Motion Planning with Uncertainty

Lakulish Antani

October 15, 2008

Ξ.

Lakulish Antani Motion Planning with Uncertainty

Outline

Planning in Discrete State Spaces

Modeling Nature

Modeling Sensors

Information Spaces

Visibility-Based Pursuit Evasion

Lakulish Antani

Motion Planning with Uncertainty

Motivation

- Robots need to deal with the real world when planning
- Nature may act in unexpected ways
- Sensors and/or actuators may be faulty/inaccurate
- Perfect knowledge of state may be unavailable

Problem Formulation

Given:

- State space X
- Action space U
- State transition function $f: X \times U \rightarrow X$
- Initial state x_l
- Goal set X_G

Compute a plan $\pi: X \to X$

Feasible Planning

- Consider a graph with vertices labeled with states and edges labeled with actions
- ▶ Planning reduces to searching for a path from x_I to some x_G ∈ X_G
- Well-studied graph algorithms used for planning, such as A*

Optimal Planning

- We are given a cost function I(x, u)
- We need to find a path from x_I to X_G with lowest cost

Ξ.

One solution is the value iteration algorithm

Value Iteration

- $G_k(x)$ is the lowest cost to reach the goal from x in k steps
- $G_0(x)$ is 0 for goal states, inf otherwise
- Use the recurrence

$$G_k(x) = \min_{u} \{ I(x, u) + G_{k-1}(f(x, u)) \}$$

Plan can be constructed using the arg min form of the recurrence

- Treat nature as another agent
- Nature chooses action $\theta \in \Theta$ after robot does
- Robot doesn't know the nature action, only $Pr(\theta)$
- State transition function of the form $f(x, u, \theta)$

- Edges in the state space graph are labelled with (u, θ)
- From state x after action u the next state is not known
- We follow out-edge labelled with (u, θ) with probability $Pr(\theta)$

A (1) > (1) > (1)

э

- New cost function of the form $I(x, u, \theta)$
- Optimal next action given by

$$u^* = \arg\min_{u} \{E_{\theta}[I(u, \theta)]\}$$

2

Lakulish Antani Motion Planning with Uncertainty

- We can extend value iteration to account for nature
- The new recurrence is

$$G_k(x) = \min_{u} \{ E_{\theta}[I(x, u, \theta) + G_{k-1}(f(x, u, \theta))] \}$$

Lakulish Antani

Motion Planning with Uncertainty

Modeling Sensors

- What if we can't determine θ ?
- Suppose we use a sensor to try to determine state

Ξ.

- Use a sensor mapping, $h: X \to Y$
- This is a deterministic model (y = h(x))

Modeling Sensors

▶ Model uncertainty using nature sensing actions $\psi \in \Psi$

Ξ.

- Now $y = h(x, \psi)$
- Assume we know $Pr(\psi \mid x)$
- y plays the role of θ from now on

Information Spaces

- Robot has no knowledge of its state
- The only information it has is the history of actions and sensor observations
- Decisions must be made based on available information
- Planning occurs in information space

Information Spaces

- In this case, the history information space I_{hist}
- Each state η_k has 3 components:
 - Initial condition η_0
 - Action history ũ_{k-1}
 - Sensor history \tilde{y}_k

<ロ> (四) (四) (三) (三)

2

э.

Information Spaces

Three kinds of initial condition:

- **Deterministic**: η_0 is some state x
- **Nondeterministic**: η_0 is some subset of X
- **Probabilistic**: η_0 is some distribution Pr(x)

Derived Information Spaces

- I_{hist} is too large!
- We derive a simpler I-space from I_{hist}
- Use an information mapping $\kappa: I_{hist} \rightarrow I_{der}$
- Plans made using I_{der} should still work!

Probabilistic Information Space

For any history state $\eta_k = (\eta_0, \tilde{u}_{k-1}, \tilde{y}_k)$, compute the distribution $\Pr(x \mid \eta_k)$ over possible states the robot can be in. This is the probabilistic information space I_{prob} .

Planning in Information Spaces

We are now given:

- ▶ Information state $\eta \in I_{prob}$
- Actions $u \in U$
- Nature action space $\theta \in \Theta \subseteq Y$
- Initial state η₀
- Goal state η_G

We can use existing planning algorithms in this space.

Planning in Information Spaces

- States are now probability distributions
- We need to define a new cost function
- We can use

$$L(\eta, u, y) = \sum_{x} \sum_{y} \Pr(x) \Pr(y \mid x) I(x, u, y)$$

Lakulish Antani

Motion Planning with Uncertainty

Value Iteration

- We can use value iteration to find an optimal plan in Iprob
- However, the state space is continuous
- \blacktriangleright This leads to complications when deciding the range of θ to consider
- Another issue is choice of distributions

Simplifications

- One way out is to use a nondeterministic model instead of probabilistic
- Basically, we perform worst-case analysis
- Consider only the costliest choices at each step, and assume nature will do its worst
- Murphy's law might not always be a good model

Problem Statement

- ▶ Given some region *R* with a pursuer *p* and evader *e*
- Find a path for the pursuer to follow such that the evader will be seen
- If no such path exists, report that this is the case

The Environment

2-dimensional, with piecewise smooth boundary

Simply connected

Gap Sensing

- Pursuer has omnidirectional view
- Can determine distance to closest wall along any direction
- Sensor reports directions of gaps (depth discontinuities)

Critical Lines

 Sensor events occur when gaps appear/disappear or merge/split

Ξ.

These occur along specific lines in R

Critical Lines

Appear lines arise due to inflection points in the boundary

Merge lines correspond to bitangent lines

Navigation

- Following walls and merge lines is sufficient to solve the problem
- Walls and merge lines divide R into cells
- Pursuer moves from vertex to vertex in the cell decomposition graph G_n
- Each vertex has upto 4 neighbours, so 4 motion primitives

The State Space

- At any vertex u in G_n, gaps can be labeled as contaminated or cleared at any time
- u combined with the labeling gives the current state
- Movement causes state transitions
- This leads to a state graph G_s

Planning

- The goal is to reach a state where all gaps are labelled cleared
- We can use any standard algorithm to search G_s
- If no path exists which leads to a goal state, we report that R cannot be cleared

A (1) > A (1) > A

э

Variants

- Simpler environments
- Multiple evaders
- Limited field of view for the pursuer
- Unknown environments

(ロ) (四) (三) (三)

Ξ.

Possible Extensions

- 3-dimensional environments
- Multiple pursuer coordination

Motion Planning with Uncertainty

References

LAVALLE, S. M.

Planning Algorithms. Cambridge University Press, 2006.

S. SACHS, S. R., AND LAVALLE, S. M. Visibility-based pursuit-evasion in an unknown planar environment.

In International Journal of Robotics Research (2004), pp. 23(1):3–26.