Jan-Michael Frahm

Overview

- Camera model
- Multi-view geometry
- Camera pose estimation
- Feature tracking \& matching
- Robust pose estimation

A Homogeneous coordinates

18
Introduction to Computer Vision for Robotics

Properties of affine transformation

Transformation $T_{\text {affine }}$ combines linear mapping and coordinate shift in homogeneous coordinates

- Linear mapping with $\mathrm{A}_{3 \times 3}$ matrix
- coordinate shift with t_{3} translation vector
$M^{\prime}=T_{\text {aftine }} M=\left[\begin{array}{ccc}A_{3 \times 3} & t_{3} \\ 0 & 0 & 0\end{array} 1.1\right] M \quad T_{\text {affine }}=\left[\begin{array}{cccc}a_{11} & a_{12} & a_{13} & t_{x} \\ a_{21} & a_{22} & a_{23} & t_{y} \\ a_{31} & a_{32} & a_{33} & t_{z} \\ 0 & 0 & 0 & 1\end{array}\right]$
- Parallelism is preserved
- ratios of length, area, and volume are preserved
- Transformations can be concatenated:

$$
\text { if } M_{1}=T_{1} M \text { and } M_{2}=T_{2} M_{1} \Rightarrow M_{2}=T_{2} T_{1} M=T_{21} M
$$

Projective geometry

- Projective space P^{2} is space of rays emerging from O
- view point O forms projection center for all rays
- rays v emerge from viewpoint into scene
- ray g is called projective point, defined as scaled $v: g=/ v$

Introduction to Computer Vision for Robotics

1
 Projective and homogeneous points

- Given: Plane Π in R^{2} embedded in P^{2} at coordinates $w=1$
- viewing ray g intersects plane at v (homogeneous coordinates)
- all points on ray g project onto the same homogeneous point v
- projection of g onto Π is defined by scaling $v=g / l=g / w$

Finite and infinite points

- All rays g that are not parallel to Π intersect at an affine point v on Π.
- The ray $g(w=0)$ does not intersect Π. Hence v_{∞} is not an affine point but a direction. Directions have the coordinates $(x, y, z, 0)^{\top}$
- Projective space combines affine space with infinite points (directions).

Introduction to Computer Vision for Robotics

Affine and projective transformations

- Affine transformation leaves infinite points at infinity

$$
M_{\infty}^{\prime}=T_{\text {affine }} M_{\infty} \quad \Rightarrow\left[\begin{array}{c}
X^{\prime} \\
Y^{\prime} \\
Z^{\prime} \\
0
\end{array}\right]=\left[\begin{array}{cccc}
a_{11} & a_{12} & a_{13} & t_{x} \\
a_{21} & a_{22} & a_{23} & t_{y} \\
a_{31} & a_{32} & a_{33} & t_{z} \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
X \\
Y \\
Z \\
0
\end{array}\right]
$$

- Projective transformations move infinite points into finite affine space
$M^{\prime}=T_{\text {projective }} M_{\infty} \Rightarrow\left[\begin{array}{c}x_{p} \\ y_{p} \\ Z_{p} \\ 1\end{array}\right]=\lambda\left[\begin{array}{c}X^{\prime} \\ Y^{\prime} \\ Z^{\prime} \\ w^{\prime}\end{array}\right]=\lambda\left[\begin{array}{llll}a_{11} & a_{12} & a_{13} & t_{x} \\ a_{21} & a_{22} & a_{23} & t_{y} \\ a_{31} & a_{32} & a_{33} & t_{z} \\ w_{41} & w_{42} & w_{43} & w_{44}\end{array}\right]\left[\begin{array}{c}X \\ Y \\ Z \\ 0\end{array}\right]$

[^0]We can see this intersection due to perspective projection!

Pinhole Camera (Camera obscura)

Camera obscura

Interior of camera obscura
(Sunday Magazine, 1838) (France, 1830)

Introduction to Computer Vision for Robotics

object

A
 Perspective projection

- Perspective projection in P^{3} models pinhole camera:
- scene geometry is affine P^{3} space with coordinates $M=(X, Y, Z, 1)^{T}$
- camera focal point in $O=(0,0,0,1)^{\top}$, camera viewing direction along Z
- image plane (x, y) in $\Pi\left(\mathrm{P}^{2}\right)$ aligned with (X, Y) at $\mathrm{Z}=Z_{0}$
- Scene point M projects onto point M_{p} on plane surface

ntroduction to Computer Vision for Robotics

A
 Projective Transformation

- Projective Transformation maps M onto M_{p} in P^{3} space

$$
\left.\begin{array}{rl}
\rho M_{p}=T_{p} M \Rightarrow \rho & {\left[\begin{array}{c}
x_{p} \\
y_{p} \\
Z_{0} \\
1
\end{array}\right]}
\end{array}\right]=\left[\begin{array}{c}
X \\
Y \\
Z \\
W
\end{array}\right]=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & \frac{1}{z_{0}} & 0
\end{array}\right]\left[\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right]
$$

