
Motion Planning: A Journey of Robots,Molecules, Digital Actors, and Other ArtifactsJean-Claude LatombeStanford UniversityStanford, CA 94305, USAJuly 1, 1999AbstractDuring the last three decades motion planning has emerged as a crucial and productive researcharea in robotics. In the mid-80's the most advanced planners were barely able to compute collision-free paths for objects crawling in planar workspaces. Today, planners e�ciently deal with robotswith many degrees of freedom in complex environments. Techniques also exist to generate quasi-optimal trajectories, coordinate multiple robots, deal with dynamic and kinematic constraints, andhandle dynamic environments. This paper describes some of these achievements, presents newproblems that have recently emerged, discusses applications likely to motivate future research, and�nally gives expectations for the coming years. It stresses the fact that non-robotics applications(e.g., graphic animation, surgical planning, computational biology) are growing in importance andare likely to shape future motion planning research more than robotics itself.1 IntroductionDuring the last three decades motion planning has emerged as a crucial and productive research areain robotics [40]. The basic motion planning problem is to �nd a collision-free path for a robot { a rigidor articulated object { among rigid static obstacles. This is a purely geometric problem which looksdeceptively simple; in fact, except for robots with few degrees of freedom (dofs), it is computationallyhard. In the mid-80's the most advanced planners were barely able to compute collision-free pathsfor planar objects translating and rotating in two-dimensional workspaces. Impressive progress hasbeen made since then and today's planners routinely solve complex practical problems, some involv-ing robots with many dofs in complex environments. For instance, the planner in [59] is used byneurosurgeons to compute the motion of an articulated robot equipped with a linear accelerator {the Cyberknife { that performs radiosurgical operations of brain tumors. The planner in [30] suc-cessfully computed assembly plans for the guidance section of the Hughes AIM-9X air-to-air missile(an assembly made of 472 parts described by over 55Mb of CAD data). Motion planning has alsofound applications outside the realm of traditional robotics, such as design for manufacturing, graphicanimation and video game software, minimally-invasive surgical planning, and molecule binding andfolding. Problems arising from these domains are shaping motion planning research at least as muchas robotics problems.Several extensions of the basic problem have been studied, where, for instance, obstacles are moving,kinematic and dynamic constraints limit robot motions, optimized trajectories must be computed, ormultiple robots have to be coordinated. Like the basic problem, some of these problems now have1



solutions that can be used in practice, but many still require more research. Changes in robotics tech-nology, as well as new applications, will also raise new research problems. For instance, recon�gurablemodular robots are now being developed, some with several hundred modules [14, 38, 64]. They willneed new types of planners to compute their recon�guring motions.A reason for the success of motion planning research is that it is both narrow enough to make it easy toassess progress and deep enough that most results raise new issues motivating additional research. Inthe future, motion planning research will remain productive by both investigating some fundamentalproblems (e.g., the interaction between complexity, controllability, and recognizability [41] or motionplanning to achieve sensing goals [19]) and studying more speci�c problems arising from challengingapplications. As the number of processors interacting with physical and/or virtual worlds (the so-called \embedded" processors) becomes much larger than that of desk-top computers, applicationsof motion planning are likely to grow in number, complexity, and diversity. For that to happen, ourvision must broaden beyond traditional mobile robots and manipulator arms to encompass many otherartifacts interacting with the physical world, ranging from airplanes and automobiles, to surgical tools,to molecules.In this paper I �rst describe some important achievements of the last three decades (Section 2). NextI present computational issues and problems that have recently emerged and will grow in importancein the coming years (Section 3). Then I review a number of applications that are likely to motivatesome of the research during the next decade (Section 4). In conclusion, I give some of my expectationsfor the future (Section 5). It is clearly impossible to present a complete panorama of motion planningwithin a few pages (even one that would be close to complete); by necessity, this paper only presentsa limited number of viewpoints.Throughout this paper the term path planning refers to the purely geometric problem of computing acollision-free path