at
crossings.

The second scenarios is an indoor environment of an exhibit hall in
a trade show. The exhibit consists of 511 booths and 170K poly-
gons. The initial roadmap consists of 1800 links. Numerous agents
walk around and visit multiple booths. The goals for each agent
are updated as the agent arrives at a booth. As agents move freely
through the floor, they act as dynamic obstacles, and update the
AERO.

6.2 Results

We highlight the performance of our algorithm on the complex
benchmarks. Our approach can perform real-time simulation of
heterogeneous crowds with up to 5000 agents at less than 1 second
per frame. Our current implementation is unoptimized and does not
make use of processing some of the computations on the GPU. The
performance of our algorithm in a two city environments (with dif-
ferent complexity) and varying number of agents is highlighted in
Fig. 7 and 8.

6.3 Discussion and Limitations

Our current algorithm uses a combination of force models that
globally deform the roadmaps and locally compute the interaction
among individual agents. This combination can occasionally lead
to instability issue in the dynamics simulation, especially if there
are large changes in the scene (e.g. external obstacles). We conjec-
ture that an integration of our approach along with the continuum
crowd model [Treuille et al. 2006] will be able to address the is-
sue and extend the continuum model to heterogeneous crowds and
further improve its stability.

Our PLOD computation algorithm uses a 3D KD-tree representa-
tion for clustering. Each PLOD represents a 6-DOF vector and our
algorithm projects it to 3D space corresponding to the (x, y) po-
sition in the plane and the goal id. Ideally, we would like to use
a 6-dimensional data structure as it would perform more accurate
clustering in terms of behavior characteristics. Most of the running
time of the algorithm is spent in local dynamics computation and
updating the links of AERO. The latter can become a bottleneck
if a number of links need to be deleted or added due to the mo-
tion of obstacles. Some efficient strategies to handle such cases are
presented in [XXX 2007].

of
Agents

Local Dynamics
(ms)

Path Search
(ms)

AERO Update
(ms)

Re‐clustering
(ms)

Total Time
(ms)

500 127.45345 7.3859 207.3626 23.88565 366.0876

1000 270.4083 13.12385 218.8375 60.364 562.73365

2000 519.6833 20.5502 203.411 123.14625 866.79075000 5 9.6833 0.550 03. 3. 6 5 866. 90 5

of Local Dynamics Path Search AERO Update Re clustering Total Time# of
Agents

Local Dynamics
(ms)

Path Search
(ms)

AERO Update
(ms)

Re‐clustering
(ms)

Total Time
(ms)

500 8.92104 0.31776 10.9428 5.3505 25.5322

1000 51 7944 0 41490 9 6564 1 1218 62 98771000 51.7944 0.41490 9.6564 1.1218 62.9877

2000 86.0107 0.39252 10.7010 2.5304 99.6347

Figure 8: Performance on a small city: Peformance for a subset
of a city with 10 static structures and 4 moving cars. Real-time
simulation of 500 agents. Timings are the average simulation step
time broken down by local dynamics, searching for paths, AERO
updates, reclustering of the KD-Tree, and total time

7 Conclusions and Future Work

We present a new crowd simulation algorithm based on PLODs and
a dynamic roadmap representation for global navigation of multiple
moving agents. Our approach can simulate many groups of people
with independent behavior characteristics and goals at nearly in-
teractive rates. Moreover, this formulation can account for macro-
scopic group interaction as well as microscopic agent behaviors.
The simulated crowd movement created using our system exhibits
collective effects of pedestrian flows under varying conditions, as

observed in real crowds. We have applied the results to simulate
crowds in outdoor scenes and initial results are promising.

This work complements existing work by focusing on motion plan-
ning for large-scale heterogeneous crowds. However, our current
approach makes several simplifying assumptions. First, we do not
account for any form of uncertainty in the environment. We also
assume perfect visibility of the environment for each agent. In ad-
dition, we have not implemented the appropriate force model for
capturing panic effects. Our model can be extended to account for
these factors and we hope to address them in the future.