- Projective Transformation linearizes projection

Introduction to Computer Vision for Robotics

A
 Perspective Projection

Dimension reduction from P^{3} into P^{2} by projection onto $\Pi\left(\mathrm{P}^{2}\right)$

Perspective projection P_{0} from P^{3} onto P^{2} :

$$
\rho m_{p}=D_{p} T_{p} M=P_{0} M \Rightarrow \rho\left[\begin{array}{c}
x \\
y \\
1
\end{array}\right]=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & \frac{1}{z_{0}} & 0
\end{array}\right]\left[\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right], \rho=\frac{Z}{Z_{0}}
$$

Introduction to Computer Vision for Robotics

A Image plane and image sensor

- A sensor with picture elements (Pixel) is added onto the image plane

- Pixel coordinates are related to image coordinates by affine transformation K with five parameters:
- Image center cat optical axis
- distance Z_{p} (focal length) and Pixel size determines pixel resolution f_{x}, f_{y}

$$
K=\left[\begin{array}{ccc}
f_{x} & s & c_{x} \\
0 & f_{y} & c_{y} \\
0 & 0 & 1
\end{array}\right]
$$

- image skew s to model angle between pixel rows and columns

Introduction to Computer Vision for Robotics

Projection matrix P

- Camera projection matrix P combines:
- inverse affine transformation $T_{\text {cam }}{ }^{-1}$ from general pose to origin
- Perspective projection P_{0} to image plane at $Z_{0}=1$
- affine mapping K from image to sensor coordinates
scene pose transformation: $T_{\text {scene }}=\left[\begin{array}{cc}R^{T} & -R^{T} C \\ 0^{T} & 1\end{array}\right]$
projection: $P_{0}=\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0\end{array}\right]=\left[\begin{array}{ll}I & 0\end{array}\right] \quad$ sensor calibration: $K=\left[\begin{array}{ccc}f_{x} & s & c_{x} \\ 0 & f_{y} & c_{y} \\ 0 & 0 & 1\end{array}\right]$
$\Rightarrow \rho m=P M, \quad P=K P_{0} T_{\text {scene }}=K\left[\begin{array}{ll}R^{T} & -R^{T} C\end{array}\right]$

2-view geometry: F-Matrix

Projection onto two views:

The Fundamental Matrix F

- The projective points e_{1} and $\left(H_{\infty} m_{0}\right)$ define a plane in camera 1 (epipolar plane Π_{e})
- the epipolar plane intersect the image plane 1 in a line (epipolar line u_{e})
- the corresponding point m_{1} lies on that line: $m_{1}{ }^{\top} u_{e}=0$
- If the points $\left(e_{1}\right),\left(m_{1}\right),\left(H_{\infty} m_{o}\right)$ are all collinear, then the collinearity theorem applies: $\left(m_{1}^{\top} e_{1} \times H_{\infty} m_{0}\right)=0$.
collinearity of $m_{1}, e_{1}, H_{\infty} m_{0} \Rightarrow m_{1}^{T}(\underbrace{\left[e_{1}\right]_{x}} H_{\infty} m_{0})=0$
$[e]_{x}=\left[\begin{array}{ccc}0 & -e_{z} & e_{y} \\ e_{z} & 0 & -e_{x} \\ -e_{y} & e_{x} & 0\end{array}\right]$

Fundamental Matrix F	Epipolar constraint
$F=\left[e_{1}\right]_{x} H_{\infty}$	$m_{1}^{\top} F m_{0}=0$

Estimation of F from correspondences

- Given a set of corresponding points, solve linearily for the 9 elements of F in projective coordinates
- since the epipolar constraint is homogeneous up to scale, only eight elements are independent
- since the operator $[e]_{x}$ and hence F have rank $2, F$ has only 7 independent parameters (all epipolar lines intersect at e)
- each correspondence gives 1 collinearity constraint
=> solve F with minimum of 7 correspondences
for $\mathrm{N}>7$ correspondences minimize distance point-line:
$\sum_{n=0}^{N}\left(m_{1, n}^{\top} F m_{0, n}\right)^{2} \Rightarrow \min !$
$m_{1 i}^{\top} F m_{0 i}=0 \quad \operatorname{det}(F)=0$ (Rank 2 constraint)

Introduction to Computer Vision for Robotics

The Essential Matrix E

- F is the most general constraint on an image pair. If the camera calibration matrix K is known, then more constraints are available
- Essential Matrix E

$$
\begin{aligned}
& m_{1}^{T} F m_{0}=\left(K \tilde{m}_{1}\right)^{T} F\left(K \tilde{m}_{0}\right)=\tilde{m}_{1}^{T} \underbrace{\left(K^{T} F K\right)}_{E} \tilde{m}_{0} \\
& E=[e]_{x} R \text { with }[e]_{x}=\left[\begin{array}{ccc}
0 & -e_{z} & e_{y} \\
e_{z} & 0 & -e_{x} \\
-e_{y} & e_{x} & 0
\end{array}\right]
\end{aligned}
$$

- E holds the relative orientation of a calibrated camera pair. It has 5 degrees of freedom: 3 from rotation matrix R_{ik}, 2 from direction of translation e, the epipole.