for a robot among static obstacles. The term motion planning is used for problemsinvolving time, dynamic constraints, object coordination, sensory interaction, etc.2 Achievements2.1 Early WorkMotion planning became a topic of signi�cant research during the 70's. As early as 1969, Nilsson [51]described a mobile robot system with motion planning capabilities. He introduced the visibility graphmethod (combined with the A� search algorithm) to �nd the shortest collision-free path for a robotrepresented by a point amidst polygonal obstacles. This technique has remained enormously popular.The need for more sophisticated motion planners arised as researchers envisioned \task-level" robotprogramming systems for mechanical assembly [3, 45, 47, 58].In 1977, Udupa introduced the idea of shrinking a robot to a point for collision avoidance [60]. In1979, Lozano-P�erez and Wesley exploited this idea in a more general and systematic way and pro-posed a complete1 path planner for polygonal/polyhedral robots moving in translation among polyg-onal/polyhedral obstacles [50]. This work led to the concept of con�guration space.1A complete (or exact) path planner is one which returns a collision-free path whenever one exists in the descriptioninput to the planner, and indicates that no such path exists otherwise.2



2.2 Mathematical FoundationsIn the early 80's Lozano-P�erez introduced the concept of a robot's con�guration space [48], whichimpacted motion planning more than any other idea. The robot is represented as a point { calleda con�guration { in a parameter space encoding the robot's dofs { the con�guration space. Theobstacles in the workspace map as forbidden regions into the con�guration space. The complementof these regions is the free space. Path planning for a dimensioned robot is thus \reduced" to theproblem of planning a path for a point in a space that has as many dimensions as the robot has dofs.During the 80's, classical tools from di�erential geometry were used to study the manifold structureof a con�guration space, along with its more speci�c topological, geometric, and algebraic properties.Physical concepts, such as force and friction, were elegantly mapped into this representation. Mostof these mathematical results are collected in [40]. They have played a crucial role in helping usunderstand motion planning problems, especially nonholonomic planning and optimal planning. Thesemi-algebraic structure of a robot con�guration space, combined with techniques to solve decisionproblems in the �rst-order theory of the reals, led to the general-purpose path planning algorithmsmentioned below.2.3 Computational AnalysisIn the 80's the path planning problem attracted interest from the theoretical computer science commu-nity. In 1979, Reif showed that path planning for a 3-D linkage made of polyhedral links is PSPACE-hard [53]. The proof uses the robot's dofs to encode the con�guration of a polynomial space boundedTuring machine and design obstacles which force the robot's motions to simulate the computation ofthis machine. This analysis provides evidence that any complete planner will run in exponential timein the number of dofs.In 1983, Schwartz and Sharir proposed a complete general-purpose path planning algorithm based onan algebraic decomposition of the robot's con�guration space known as the Collins decomposition [54].This algorithm takes time doubly exponential in the number of dofs. A few years later, Cannydeveloped a singly-exponential algorithm that computes a representation of the robot's free space inthe form of a network of 1-D curves [13]. None of these algorithms have been implemented, but theyhelped calibrating the complexity of path planning and understanding its combinatorial nature.Complete speci�c algorithms have also been developed mainly for robots with 2 or 3 dofs. For a k-sidedpolygonal robot moving freely in a polygonal workspace, the algorithm in [24] takes O((kn)2+�) time,where n is the total number of edges of the workspace. Some of these more speci�c algorithms havebeen implemented. But they are usually not robust to oating-point approximations and they havenot been used in practice so far.2.4 Practical PlannersThe prohibitive complexity of complete path planners and/or their lack of robustness have motivatedthe development of heuristic planners [23]. Two popular approaches were introduced in the 80's:approximate cell decomposition, where the free space is represented by a collection of simple cells [12],and potential �eld [35]. The later was initially proposed for on-line collision avoidance, but it caneasily be combined with grid searching techniques to solve planning problems [5].Both approaches are resolution-complete, if properly implemented: whenever a path exists, they �ndone if the resolution parameter (the size of the smallest cells or the resolution of the grid) is set �ne3



