
Fluid Simulation on the GPU

GPGP Course Presentation
Huai-Ping Lee

Outline

Navier-Stokes based methods
Lattice Boltzmann method
Summary and Comparison

Navier-Stokes Equations for
Fluid Simulation on the GPU

Navier-Stokes Equations

Macroscopic behaviors of incompressible fluids

{ {

cases; 2Dfor where,
),(
),(

field)(vector force external :),(
 field);(scalar pressure:),(;(constant) fluid ofdensity :

field);(vector fluid of velocity :),(

1)(

0

force
externaldiffuse

2

pressure
advection

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
=

⎪
⎪
⎩

⎪⎪
⎨

⎧

+∇+∇−∇⋅−=
∂
∂

=⋅∇

y
x

tv
tu

t
tp

t

p
t

x
x
x

u

xf
x

xu

fuuuu
u

ρ

ν
ρ 321

43421

(1)

(2)

Notation—Vector Calculus

Derivation of Navier-Stokes Equations

Eq. 1: conserve mass
The integral over the mass of the fluid = constant,
and the density is constant
So the amount of flux = 0, therefore the flux in
each small area = 0
By divergence theorem, flux density is div(u)

xxunxu dtdivdst
tt

∫∫
ΩΩ∂

=⋅)),((),(

Derivation of Navier-Stokes Equations

Eq. 2: conserve momentum

Newton’s second law:

xxuxm dttt
t

),(),()(⋅= ∫
Ω

ρ

∑= forcesactingt
dt
d)(m

Derivation of Navier-Stokes Equations

There are two kinds of acting forces
Body force: given by the force density per unit
volume f(x, t)

Surface force (e.g. pressure): represented by
stress tensor σ

xxfxF dtt
t

b),(),(⋅= ∫
Ω

ρ

cases. 3Dfor normal; surface: where

,)(),(

333231

232221

131211

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

=⋅= ∫∫
ΩΩ∂

σσσ
σσσ
σσσ

σn

xσnxσF ddivdst
tt

s

Derivation of Navier-Stokes Equations

Transport theorem

So Newton’s second law says (here f=ρu)

∫∫
ΩΩ

⎟
⎠
⎞

⎜
⎝
⎛ ⋅+
∂
∂

=

ℜ→×Ω

tt

dtfdivtf
t

dtf
dt
d

tf endt

xuxxxx)),((),(),(

,],0[: fieldscalar abledifferenti aFor

{

{
force externaladvection

0

)(1)(

0)()()()(

fσuuu

σfuuuuu

++∇⋅−=
∂
∂

diffuse pressure,

∴

=−−⋅∇+∇⋅+
∂
∂

43421
43421

div
t

div
t

ρ

ρρρρ

Derivation of Navier-Stokes Equations

So the equation depends on the stress tensor
For viscous fluids, σdepends on pressure
and internal friction

Some applications also include boyancy in σ
For more detail, see [Griebel et al. 98]
Finally we have

{ {

force
externaldiffuse

2

pressure
advection

1)(fuuuu
+∇+∇−∇⋅−=

∂
∂ ν

ρ 321
43421

p
t

The velocity of
the fluid carries

itself along

Pressure in the
fluid leads to
acceleration

Internal friction
results in diffusion
in the momentum

Helmholtz-Hodge Decomposition

q
q

2

0 where,
∇=⋅∇

=⋅∇∇+=

w
uuw

Decomposes a vector field w into a divergence-free
vector field u and another gradient field
Define an operator P such that P(w) = u

Project any vector field to its divergence-free part
P(gradient field) = 0

q∇−== wwu)P((3)

Helmholtz-Hodge Decomposition

Apply P() to both sides of (2), we get

Since P(u) = u and P(del(p)) = 0

))(P(2 fuuuu
+∇+∇⋅−=

∂
∂ ν

t
(4)

Outline of Solution

Start from the solution of previous time step (t) and
add each term on the right hand side of Eq.4, and
them perform the projection to satisfy Eq.1

w can be stored in one RGBA texture
2D case: 2D texture using 2 channels
3D case: 3D texture using 3 channels

)()()()()(

 where,
),(
),(

),()(

4
project

3
diffuse

2
advect

1
force add

0

0

xwxwxwxwxw

x
x
x

xuxw

⎯⎯ →⎯⎯⎯ →⎯⎯⎯ →⎯⎯⎯⎯ →⎯

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
==

y
x

tv
tu

t

Storage

2D example:

3D Textures vs. Flat 3D Textures

According to [Harris 03], flat 3D textures have
performance advantage over true 3D textures
on current graphics hardware

External Force

),()()(01 tt
t

xfxwxw

fu

Δ+=

=
∂
∂

An approximation over the time step ∆t
Easy to implement on GPU once we have w0 and f
as input texture

For each cell (fragment), lookup textures w0 and f and add
them.

