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Introduction to Computer Vision for Robotics

Overview

� Camera model

� Multi-view geometry

� Camera pose estimation

� Feature tracking & matching

� Robust pose estimation
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Homogeneous coordinates
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Properties of affine transformation

� Parallelism is preserved

� ratios of length, area, and volume are preserved

� Transformations can be concatenated: 
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Transformation Taffine combines linear mapping and

coordinate shift in homogeneous coordinates

− Linear mapping with A3x3 matrix

− coordinate shift with t3 translation vector
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Projective geometry

� Projective space P2 is space of rays emerging from O

− view point O forms projection center for all rays 

− rays v emerge from viewpoint into scene

− ray g is called projective point, defined as scaled v:  g=lv
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Projective and homogeneous points

� Given: Plane Π in R2 embedded in P2 at coordinates w=1

− viewing ray g intersects plane at v (homogeneous coordinates)

− all points on ray g project onto the same homogeneous point v

− projection of g onto  Π is defined by scaling v=g/l = g/w
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Finite and infinite points

� All rays g that are not parallel to Π intersect at an affine point v on Π.
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� The ray g(w=0) does not intersect Π. Hence v∞ is not an affine point but a 
direction. Directions have the coordinates (x,y,z,0)T

� Projective space combines affine space with infinite points (directions).
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Affine and projective transformations

� Affine transformation leaves infinite points at infinity 
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� Projective transformations move infinite points into finite affine space 
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Example: Parallel lines intersect at the horizon (line of infinite points). 

We can see this intersection due to perspective projection!
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Pinhole Camera (Camera obscura)

Interior of camera obscura

(Sunday Magazine, 1838)
Camera obscura

(France, 1830)

Introduction to Computer Vision for Robotics

Focal length f

aperture

image

object

View direction

lens

Im
age sensor

Center

(c x
, c y

)

Pinhole camera model
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Perspective projection

� Perspective projection in P3 models pinhole camera:

− scene geometry is affine Ρ3 space with coordinates M=(X,Y,Z,1)T

− camera focal point in O=(0,0,0,1)T, camera viewing direction along Z

− image plane (x,y) in Π(Ρ2) aligned with (X,Y) at Z= Z0 

− Scene point M projects onto point Mp on plane surface
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Projective Transformation

� Projective Transformation maps M onto Mp in Ρ3 space 
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� Projective Transformation linearizes projection 
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Perspective Projection

Dimension reduction from Ρ3 into Ρ2 by projection onto Π(Ρ2) 
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X

Y

Image center

c= (cx, cy)
T

Projection center

Z (Optical axis)

Focal length Z0

Pixel scale 

f= (fx,fy)
T

x

y

Pixel coordinates

m = (y,x)T

Image plane and image sensor

� A sensor with picture elements (Pixel) is added onto the image plane

Image sensor

pm Km=

Image-sensor mapping:

0
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� Pixel coordinates are related to image coordinates by affine transformation K 
with five parameters:

− Image center c at optical axis

− distance Zp (focal length) and Pixel size determines pixel resolution fx, fy

− image skew s to model angle between pixel rows and columns
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Projection in general pose

Rotation [R]

Projection center C
M

World coordinates

Projection:
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Projection matrix P

� Camera projection matrix P combines:

− inverse affine transformation Tcam
-1 from general pose to origin

− Perspective projection P0 to image plane at Z0 =1

− affine mapping K from image to sensor coordinates
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2-view geometry: F-Matrix

Projection onto two views:
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The Fundamental Matrix F

� The projective points e1 and (H∞m0) define a plane in camera 1 (epipolar 
plane Π e)

� the epipolar plane intersect the image plane 1 in a line (epipolar line ue)

� the corresponding point m1 lies on that line: m1
Tue= 0

� If the points (e1),(m1),(H∞m0) are all collinear, then the collinearity
theorem applies: (m1

T e1 x H∞m0) = 0.
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Estimation of F from correspondences

� Given a set of corresponding points, solve linearily for the 9 elements of 

F in projective coordinates

� since the epipolar constraint is homogeneous up to scale, only eight 

elements are independent

� since the operator [e]x and hence F have rank 2, F has only 7 

independent parameters (all epipolar lines intersect at e)

� each correspondence gives 1 collinearity constraint

=> solve F with minimum of 7 correspondences

for N>7 correspondences minimize distance point-line:
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The Essential Matrix E