enough. They can solve complex path planning problems in 2-D and 3-D con�guration spaces in a frac-tion of a second. For example, without any precomputation, the planner in [39] generates navigationpaths for virtual characters at the video frame rate (1/30s) in dynamically changing workspaces.But none of these approaches extends well to robots with more than 4 or 5 dofs. Then either thenumber of cells becomes too large; or the potential �eld has local minima. For many-dof robots,several heuristic techniques have been proposed that o�er no formal guarantee of performance. Theresulting planners have not been reliable (e.g., they often fail to solve seemingly simple problems),and none of them has had signi�cant impact.In 1991, a randomized planner was introduced [5], which was able to solve complex path planningproblems for many-dof robots by alternating \down motions" to track the negated gradient of apotential �eld and \random motions" to escape local minima. To avoid pathological cases caused bythe deterministic potential �eld, another type of randomized planner was later developed [34], whichconsists of sampling the con�guration space at random and connecting the samples in free space by\local" paths (typically straight paths), thus creating a probabilistic roadmap (PRM). Samples andlocal paths are checked for collision using a fast collision checker (e.g., [52]), which avoids the prohibitivecomputation of an explicit representation of the free space. Experiments with PRM planners havebeen quite successful, showing that they are both fast and reliable even with robots with many dofs.Formal analysis supports this experimental observation by showing that PRM planning is complete ina probabilistic sense. Under reasonable geometric assumptions on the free space (see Subsection 3.2),the probability that a PRM planner fails to �nd a path while one exists decreases exponentially toward0 with the number of samples [27]. Interestingly, this analysis relates the number of samples neededto the geometric \goodness" of the free space, rather than to its combinatorial complexity.PRM planners are also robust to oating-point approximations and quite easy to implement. A numberof variants applying di�erent sampling strategies have been recently developed [2, 27, 29, 32, 43]. Somesof these variants solve motion planning problems involving nonholonomic and dynamic constraints,optimization criteria, moving obstacles, and/or exible robots.2.5 Other ResultsOther motion planning problems have been investigated, some with mixed practical results. Wemention a few below.Nonholonomic planning In the 90's, a fertile research area has been path planning for nonholo-nomic robots, mainly car-like robots and multi-body tractor-trailer robots with lower-bounded turningradii. Concepts from di�erential geometry and control theory have been used to study the control-lability of these robots and produce e�ective planning techniques [4, 6]. A nonholonomic robot issaid to be locally controllable if, at every con�guration, the Control Lie Algebra associated with thevalid controls has the same dimension as the robot's con�guration space. If a nonholonomic robotRn is controllable, then any free path of the holonomic robot Rh having the same geometry as Rncan be locally deformed into a free path satisfying the kinematic constraints of Rn. Several practicalplanners have been developed for locally controllable nonholonomic robots with few dofs, based onthe discretized exploration of the free space [6], on the local deformation of a previously computedholonomic path [42], or on PRM-type planning [56]. No practical planner, however, currently exists tocompute paths for many-dof nonholonomic robots; the technique in [6] is computationally too costly,while the techniques in [42, 56] lack the \local paths" that are needed for deforming a holonomic pathor for connecting the samples of a roadmap. Path planning for robots that are not locally controllable(e.g., a car-like robot that can only move forward) remains an open problem.4



Part orientation/positioning An application area that has recently motivated considerable re-search is part feeding. An algorithm that plans the tilting motions of a tray containing a planar partof known shape to orient it to a desired orientation is presented in [17]. The inuential algorithmin [18] computes a sequence of squeezes by a frictionless, sensorless, parallel-jaw gripper to achieve asingle orientation of a polygonal part (up to symmetries of the part's convex hull). Programmablevector �elds created by arrays of tiny actuators, such as MEMS, have also been proposed to orientand position planar parts [7]. A plan then consists of applying a sequence of vector �elds. But it wasshown recently that, for most planar parts, a single, carefully crafted vector �eld su�ces to achievea unique position and orientation of a part of given geometry [8], hence eliminating the need for anyplanner.Assembly sequencing Here the goal is to compute both an order in which the components of aproduct can be assembled, and the corresponding movements of the parts. Early research producedtechniques to compute the cone of possible motions of a part in contact