Advection [Stam 99]

uuu)(∇⋅−=
∂
∂

t
Solve the PDE by method of characteristics, we can
find that the value of u does not change along the
“streamlines” of the velocity field, therefore

field velocity the toaccording
 ago, Δ timea oflocation the:),(

)),(()(12

tt
t

xxp
xpwxw

Δ−
Δ−=

Advection

When p(x, ∆t) is between the
grids, interpolate it
Can also be easily done on
GPU, for each cell,

w1 as input texture
Compute p(x, ∆t) in fragment
shader
Perform 4 texture look-ups on
w1 and interpolate

Use built-in function in Cg,
f4texRECTbilerp()

Diffusion [Stam 99]

)()()(23
2

3
223

3
23

xwxwI

www

ww

=∇Δ−

∇≈
Δ
−

∇=
∂
∂

t
t

t

ν

ν

ν

It involves solving a Poisson equation (details later)

∇⋅∇=∇

=∇−
2

2

 where
),(xfv

Projection to Divergence-Free Vectors

Solve for q and subtract it from w3

q
q

∇−=
⋅∇=∇

34

3
2

ww
w

Also a Poisson equation

Poisson Equation as Linear System

So the key to solving N-S equation is solving the
Poisson equations
For example, one-dimensional version:

Discretize the space into N+1 grids

{

.
0

0

2100
1

00
121

0012

 and ,2 Therefore

.;).(let ,
1

1

)1(,)0(,10),()(

1

2

1

2
11

2

2

1
1

1

2

2

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

≈

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−

−−
−

++−
≈

∂
∂

−
≈

∂
∂−

≈
∂
∂

=
+

=

==≤≤=
∂

∂
−

+−

+
+

−

Nb

a

N

iii
i

ii
i

ii
in

ba

f

f

h

v

v

v

v

h
vvvv

x

h
vvv

xh
vvv

x
nhvv

N
h

vvvvxxf
x

xv

N

MMM

4444 34444 21
L

OOOM

OOO

MO

L

vT

va v1 … vN vb
0 11/(N+1) N/(N+1)…

Poisson Equation Solvers

It can be extended to 2D or 3D
TN, TNxN, TNxNxN are symmetric banded matrices
Direct methods to solve linear systems: O(N3) time

impossible for 2D or 3D cases

Need iterative methods
Please refer to previous lectures on linear algebra and
banded matrices [Sashi, Suddha]
Conjugate gradient [Krüger and Westermann 03], [Boltz et
al. 03]
Multigrid [Boltz et al. 03]: O(N) time for N samples

Poisson Equation as Linear System

It can be shown that [Demmel 97]

Truncation error approaches zero proportional to h2

But the condition number of TN is [Demmel 97]

Larger N makes the system more sensitive to FP errors
Remember: only 32-bit floating point numbers on GPU
N should be large enough, but not too large

)(ˆ 4

4
2

2
∞

≤−
dx

vdhOvv

2

2)1(4)(
π

κ +
≈

NTN

Boundary Conditions

To solve the Poisson equation, we still need
boundary values that satisfy boundary
conditions

No-slip condition: velocity goes to zero at the
boundaries

Resolution of boundary is limited by the size
of grids

Boundary Conditions

The boundary lies on the edge between the
boundary cell and its nearest interior cell

Assign imaginary velocity value to boundary cells
so that the average of itself and its nearest interior
cell should satisfy the condition
For example, on the left side,

jj

jj

,1,0

,1,0 0
2
uu

uu

−=

=
+

Boundary Conditions

To update the boundary cells after solved the
velocity field:

Draw lines on the boundary
In the shader: lookup texture u at the coordinate
of nearest interior cell and return the negative of
the value.