There are many other avenues for future work. Moreover, our local
dynamics model and route planning algorithm can be significantly
accelerated using GPU-based implementation. The local dynamics
model can be implemented using fragment programs and we can
use distance fields to accelerate the distance computations and link
deformations. That can offer considerable speedup and would make
it possible for us to handle more complex scenarios with dynamic
obstacles. Furthermore, our framework based on PLODs and local
dynamics makes it possible to incorporate other macroscopic and
microscopic behaviors. Finally, we would like to use our algorithm
to model crowd behavior in other environments, including indoor
scenes like the airport or train station or more complex outdoor
scenes, like a football stadium with tens of thousands of people.

Acknowledgments
Supported in part by ARO Contracts DAAD19-02-1-0390 and
W911NF-04-1-0088, NSF awards 0400134, 0429583 and 0404088,
DARPA/RDECOM Contract N61339-04-C-0043, Disruptive Tech-
nology Office and the DOE High-Performance Computer Science
Fellowship administered by he Krell Institute. We would like to
thank Sean Curtis for his help with avatar modeling, animation and
video editing. We would also like to acknowledge other members
of UNC GAMMA group for useful discussions and feedback.

References
ASHIDA, K., LEE, S. J., ALLBECK, J., SUN, H., BADLER, N., AND METAXAS,

D. 2001. Pedestrians: Creating agent behaviors through statistical analysis of
observation data. Proc. Computer Animation.

BAYAZIT, O. B., LIEN, J.-M., AND AMATO, N. M. 2002. Better group behaviors
in complex environments with global roadmaps. Int. Conf. on the Sim. and Syn. of
Living Sys. (Alife).

BON, G. L. 1895. The Crowd: A Study of the Popular Mind. Reprint available from
Dover Publications.

BROGAN, D., AND HODGINS, J. 2002. Simulation level of detail for multiagent
control. Proc. of AAMAS, 199–206.

CARLSON, D., AND HODGINS, J. 1997. Simulation levels of detail for real-time
animation. In Proc. of Graphics Interface 1997.

CORDEIRO, O. C., BRAUN, A., SILVERIA, C. B., MUSSE, S. R., AND CAVAL-
HEIRO, G. G. 2005. Concurrency on social forces simulation model. First Inter-
national Workshop on Crowd Simulation.

DOBBYN, S., HAMILL, J., O’CONOR, K., AND O’SULLIVAN, C. 2005. Geopostors:
A real-time geometry/impostor crowd rendering system. ACM Trans. on Graphics
24, 3.

FORSYTH, D. R. 2006. Group Dynamics. Wadsworth Publishing.
FUNGE, J., TU, X., AND TERZOPOULOS, D. 1999. Cognitive modeling: Knowledge,

reasoning and planning for intelligent characters. Proc. of ACM SIGGRAPH.
HELBING, D., BUZNA, L., AND WERNER, T. 2003. Self-organized pedestrian crowd

dynamics and design solutions. Traffic Forum 12.
HELBING, D., BUZNA, L., JOHANSSON, A., AND WERNER, T. 2005. Self-organized

pedestrian crowd dynamics: experiments, simulations and design solutions. Trans-
portation science, 1–24.

HOOGENDOORN, S. P., LUDING, S., BOVY, P., SCHRECKLENBERG, M., AND

WOLF, D. 2000. Traffic and Granular Flow. Springer.
KAMPHUIS, A., AND OVERMARS, M. 2004. Finding paths for coherent groups using

clearance. Proc. of ACM SIGGRAPH / Eurographics Symposium on Computer
Animation.

KHATIB, O. 1986. Real-time obstable avoidance for manipulators and mobile robots.
IJRR 5, 1, 90–98.

LAMARCHE, F., AND DONIKIAN, S. 2004. Crowd of virtual humans: a new ap-
proach for real-time navigation in complex and structured environments. Computer
Graphics Forum 23, 3 (Sept).

LAVALLE, S. M. 2006. Planning Algorithms. Cambridge University Press (also
available at http://msl.cs.uiuc.edu/planning/).