with other parts and pro-posed assembly sequencers which use a trial-and-error approach to compute how a product can bedisassembled [26]. However, the inherent combinatorial complexity of trial-and-error restricts its ap-plicability to very simple products and disassembly sequences where a single part is removed at eachstep. The non-directional blocking graph (NDBG) was proposed to avoid this combinatorial trap [63].It is a subdivision of the space of allowable motions (e.g., translations) into a �nite number of cellssuch that within each cell the set of blocking relations between all pairs of parts remains �xed. TheNDBG is precomputed and then queried to generate assembly sequences. This approach was e�ec-tively implemented for several families of motions, including the family of extended rigid-body motionswhich spans a 5-D sphere in 6-D space (each motion is the composition of a translation along a �xedvector and a rotation around another �xed vector) [21]. The Archimedes system [30] based on theNDBG approach was successfully applied to several products, including the 472-part guidance sectionof the Hughes AIM-9X air-to-air missile. Nevetheless, as all exact cell decomposition methods, theNDBG approach is sensitive to oating-point approximations which complicate its implementation.Its complexity also grows exponentially with the dimension of the space of allowed motions.Uncertainty Early in the 70's, motion planning with uncertainty in control and sensing attractedconsiderable attention, in particular to compute �ne motions for delicate assembly operations [47, 58].Many researchers regarded this problem as one of the most interesting problems in motion planning.An elegant framework { preimage backchaining [49] { was proposed along with reasonably e�cientalgorithms in low-dimensional spaces [10, 44]. These methods have been applied to mobile robotnavigation problems, but their practical impact so far remains limited. Today, most experimentalrobotics systems deal with uncertainty at execution time (e.g., by sensing whatever environmentalfeatures turn visible to maintain a best estimate of the robot location) rather than at planning time.One reason is that planners use simpli�ed models of uncertainty that do not represent reality well; but,on the other hand, using more realistic models seems to prohibitively increase the cost of planning.In other words, what is gained by taking uncertainty into account in a planner is outweighed by theincreased complexity and the reduced exibility of the planner. The choice of an appropriate level ofabstraction for representing uncertainty in motion planning still remains an open question.5



3 New Issues and Problems3.1 Enabling Tools and TechnologyAs motion planning matures, more applications require dealing with complex geometric models. Forinstance, in virtual prototyping and manufacturing, path planners are already applied to CAD modelsof robots and obstacles that are made of several 100,000 triangles. Soon millions of triangles, or more,will have to be considered. This trend will require paying more attention to some basic tools than hasbeen done in the past.Distance computation PRM planners spend 90% or their time, or more, in checking collision orcomputing distances between robots and obstacles. In most applications, the running time of theplanner now depends less on the (�xed) number of dofs of the moving objects than on the geometriccomplexity of the robots and obstacles. E�cient distance computation algorithms have recently beendeveloped (e.g., [52, 62]), but more needs to be done. Like for many basic operations in graphics, it islikely that this progress will eventually come from hardware implementations.Robust computation Many planning algorithms in low-dimensional spaces (e.g., assembly se-quencing) are based on decomposing that space into cells, such that in each cell a set of certi�cates(e.g., blocking relations) remain true or false. Cell boundaries are critical (hyper-)surfaces where somecerti�cates may change. Such planning algorithms are very sensitive to oating-point errors. E�cientand robust tools will have to be developed before these algorithms can be widely used in practice.2Dynamic data structures Dealing with many moving objects in complex environments or withcomplex deformable objects will require appropriate dynamic data structures that can be e�cientlyupdated, for instance, by exploiting the temporal and spatial coherence of the physical world [46]. Thekinetic data structure (KDS) in [20] is a signi�cant step in this direction. As objects move, a KDSdynamically maintains a set of assertions that guarantee the correctness of an easy computation foran attribute of interest (e.g., the convex hull of moving objects, the closest pair of objects, etc.). Theevents that require updating the KDS are the failures of these assertions. It is reasonable to expectthat speci�c hardware will become available in the future to quickly predict and schedule such events.3.2 Issues with Randomized PlannersDespite