Arbitrary boundaries is complicated
For each boundary cell, need to determine the
direction of the face
More computation in the shader, more lines

Results [Krüger and Westermann 03]

1024x1024,
13 fps

1024x1024, 9
fps

Performance

The performance should be governed by the
Poisson solver since other parts require little
effort
[Krüger and Westermann 03] reported a 2D
N-S equation solver has 9 fps on a 10242 grid

using P4 2.8GHz with ATI 9800 graphics card
but did not compare with performance on CPU

Results [Harris et al. 2003]

128x128 grid, 30 fps

Performance [Harris et al. 2003]

[Harris et al. 2003] reported 3D cloud
simulation results on Geforce FX Ultra

32x32x32: 27 iterations per second
64x64x64: 3.6 iterations per second

(I’m not sure if they include rendering time)
Not compared to CPU

Reference—Navier-Stokes Equations

Stam, J. Stable Fluids. In Proceedings of SIGGRAPH 1999.
Griebel, M., Dornseifer, T., Neunhoeffer, T. Numerical Simulation in
Fluid Dynamics. Society for Industrial and Applied Mathematics.
1998.
Demmel, J. W. Applied Numerical Linear Algebra. Society for
Industrial and Applied Mathematics. 1997.
Harris, M. Fast Fluid Dynamics Simulation on the GPU. In GPU
Gems: Programming Techniques, Tips, and Tricks for Real-Time
Graphics. 2004.
Krüger, J. and Westermann, R. Linear Algebra Operators for GPU
Implementation of Numerical Algorithms. SIGGRAPH 2003.
Bolz, Farmer, Grinspun and Schröder, Sparse Matrix Solvers on the
GPU: Conjugate Gradients and Multigrid. SIGGRAPH 2003.
Harris, M., Baxter, W. V., Scheuermann, T., and Lastra, A.
Simulation of Cloud Dynamics on Graphics Hardware. Graphics
Hardware 2003.

Lattice Boltzmann Method for
Fluid Simulation on the GPU

Two Different Strategies

Top-down: solving differential equations by
discretizing the space

Be aware of truncation error when using finite
difference!
Navier-Stokes equations

Bottom-up: start from a discretized
microscopic model that conserves desired
quantities

Lattice Gas Automata, Lattice Boltzmann Model

Lattice Boltzmann Model

Simulate microscopic behaviors of particles
Streaming: each particle moves to the nearest
node in the direction of its velocity
Collision: particles arriving at a node interact and
change their velocity directions

Averaged microscopic properties obey the
desired macroscopic properties (conservation
of mass and momentum)

Lattice Geometry—D3Q19

Lattice Gas Automata

The space is divided into a lattice of nodes
with particles resides on them
Each node has a set of directions of velocity

ei, i = 0, 1, …, M
Each velocity vector is coupled with a
boolean variable

ni(x, t), i = 0, 1, …, M
x: location of the node; t: time
true iff there is a particle moving in this direction

Lattice Gas Automata

At each time step, evolve each node with

Streaming: each particle moves to the nearest
node in the direction of its velocity
Collision: particles arriving at a node interact and
change their velocity directions

No more than one particle is allowed in a node with
a given velocity

43421321
collisionstreaming

)),((),(),(tntntn iiii xxex Ω+=+

Lattice Boltzmann Method (LBM)

Now replace the particle occupation variables
ni with single-particle distribution functions

fi = <ni>
The density of particles that have a given velocity

Lattice Boltzmann Equations (LBE)

increments space and time: and
collision from resulting of change

of rate therepresentshich operator wcollision :)),((
directionth thealongfunction on distributi velocity particle :

 ..., ,1 ,0 ,)),((),(),(
collisionstreaming

xt
f

tf
if

Mitftfttxf

i

ii

i

iiii

ΔΔ

Ω=Ω

=Ω+=Δ+Δ+

x

xxex
43421321

Discretized space is consistent with the equation
The nearest neighbors of x are x + ei, i = 0, 1, …, M

Lattice Boltzmann Equations (LBE)

The density and momentum density of a
node are

So we can compute velocity field u
Ωi is required to satisfy conservation of total
mass and total momentum at each node

∑∑
==

==
M

i
ii

M

i
i ff

11

 , euρρ

0 ,0
1

i
1

=Ω=Ω ∑∑
==

M

i
i

M

i
i e

Two-Step Update of LBE

How to compute the collision term?

),()1,(:streaming

),(),(:collision

tftf

tftf
new

iii

ii
new

i

xex

xx

=++

Ω+=

Collision

The distribution function fi can be expanded
about the local equilibrium distribution
function fieq, which satisfies

fieq only depend on ρ and u
Equilibrium means that forces in all directions are
balanced

{ {

∑∑

∑∑

==

==

==

==

+=

M

i
i

neq
i

M

i

neq
i

M

i
i

eq
i

M

i

eq
i

neg
i

eq
ii

ff

ff

fff

11

11

riumnonequilibmequilibriu

0 ,0

 ,

e

euρρ

Collision

The nonequilibrium (“unbalanced”) part is
resulted from collision

How to find fieq?

 viscosity thedetermineshat constant t:
functionon distributi mequilibriu local:),(