Estimation of P from E

- From E we can obtain a camera projection matrix pair: $\mathrm{E}=\mathrm{Udiag}(0,0,1) \mathrm{V}^{\top}$
- $P_{0}=\left[l_{3 \times 3} \mid 0_{3 \times 1}\right]$ and there are four choices for P_{1} :

3D Feature Reconstruction

- corresponding point pair $\left(m_{0}, m_{1}\right)$ is projected from 3D feature point M
- M is reconstructed from by $\left(m_{0}, m_{1}\right)$ triangulation
- M has minimum distance of intersection

1
 Multi View Tracking

- 2D match: Image correspondence (m_{1}, m_{i})
- 3D match: Correspondence transfer ($m i, M$) via P_{1}
- 3D Pose estimation of P_{i} with $m_{i}-P_{i} M=>$ min.

Minimize lobal reprojection error: $\sum_{i=0}^{N} \sum_{k=0}^{K}\left\|m_{k, i}-P_{i} M_{k}\right\|^{2} \Rightarrow \min !$

Correspondences matching vs. tracking

- Image-to-image correspondences are essential to 3D reconstruction

Extract features independently and then match by comparing descriptors [Lowe 2004]

Extract features in first images and find same feature back in next view [Lucas \& Kanade 1981] , [Shi \& Tomasi 1994]

- Small difference between frames
- potential large difference overall

SIFT-detector

. Scale and image-plane-rotation invariant feature descriptor [Lowe 2004]

Introduction to Computer Vision for Robotics

SIFT-detector

- Image content is transformed into local feature coordinates that are invariant to translation, rotation, scale, and other imaging parameters

Key point localization

- Detect maxima and minima of difference-of-Gaussian in scale space
- Fit a quadratic to surrounding values for sub-pixel and sub-scale interpolation (Brown \& Lowe, 2002)
- Tavlor expansion around point:

$$
D(\mathbf{x})=D+\frac{\partial D^{T}}{\partial \mathbf{x}} \mathbf{x}+\frac{1}{2} \mathbf{x}^{\mathbf{T}} \frac{\partial^{2} D}{\partial \mathbf{x}^{2}} \mathbf{x}
$$

- Offset of extremum (use finite
 differences for derivatives):

$$
\hat{\mathbf{x}}=-\frac{\partial^{2} D^{-1}}{\partial \mathbf{x}^{2}} \frac{\partial D}{\partial \mathbf{x}}
$$

Orientation normalization

- Histogram of local gradient directions computed at selected scale
- Assign principal orientation at peak of smoothed histogram

- Each key specifies stable 2D coordinates (x, y, scale, orientation)

Introduction to Computer Vision for Robotics

Example of keypoint detection

Threshold on value at DOG peak and on ratio of principle curvatures (Harris approach)

SIFT vector formation

- Thresholded image gradients are sampled over 16×16 array of locations in scale space
- Create array of orientation histograms
- 8 orientations $\times 4 \times 4$ histogram array $=128$ dimensions
example 2×2 histogram array

Image gradients

- Estimation of plane from point data

References

[Lowe 2004] David Lowe, Distinctive Image Features from ScaleInvariant Keypoints, IJCV, 60(2), 2004, pp91-110
[Lucas \& Kanade 1981] Bruce D. Lucas and Takeo Kanade. An Iterative Image Registration Technique with an Application to Stereo Vision. In Proceedings International Joint Conference on Artificial Intelligence, 1981.
[Shi \& Tomasi 1994] Jianbo Shi and Carlo Tomasi, Good Features to Track, IEEE Conference on Computer Vision and Pattern Recognition 1994
[Baker \& Matthews 2004] S. Baker and I. Matthews, Lucas-Kanade 20 Years On: A Unifying Framework.International Journal of Computer Vision, 56(3):221-255, March 2004.
[Fischler \& Bolles] M.A. Fischler and R.C. Bolles, Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography.CACM, 24(6), June'81.

Introduction to Computer Vision for Robotics

References

- [Mikolajczyk 2003], K.Mikolajczyk, C.Schmid. "A Performance Evaluation of Local Descriptors". CVPR 2003
- [Lindeberg 1998], T. Lindeberg, "Feature detection with automatic scale selection," International Journal of Computer Vision, vol. 30, no. 2, 1998
- [Hartley 2003] R. hartley and A. Zisserman, "Multiple View Geometry in Computer Vision", $2^{\text {nd }}$ edition, Cambridge Press, 2003

[^0]: Example: Parallel lines intersect at the horizon (line of infinite points).