their empirical success, randomized planners still raise open issues. Investigating these issueswill be critical to make PRM planners even more reliable and faster, and to facilitate their applicationto harder motion planning problems. e.g., problems requiring the coordination of many moving objects.Theoretical analysis shows that PRM planners work well in free spaces that satisfy two simple visibilityproperties, �-goodness and expansiveness. A robot's free space F is �-good (for some � 2 (0; 1]) if everycon�guration in F \sees" a subset of F whose total volume is at least an � fraction of F 's total volume(two con�gurations see each other if they can be connected in F by a \local" planner) [33]. Looselyspeaking, F is expansive if it does not contain \narrow passages" [27]. Under those two conditions, theprobability that a PRM planner fails to �nd a path while one exists decreases exponentially toward 0with the number of samples picked in F [27].This analysis and experiments show that the main outstanding issue with PRM planners is the \nar-row passage" problem [28, 61]: if the free space contains narrow passages, the planner must pick a2See the CGAL project at http://www.cs.uu.nl/CGAL/ for a signi�cant research e�ort in this direction.6



prohibitively large number of samples over the entire free space so that enough samples fall in suchpassages to establish connections through them. When narrow passages can be easily inferred fromthe workspace geometry, potential �eld techniques [5] can be used to bias the sampling of the freespace. Unfortunately, the robot dofs, the mechanical bounds for each dof, and the workspace obstaclesmay create narrow passages in free space that cannot be easily derived from the workspace. In suchcases, it is proposed in [28] to accept samples that are not in free space, but for which the penetrationdistance of the robot into the obstacles is small. The e�ect is to widen the narrow passages, whichmakes it easier to �nd them. But this technique has serious drawbacks, including the fact that nogeneral and su�ciently e�cient algorithm is currently available to compute penetration distances.Even in the absence of narrow passages, PRM planning raises another important issue: as long as aplanner does not return a path, there is no way to know whether a path exists, or not. The analysisin [27, 33] establishes a relation between the number of samples and the probability of not �nding apath, but this relation involves parameters (such as the � of the �-goodness property) that are notknown in advance. Evaluating such parameters is likely to be as hard as path planning itself. Perhapsmore usable analytical results can be established.3.3 Physical ModelsThe most important developments in motion planning are likely to come from using more compre-hensive models of the real world, including physical and uncertainty models. Indeed, path planningproblems are purely geometric, a fact that considerably limits the applicability of the correspondingalgorithms.Path planning algorithms may be extended to take into account physical models. For instance, oncea collision-free geometric path has been computed, this path may be deformed to optimize a criterion(e.g., minimize execution time) under dynamic constraints [29]. PRM planning techniques have alsobeen used to generate quasi-optimal motions (kinodynamic problem) directly, by growing a tree ofsample states from the initial con�guration of the robot [43]. Each iteration consists of picking a statein the tree and a control at random; integrating the control equations over a short time interval yieldsa new state if no collision is detected. PRM planning has also been used to generate collision-freemotions for deformable objects among rigid obstacles [32]. An energy is associated with each possibledeformation and con�gurations with low energy are prefered over con�gurations with high energy.More complex physical models will be needed. For instance, in surgery (e.g., endoscopic operations),it is desirable to precompute minimally invasive paths of surgical tools among soft tissue structureshaving di�erent elastic properties. In many tasks (e.g., mechanical assembly, medical surgery), motionsmust be computed for objects sliding in contact with one another, which requires dealing with frictionmodels. Eventually, the complexity of the models may lead to developing new types of planningtechniques.3.4 New Forms of PlanningMost motion planning problems considered so far require one or several moving objects to reach agiven �nal con�guration. New forms of planning will be considered in the future. We review two ofthem below, for which partial results have already been obtained.Manipulation planning Here, a number of movable objects must reach goal con�gurations. Butnone of them is able to move alone. Instead, they must be grasped and displaced by robots. In7