)),(),((1

τ
ρ

ρ
τ
u

ux

eq
i

eq
iii

f

ftf −−=Ω

Equilibrium Distribution Function

Bhatnager, Gross, Krook (BGK) model [Wolf-
Gladrow 2000]

geometry lattice
chosen the tospecific tscoefficienconstant :,,,
))()()((),(2

DCBA
DCBAf ii

eq
i uuueueu ⋅+⋅+⋅+= ρρ

Boundary Condition

For simple boundary (box aligned with axes),
the “bounce-back” method we mentioned
before is enough
For arbitrary boundary, LBM becomes easier
than N-S based methods since the vectors
are fixed to a certain directions

f for boundary nodes can be interpolated

Arbitrary Boundary [Mei et al. 2000]

Boundary nodes are given a imaginary f
value so that the interpolated value at the
boundary satisfies the no-slip condition

bf

wf

xx

xx

−

−
=Δ

The packet distribution at xf is streamed
from xb, so we need to define an
imaginary distribution for xb

Arbitrary Boundary [Mei et al. 2000]

Post-collision value of fi(xb, t) is
Velocity of

the wall

Constant
determining

viscosity

GPU Implementation [Li et al. 2003]

Flow chart

GPU Implementation—Storage

Group the distribution functions into arrays
according to their velocity vectors

Also density, velocity, and equilibrium distribution

GPU Implementation—Storage

To exploit 4 channels, pack four arrays into
one texture
For 3D case, the volume is treated as slices
of 2D textures

Flat volume, [Harris et al. 2003]

GPU Implementation—Collision &
Streaming

Collision term is computed from texture uρ
and added to textures f0-f4
Streaming: fetch neighboring texels and copy
the corresponding f

fi
new (x)= fi(x-ei)

For example, f new
(1, -1, 0)(x) = f(1, -1, 0)(x-(1, -1, 0))

GPU Implementation—Boundary

To handle the complex boundary, we need to
compute the intersections of boundary
surface with all the lattice links

For moving or deformable boundary, the
intersection changes dynamically

Create voxelization for boundaries by
rendering the scene several times with
different near and far clipping planes

Boundary is sparse in the entire scene, thus does
not need too many passes

Clipping
plane

GPU Implementation—Boundary

When rendering the boundary voxels, apply
the fragment shader to compute boundary
conditions

We still need

Each boundary distribution will have the velocity
vector crossing the boundary surface

bf

wf

xx

xx

−

−
=Δ

Boundary

Suppose the boundary surface is defined by
Ax + By + Cz + D = 0 [(A, B, C) is normalized]

Define

Each ei has its own flags
Need to make sure that each boundary node
is covered by a fragment, so that boundary
condition is computed for all boundary nodes

 voxel theof coordinate 3D theis),,(
) and normalbetween (angle),,(

surface)boundary the to(distance),,,()1,,,(

2

1

zyx

ii

zyx

pospospos
CBAflag

DCBAposposposflag

ee⋅=

⋅−=

Boundary

Three passes to cover boundary cells
First pass—just render the voxels
Second pass—only R and G channels are
updated, ei is the vector corresponding to R
channel, translate all voxels and render, with
translation offsets decided by the rule:

⎪
⎩

⎪
⎨

⎧

=
<−

>

0* if:0
0* if:

0* if:

21

21

21

flagflag
flagflag

flagflag

i

i

e
e

Boundary

Third pass—similar to second pass, but only B and
A channels are updated, and ei is the vector
corresponding to the blue channel
All boundary nodes will be covered by the voxels

Note that each pass will check for all four textures f0~f4
During the passes, compute in the fragment shader

If 1>=∆>=0, the voxel is a boundary node, and the
boundary condition is computed for the voxel

2

11
flag
flag

−=Δ

Boundary

•The vectors in R and B
channels are
perpendicular

•Vectors in R is opposite
to vectors in G;

•Vectors in B is opposite
to vectors in A

ei

ei

ej
Ax+By+Cz+D=0

(A, B, C)

Flag1 < 0

Flag2 > 0

Flag1 < 0

Flag2 < 0

Flag1 > 0

Flag2 > 0

Flag1 > 0

Flag2 < 0

Outside voxels moves
inward in passes 2 & 3

Inside voxels moves
outward in passes 2 & 3

ej

Boundary

2

1

2

1

11

,' eIn triangl

flag
flag

flag
flag

bf

bw

bf

bw

wb

−=
−

−
−=Δ

=
−

−

xx
xx

xx
xx

xxx
Direction of
(A, B, C)