LOSCOS, C., MARCHAL, D., AND MEYER, A. 2003. Intuitive crowd behaviour
in dense urban environments using local laws. Theory and Practice of Computer
Graphics (TPCG’03).

MULTON, F., VALTON, B., JOUIN, B., AND COZOT, R. 1999. Motion levels of detail
for real-time virtual worlds. Proc. of ASTC-VR’99.

MUSSE, S. R., AND THALMANN, D. 1997. A model of human crowd behavior:
Group inter-relationship and collision detection analysis. Computer Animation and
Simulation.

O’BRIEN, D., FISHER, S., AND LIN, M. 2001. Simulation level of detail for auto-
matic simplification of particle system dynamics. Proc. of Computer Animation,
210–219.

O’SULLIVAN, C., AND ET AL. 2002. Level of detail for crowds and groups. Computer
graphics Forum 21, 4, 733–742.

PELECHANO, N., O’BRIEN, K., SILVERMAN, B., AND BADLER, N. 2005. Crowd
simulation incorporating agent psychological models, roles and communication.
First International Workshop on Crowd Simulation.

PETTRE, J., LAUMOND, J.-P., AND THALMANN, D. 2005. A navigation graph for
real-time crowd animation on multilayered and uneven terrain. First International
Workshop on Crowd Simulation.

POPOVIC, Z., AND WITKIN, A. 1999. Physically based motion transformation. In
Proc. of SIGGRAPH 1999, 11–20.

QUINLAN, S., AND KHATIB, O. 1993. Elastic bands: Connecting path planning and
control. Proc. of IEEE Conf. on Robotics and Automation.

REYNOLDS, C. W. 1987. Flocks, herds, and schools: A distributed behavioral model.
In Computer Graphics (SIGGRAPH ’87 Proceedings), M. C. Stone, Ed., vol. 21,
25–34.

SCHRECKKENBERG, M., AND SHARMA, S. D. 2001. Pedestrian and Evacuation
Dynamics. Springer.

SUD, A., ANDERSEN, E., CURTIS, S., LIN, M., AND MANOCHA, D. 2007. Real-
time path planning for virtual agents in dynamic environments. Proc. of IEEE VR.
to appear.

SUGIYAMA, Y., NAKAYAMA, A., AND HASEBE, K. 2001. 2-dimensional optimal
velocity models for granular flows. In Pedestrian and Evacuation Dynamics, 155–
160.

SUNG, M., GLEICHER, M., AND CHENNEY, S. 2004. Scalable behaviors for crowd
simulation. Computer Graphics Forum 23, 3 (Sept).

SUNG, M., KOVAR, L., AND GLEICHER, M. 2005. Fast and accurate goal-directed
motion synthesis for crowds. Proc. of SCA 2005, 291–300.

THALMANN, D., O’SULLIVAN, C., CIECHOMSKI, P., AND DOBBYN, S. 2006. Pop-
ulating Virtual Environments with Crowds. Eurographics 2006 Tutorial Notes.

TREUILLE, A., COOPER, S., AND POPOVIC, Z. 2006. Continuum crowds. Proc. of
ACM SIGGRAPH.

TU, X., AND TERZOPOULOS, D. 1994. Artificial fishes: Physics, locomotion, per-
ception, behavior. In Proceedings of SIGGRAPH ’94 (Orlando, Florida, July 24–
29, 1994), ACM Press, A. Glassner, Ed., Computer Graphics Proceedings, Annual
Conference Series, ACM SIGGRAPH, 43–50. ISBN 0-89791-667-0.

XXX, A. 2007. Reactive deformation roadmaps: Motion planning of multiple robots
in dynamic environments. Technical Report.

YANG, Y., AND BROCK, O. 2006. Elastic roadmaps: Globally task-consistent mo-
tion for autonomous mobile manipulation. Proceedings of Robotics: Science and
Systems (August).

ZIPF, G. K. 1949. Human behavior and the principle of least effort. Addison-Wesley
Press.