general, neither the order in which the movable objects must be displaced, nor the robots that shouldgrasp them are speci�ed as inputs. So, the problem is a composite planning problem where onemust plan both the motions of the movable objects and those of the robots that will move them.Potentially, this can be very di�cult. In particular, avoiding collision among robots, obstacles, andmovable objects may require the movable objects to be displaced in some very speci�c ordering; howcan such an ordering be e�ciently computed? Several other issues must also be considered, like graspplanning and ensuring that every intermediate arrangement of objects is stable. Stand-alone graspplanning techniques exist, but only certain grasps may allow the robot to carry the movable objectsto their goals; how can the manipulation planner e�ciently deal with the interaction between graspsand paths? A few manipulation planners have been proposed [1, 37]. But they only address a limitednumber of issues, and none is widely applicable. Several application areas, such as virtual prototypingto help designers create products that are easy to assemble and service, will motivate the developmentof more useful manipulation planners.Planning for sensing Sensors can be used to acquire information about an environment, likebuilding a 3-D model or localizing objects of interest. Active sensing is aimed at moving sensorsappropriately to acquire the needed information as quickly and reliably as possible [19]. In thiscontext, a problem which has recently attracted interest is to plan the motion of a mobile robot(or a team of robots) equipped with visual sensors to eventually �nd a moving intruder hiding in agiven environment. Here, the state of the robot at any one time can no longer be reduced to a merecon�guration or even a (con�guration,velocity) pair; it must also contain information representing whatthe robot knows. In the intruder example, we can associate a visibility region with each con�gurationof the robot. In a polygonal environment, this region is a polygon bounded by both obstacle edges andfree edges. The information state de�nes the free edges behind which the intruder may still hide [22].The planner must compute a trajectory of the robot leading to an information state such that theintruder cannot be hiding behind any of the free edges of the current visibility region. Executing thatpath guarantees that the intruder will eventually be detected.3.5 IntegrationMost motion planners must eventually interact with other modules in an integrated system. Forexample, a motion planner for a robot must interact with a controller, which transforms plans intolow-level motor commands, and with sensor modules, which localize the robot in its environment.Clearly, integration means much more than mere juxtaposition. For instance, a planner may takedynamic constraints into account and compute motion plans that are easier to execute; or, instead,the controller may include reactive collision avoidance to reduce the computational work of the planner.There has been signi�cant work on integrating motion planning with control and sensing. This typeof integration remains nevertheless rather poorly understood. Some interesting techniques, like theelastic strip [11] or landmark techniques [57], have been proposed, but few widely accepted architecturalprinciples have emerged. As more complex systems are built, we can expect signi�cant progress inthis area.Integration will also require that we develop a better understanding of the limits of what planningcan, and cannot do. Consider facial animation for virtual characters, an important topic in computergraphics. One problem is to make a face say a given sentence by coordinating lip motions and sound.Would it make sense to develop a planner that computes the motions of the lips from the inputsentence? Very likely not. A system like the one described in [9] solves the problem more e�ciently byassociating pnonemes to video captured motions and applying morphing techniques to combine these8



recorded mouth gestures. Similarly, it would probably not be very e�ective to plan the motion of ahumanoid robot to sit on a chair; the motion algorithm could instead be crafted by hand and recordedin a library of speci�c motions. Motion planning should be reserved for motions that are so diversethat they cannot be anticipated and stored in databases of clipped motions.4 ApplicationsRobotics So far, motion planners have not been widely used in industrial robot systems. Mostindustrial robots perform repetitive tasks and their motions are programmed by hand (e.g., using ateach pendant). However, the situation is changing. Several CAD-based robot programming systemsnow include motion planners, which may be used to automatically compute robot paths. For someapplications, this facility is becoming critical. For example, consider spot welding operations on carframes. Most welding workstations in a body shop contain multiple robots operating concurrently,each performing a sequence of several welding operations. Path coordination is particularly di�cultto craft by hand. Automatic path planning greatly simpli�es the task of programming the