• F is the most general constraint on an image pair. If the camera

calibration matrix K is known, then more constraints are available

• Essential Matrix E

� E holds the relative orientation of a calibrated camera pair. It has 
5 degrees of freedom: 3 from rotation matrix Rik, 2 from direction 
of translation e, the epipole.
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Estimation of P from E

� From E we can obtain a camera projection matrix pair: E=Udiag(0,0,1)VT

� P0=[I3x3 | 03x1] and there are four choices for P1:

P1=[UWVT | +u3] or P1=[UWVT | -u3] or P1=[UWTVT | +u3] or P1=[UWTVT | -u3]
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3D Feature Reconstruction

• corresponding point pair (m0, m1) is projected from  

3D feature point M

• M is reconstructed from by (m0, m1) triangulation
• M has minimum distance of intersection 

m0

m1

P0

F

M
0I

P1

1I

d

2 2

0 0 1 1( ) ( ) min.m P M m PM− + − ⇒

minimize reprojection error:

2
min!d ⇒

constraints:

0

1

0

0

T

T

I d

I d

=

=



12

Introduction to Computer Vision for Robotics

Multi View Tracking

• 2D match: Image correspondence (m1, mi)

m0

m1

Pi

M

3D match

2D match

mi

• 3D match: Correspondence transfer (mi, M) via P1

• 3D Pose estimation of Pi with mi - Pi M => min.
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Correspondences matching vs. tracking

Extract features independently 
and then match by comparing 
descriptors [Lowe 2004]

Extract features in first images and 
find same feature back in next view 
[Lucas & Kanade 1981] , [Shi & 
Tomasi 1994]

� Small difference between frames
� potential large difference overall

� Image-to-image correspondences are essential to 3D 
reconstruction

KLT-trackerSIFT-matcher
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SIFT-detector

� Scale and image-plane-rotation invariant feature descriptor 
[Lowe 2004]

Introduction to Computer Vision for Robotics

SIFT-detector

• Image content is transformed into local feature coordinates 
that are invariant to translation, rotation, scale, and other 
imaging parameters
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Difference of Gaussian for Scale 

invariance

� Difference-of-Gaussian with constant ratio of scales is a close 
approximation to Lindeberg’s scale-normalized Laplacian
[Lindeberg 1998]

Gaussian

Difference of 
Gaussian
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Difference of Gaussian for Scale 

invariance

� Difference-of-Gaussian with constant ratio of scales is a close 
approximation to Lindeberg’s scale-normalized Laplacian
[Lindeberg 1998]
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Key point localization
• Detect maxima and minima of 

difference-of-Gaussian in scale 
space

• Fit a quadratic to surrounding 
values for sub-pixel and sub-scale 
interpolation (Brown & Lowe, 2002)

• Taylor expansion around point:

• Offset of extremum (use finite 
differences for derivatives):

Blur 

Subtract

Introduction to Computer Vision for Robotics

Orientation normalization

� Histogram of local gradient directions 
computed at selected scale

� Assign principal orientation at peak of 
smoothed histogram

� Each key specifies stable 2D 
coordinates (x, y, scale, orientation)

0 2π
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Example of keypoint detection
Threshold on value at DOG peak and on ratio of principle 

curvatures (Harris approach)

(a) 233x189 image

(b) 832 DOG extrema
(c) 729 left after peak

value threshold
(d) 536 left after testing

ratio of principle

curvatures

courtesy Lowe

Introduction to Computer Vision for Robotics

SIFT vector formation

� Thresholded image gradients are sampled over 16x16 array of 
locations in scale space

� Create array of orientation histograms

� 8 orientations x 4x4 histogram array = 128 dimensions

© Lowe

example 2x2 histogram array
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Sift feature detector

Introduction to Computer Vision for Robotics

Robust data selection: RANSAC

• Estimation of plane from point data

Select m samples

Compute n-parameter solution

Evaluate on {potential plane points}

Best solution so far?

Keep it

{potential plane points}

yes no

1-(1-(#inlier/|{potential plane points}|)n)steps>0.99

no

Best solution, {inlier}, {outlier}

{inliersamples}
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xx
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RANSAC: Evaluate Hypotheses
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Robust Pose Estimation Calibrated Camera

{2D-3D correspondences}

RANSAC(3-point algorithm)

nonlinear refinement with all inliers

{2D-2D correspondences}

E-RANSAC(5-point algorithm)

nonlinear refinement with all inliers

Bootstrap known 3D points

E P

P

Estimate P0,P1

P0,P1

P0,P1

triangulate points
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