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Motivation

I Robots need to deal with the real world when planning

I Nature may act in unexpected ways

I Sensors and/or actuators may be faulty/inaccurate

I Perfect knowledge of state may be unavailable
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Problem Formulation

Given:

I State space X

I Action space U

I State transition function f : X × U → X

I Initial state xI

I Goal set XG

Compute a plan π : X → X
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Feasible Planning

I Consider a graph with vertices labeled with states and edges
labeled with actions

I Planning reduces to searching for a path from xI to some
xG ∈ XG

I Well-studied graph algorithms used for planning, such as A*
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Optimal Planning

I We are given a cost function l(x , u)

I We need to find a path from xI to XG with lowest cost

I One solution is the value iteration algorithm
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Value Iteration

I Gk(x) is the lowest cost to reach the goal from x in k steps

I G0(x) is 0 for goal states, inf otherwise

I Use the recurrence

Gk(x) = min
u
{l(x , u) + Gk−1(f (x , u))}

I Plan can be constructed using the arg min form of the
recurrence
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Modeling Nature

I Treat nature as another agent

I Nature chooses action θ ∈ Θ after robot does

I Robot doesnt know the nature action, only Pr(θ)

I State transition function of the form f (x , u, θ)
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Modeling Nature

I Edges in the state space graph are labelled with (u, θ)

I From state x after action u the next state is not known

I We follow out-edge labelled with (u, θ) with probability Pr(θ)
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Modeling Nature

I New cost function of the form l(x , u, θ)

I Optimal next action given by

u∗ = arg min
u
{Eθ[l(u, θ)]}
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Modeling Nature

I We can extend value iteration to account for nature

I The new recurrence is

Gk(x) = min
u
{Eθ[l(x , u, θ) + Gk−1(f (x , u, θ))]}

Lakulish Antani

Motion Planning with Uncertainty



Planning in Discrete State Spaces Modeling Nature Modeling Sensors Information Spaces Visibility-Based Pursuit Evasion

Modeling Sensors

I What if we can’t determine θ?

I Suppose we use a sensor to try to determine state

I Use a sensor mapping, h : X → Y

I This is a deterministic model (y = h(x))
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Modeling Sensors

I Model uncertainty using nature sensing actions ψ ∈ Ψ

I Now y = h(x , ψ)

I Assume we know Pr(ψ | x)

I y plays the role of θ from now on
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Information Spaces

I Robot has no knowledge of its state

I The only information it has is the history of actions and
sensor observations

I Decisions must be made based on available information

I Planning occurs in information space
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Information Spaces

I In this case, the history information space Ihist

I Each state ηk has 3 components:
I Initial condition η0

I Action history ũk−1

I Sensor history ỹk
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Information Spaces

Three kinds of initial condition:

I Deterministic: η0 is some state x

I Nondeterministic: η0 is some subset of X

I Probabilistic: η0 is some distribution Pr(x)
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Derived Information Spaces

I Ihist is too large!

I We derive a simpler I-space from Ihist

I Use an information mapping κ : Ihist → Ider

I Plans made using Ider should still work!
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Probabilistic Information Space

For any history state ηk = (η0, ũk−1, ỹk), compute the distribution
Pr(x | ηk) over possible states the robot can be in.
This is the probabilistic information space Iprob.
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Planning in Information Spaces

We are now given:

I Information state η ∈ Iprob

I Actions u ∈ U

I Nature action space θ ∈ Θ ⊆ Y

I Initial state η0

I Goal state ηG

We can use existing planning algorithms in this space.
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Planning in Information Spaces

I States are now probability distributions

I We need to define a new cost function

I We can use

L(η, u, y) =
∑
x

∑
y

Pr(x) Pr(y | x)l(x , u, y)
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Value Iteration

I We can use value iteration to find an optimal plan in Iprob
I However, the state space is continuous

I This leads to complications when deciding the range of θ to
consider

I Another issue is choice of distributions
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Simplifications

I One way out is to use a nondeterministic model instead of
probabilistic

I Basically, we perform worst-case analysis

I Consider only the costliest choices at each step, and assume
nature will do its worst

I Murphy’s law might not always be a good model

Lakulish Antani

Motion Planning with Uncertainty



Planning in Discrete State Spaces Modeling Nature Modeling Sensors Information Spaces Visibility-Based Pursuit Evasion

Problem Statement

I Given some region R with a pursuer p and evader e

I Find a path for the pursuer to follow such that the evader will
be seen

I If no such path exists, report that this is the case
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The Environment

I 2-dimensional, with piecewise smooth boundary

I Simply connected
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Gap Sensing

I Pursuer has omnidirectional view

I Can determine distance to closest wall along any direction

I Sensor reports directions of gaps (depth discontinuities)
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Critical Lines

I Sensor events occur when gaps appear/disappear or
merge/split

I These occur along specific lines in R
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Critical Lines

I Appear lines arise due to inflection points in the boundary

I Merge lines correspond to bitangent lines
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Navigation

I Following walls and merge lines is sufficient to solve the
problem

I Walls and merge lines divide R into cells

I Pursuer moves from vertex to vertex in the cell decomposition
graph Gn

I Each vertex has upto 4 neighbours, so 4 motion primitives

Lakulish Antani

Motion Planning with Uncertainty



Planning in Discrete State Spaces Modeling Nature Modeling Sensors Information Spaces Visibility-Based Pursuit Evasion

The State Space

I At any vertex u in Gn, gaps can be labeled as contaminated or
cleared at any time

I u combined with the labeling gives the current state

I Movement causes state transitions

I This leads to a state graph Gs
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Planning

I The goal is to reach a state where all gaps are labelled cleared

I We can use any standard algorithm to search Gs

I If no path exists which leads to a goal state, we report that R
cannot be cleared
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Variants

I Simpler environments

I Multiple evaders

I Limited field of view for the pursuer

I Unknown environments
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Possible Extensions

I 3-dimensional environments

I Multiple pursuer coordination
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