robots. Italso makes it possible to compute the optimal location of each robot to minimize the cycle time [29].Moreover, if test crashes suggest modi�cations of the welding points after the robots have been pro-grammed, the planner can update the robot trajectories. This kind of application will motivate thedevelopment of planners capable of consistently producing quasi-optimal motions in geometricallycomplex environments.Obviously, as robots make inroads in other, less structured environments (military, surveillance, con-struction, space), we can expect the need for on-line, e�cient planners to grow.Virtual Prototyping It is becoming common practice to design complex products using solelyCAD systems. The systems that will manufacture and service these products tend to be also designedusing CAD systems.For years CAD systems have been sophisticated, but passive electronic drafting tables equipped with3-D visualization capabilities. Now, CAD systems evolve to incorporate more active tools, e.g., forchecking interferences among parts, computing and simulating motions, or analyzing manufacturabil-ity and serviceability. An important function of these tools is to provide feedback to the designersregarding their products and help them make decisions about how objects move or are moved duringmanufacturing, maintenance, and servicing, as well as during regular operations by the product users.Virtual prototyping will motivate the development of planners able to compute di�cult paths quicklyand reliably in complex geometric environments. Some motion planners are already applied in thiscontext. For example, the randomized planner in [15] veri�es that parts of an aircraft engine canbe removed for inspection. The nonholonomic planner in [25] checks accessibility of a space by awheelchair in the CAD model of a building.Graphic Animation During the last few years, a number of robotics techniques have made sig-ni�cant inroads in graphic systems, e.g., dynamic modelling to create physically realistic animation,vision sensing to automatically acquire 3-D models, haptic interaction to \feel" virtual objects, andmotion planning to create collision-free motions. Today, the development of video games on the Inter-net, the development of interactive training systems, the increasing sophistication of websites, and thecomputer-aided production of movies raise the need for new tools that will facilitate the creation andanimation of autonomous virtual characters (or digital actors) in 3-D worlds. Motion planning tech-9



niques will be used to direct digital actors at the task-level and to create highly interactive systems.3This domain will motivate the creation of fast planners capable of using physically-based models togenerate realistic-looking motions. It will require planned motions to be seamlessly combined withmotions extracted from large libraries of clipped motions. See [36, 39] for preliminary results in motionplanning applied to the animation of digital actors.Medical Surgery Imaging techniques are now widely available to produce detailed and precisecomputer representations of 3-D tissue structures. Motion planning will increasingly be used in surgicalplanning to compute the motion of the surgical tools. For instance, the planner in [59] is now in clinicaluse by neurosurgeons to compute the successive positions and orientations of a radiation beam todestroy brain tumors without damaging healthy tissues surrounding them, especially highly sensitiveand/or critical structures like the optic nerves; the radiation beam is produced by a linear acceleratorthat is displaced by a 6-dof manipulator robot.Several researchers are currently working on the creation of realistic models of human soft tissues inorder to compute their deformations under external forces, such as those applied by surgical toolswhen they probe, grasp, pinch, cut, pierce, and suture the tissues [16]. This research will enablemotion planning techniques to compute minimally-invasive paths for surgical tools (e.g., endoscopes,scalpels).Computational Biology Computational biology raises many problems where it is necessary toreason about molecule motions. For example, a drug molecule, called a ligand, is usually a small (20to 50 atoms), but exible (5 to 15 torsional dofs) molecule, which acts by binding into the pocketof a large and mostly rigid molecule, called the receptor. The ligand deforms and moves under theinuence of forces internal to the ligand and forces caused by the interaction between the ligand andthe receptor. Drug design aims at creating a synthesizable ligand that can move and deform to a low-energy con�guration, called a conformation, that exhibits geometric and chemical complementaritywith the desired binding pocket [31]. A PRM-type planner is described in [55] that veri�es the existenceof a low-energy path for a given ligand to a binding pocket of a protein. This planner uses the energy�eld in the con�guration space of the ligand to bias the sampling toward low-energy con�gurationsnear the receptor's