Ax+By+Cz+D=0

flag1

flag2

xw

xf

xb

x’

Results [Li et al. 2003]

Performance—2D [Li et al. 2003]

•0.16 seconds per frame on
1024x1024 cell, including
simulation and visualization

•[Kruger and Westermann 03]
claimed 0.11 seconds per
frame, but they did not deal
with complex boundary

•Hardware used: P4 2.53
GHz, 1GB PC800 RDRAM
with GeForce FX 5900
Ultra (256MB DDR RAM)

Performance—3D [Li et al. 2003]

•[Harris et al. 2003]
reported 0.28
sec/iteration on
64x64x64 grids

Reference—Lattice Boltzmann Method

Li, W., Fan, Z., Wei, X., and Kaufman, A. GPU-Based Flow
Simulation with Complex Boundaries. Technical Report 031105,
Computer Science Department, SUNY at Stony Brook. Nov 2003.
Chen, S. and Doolean, G. D. Lattice Boltzmann Method for Fluid
Flows. Annu. Rev. Fluid Mech. 30, 329-364. 1998.
Wolf-Gladrow, D. A. Lattice-Gas Cellular Automata and Lattice
Boltzmann Models: An Introduction. Springer-Verlag. 2000.
Mei, R., Shyy, W., Yu, D., and Luo, L.-S. Lattice Boltzmann Method
for 3-D Flows with Curved Boundary. Journal of Comp. Phys. 161,
680-699. 2000.

Summary and Comparison

Navier-Stokes and LBM can be used to
simulate fluids, and they are both
parallelizable

Solving Poisson equations can be a bottle neck
for N-S based methods (need more passes for
iterative refinement)
N-S based method relies on numerical
accuracy more than bottom-up methods

Sensitivity of linear systems can be critical
No double precision on current GPUs may become
a major problem for large scale simulation

Summary and Comparison

Current work using N-S on GPUs only deal
with simple boundary, while LBM on GPUs
can deal with complex boundary

LBM is easier for this because each node only
have a set of vector directions

LBM has advantage of complex boundary
and numerical sensitivity

Future Work

Simulation and visualization of liquid surface
are still not solved on GPUs

Can we solve for isocontour of liquid grids on the
GPU??

	Cover.ppt
	Fluid Simulation on the GPU
	Outline

	Navier-Stokes_Equation.ppt
	Navier-Stokes Equations for Fluid Simulation on the GPU
	Navier-Stokes Equations
	Notation—Vector Calculus
	Derivation of Navier-Stokes Equations
	Derivation of Navier-Stokes Equations
	Derivation of Navier-Stokes Equations
	Derivation of Navier-Stokes Equations
	Derivation of Navier-Stokes Equations
	Helmholtz-Hodge Decomposition
	Helmholtz-Hodge Decomposition
	Outline of Solution
	Storage
	3D Textures vs. Flat 3D Textures
	External Force
	Advection [Stam 99]
	Advection
	Diffusion [Stam 99]
	Projection to Divergence-Free Vectors
	Poisson Equation as Linear System
	Poisson Equation Solvers
	Poisson Equation as Linear System
	Boundary Conditions
	Boundary Conditions
	Boundary Conditions
	Results [Krüger and Westermann 03]
	Performance
	Results [Harris et al. 2003]
	Performance [Harris et al. 2003]
	Reference—Navier-Stokes Equations

	Lattice_Boltzmann_Method.ppt
	Lattice Boltzmann Method for Fluid Simulation on the GPU
	Two Different Strategies
	Lattice Boltzmann Model
	Lattice Geometry—D3Q19
	Lattice Gas Automata
	Lattice Gas Automata
	Lattice Boltzmann Method (LBM)
	Lattice Boltzmann Equations (LBE)
	Lattice Boltzmann Equations (LBE)
	Two-Step Update of LBE
	Collision
	Collision
	Equilibrium Distribution Function
	Boundary Condition
	Arbitrary Boundary [Mei et al. 2000]
	Arbitrary Boundary [Mei et al. 2000]
	GPU Implementation [Li et al. 2003]
	GPU Implementation—Storage
	GPU Implementation—Storage
	GPU Implementation—Collision & Streaming
	GPU Implementation—Boundary
	GPU Implementation—Boundary
	Boundary
	Boundary
	Boundary
	Boundary
	Boundary
	Results [Li et al. 2003]
	Performance—2D [Li et al. 2003]
	Performance—3D [Li et al. 2003]
	Reference—Lattice Boltzmann Method
	Summary and Comparison
	Summary and Comparison
	Future Work