outer surface. Eventually, such a planner could be used to scan large databasesof ligands that are publicly available or owned by pharmaceutical companies to extract those ligandswhich are the most likely to bind at a desired binding site.5 ExpectationsToday path planning for few-dof robots is quasi-instantaneous, even in large and complex environmentsencountered in practical problems. Within a few years, this will also be true for many-dof robots(including animated �gures, such as virtual characters modeled with several dozen dofs, or more)using randomized planning. This trend will encompass more complex planning problems, like optimalplanning with kinematic and dynamic constraints, and planning with deformable robots and obstacles,to which PRM-type planning has been shown to extend well.As several forms of motion planning turn \real-time," the role of planning in integrated systems willchange from a costly resource that should be rarely invoked, to a cheap commodity that can be calledat will. For example, the planner in [39] is invoked to plan the navigation path of a virtual characterwhenever this character senses a change in its environment; because the planner is fast enough, there3See http://www.motion-factory.com/ for a commercial system.10



is no attempt whatsoever to reuse the previously computed path. Moreover, the same system caneasily handle multiple independent characters, without any noticeable slowdown.Randomized planning will make motion planning less dependent on the number of dofs than on thegeometric complexity of the environment. However, progress in enabling technologies, like speci�chardware to perform distance computation operations and to maintain dynamic data structures, shouldmake it possible to handle robots and environments described by hundreds of millions of polygons.Motion planning applications will grow considerably. CAD-based robot programming systems willinclude planners to compute quasi-optimal motions of robots and to optimize robot layouts. CADsystems will include planners to verify that products or building facilities can be easily manufacturedor built, and serviced. In video games, character motions will be (re-)computed on the y to adaptto user inputs, allowing new forms of games to be created. More generally, video games, movies,animated webpages, and interfaces will converge, with motion planning and motion capture usedjointly to produce rich interactive animation of virtual characters. Motion planners will help surgeonsplan for minimally-invasive operations. Software packages to assist biochemists in the discovery of newdrugs will include motion planners to compute plausible motions of ligands binding against proteins.Simultaneously, new motion planning problems will be investigated. For instance, recon�gurablerobots made up of thousands of modules will require planners to compute their recon�guration mo-tions [14]; today this problem is mostly open. Robots equipped with sensors to collect information willneed planners to decide which are the most e�cient motions to obtain pertinent information. Min-imizing surgical invasiveness will require planners that reason about the deformations of soft tissuescaused by the motions of surgical tools. It is almost certain that the basic path planning problem,which has been the focus of the research in motion planning for more than two decades, will soonloose this status. No other problem, however, seems basic enough to play the same role in the future.Acknowledgements: The author thanks Lydia Kavraki for her numerous comments on this paper. He alsothanks Hector Gonzalez-Ba~nos, David Hsu, James Ku�ner, and Steve LaValle who have contributed towardseveral ideas mentioned in this paper. The author's research is funded by NSF grants IIS-9619625 and IIS-97-11380, AROMURI grant DAAH04-96-1-007, DARPA/ArmyContract DAAE07-98-L027, and gifts fromGeneralMotors, Honda R&D Americas, Intel, SUN Microsystems, and Microsoft.References[1] Alami, R., Laumond, J.P., and Sim�eon, T. 1995. Two Manipulation Planning Algorithms. AlgorithmicFoundations of Robotics, WAFR'94, Goldberg, K. et al. (eds.), A K Peters, Natick, MA, 109-125.[2] Amato, N.M., Bayazit, O.B., Dale, L.K., Jones, C., and Vallejo, D. 1998. Choosing Good Distance Metricsand Local Planners for Probabilistic Roadmap Methods. Proc. IEEE Int. Conf. on Robotics and Automa-tion.[3] Ambler, A.P. and Popplestone, R.J. 1975. Inferring the Positions of Bodies from Speci�ed Spatial Rela-tionships. Arti�cial Intelligence, 6(2):157-174.[4] Barraquand, J. and Latombe, J.C. 1989. On Nonholonomic Mobile Robots and Optimal Maneuvering.Revue d'Intelligence Arti�cielle, 3(2):77-103.[5] Barraquand, J. and Latombe, J.C. 1991. Robot Motion Planning: A Distributed Representation Approach.Int. J. of Rob. Res., 10(6):628-649.[6] Barraquand, J. and Latombe, J.C. 1993. Nonholonomic Multibody Mobile Robots: Controllability andMotion Planning in the Presence of Obstacles. Algorithmica, 10(2-3-4):121-155.11
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