
Way Portals: Efficient Multi-Agent Navigation with Line-Segment Goals

Sean Curtis∗ Jamie Snape† Dinesh Manocha‡

University of North Carolina at Chapel Hill
http://gamma.cs.unc.edu/WayPortals

Abstract

It is a common artifact of multi-agent motion planning for groups
of agents, following similar paths, to converge to a line. This oc-
curs because the agents’ immediate goals, a.k.a. way points, are
frequently a shared point in space. Contention for the point goal
causes agents to line up and generally interferes with agent mo-
tion. By extending the definition of an immediate point goal to a
line segment, which we call a “way portal”, we enable the agents to
better utilize the space available to them in responding to dynamic
constraints. We present a novel multi-agent navigation algorithm
to efficiently compute the trajectories of autonomous agents using
these way portals. We have incorporated the concept into a velocity
obstacle-based local navigation model and present a new segment
optimization algorithm that efficiently computes a new agent ve-
locity with respect to the way portal. We show how way portal data
is extracted from current global navigation data structures, such as
navigation meshes. The algorithm is relatively simple to implement
and has a small run-time cost (approximately 3 µs per agent.) We
highlight its performance in different game-like scenarios and ob-
serve improved agent behavior and better utilization of free space.

CR Categories: I.6.8 [Simulation and Modeling]: Types of
Simulation—Gaming; I.2.11 [Artificial Intelligence]: Distributed
Artificial Intelligence—Intelligent agents; I.2.8 [Artificial Intelli-
gence]: Problem Solving, Control Methods, and Search—Heuristic
methods;

Keywords: local collision avoidance, navigation, non-player char-
acters

1 Introduction

Autonomous agents have become ubiquitous in modern games;
non-player characters (NPCs) populate virtual worlds. These NPCs
may be passive or antagonistic to the player character. But they
have something in common: they all move towards some goal and
use navigation techniques to compute collision-free paths.

The most common navigation technique in games is based on com-
bination of global and local navigation techniques [Reynolds 1987;
Helbing and Molnar 1995; Van den Berg et al. 2008b; Karamouzas
and Overmars 2010]. The global portion is typically handled of-
fline. The free space of the virtual world is computed and stored in a
global navigation data structure (e.g. roadmaps, navigation meshes,
guidance fields, etc.) When an agent moves from one region of the

∗seanc@cs.unc.edu
†snape@cs.unc.edu
‡dm@cs.unc.edu

world to another, these data structures provide an efficient basis for
computing a global path.

This global path acts as input to local navigation methods. Local
methods are appropriate for driving the agent towards an immediate
goal, provided that the obstacles between the agent and that goal are
small enough to be resolved with purely local information. At every
step in the simulation, an immediate goal for the agent is selected
from the path and the local navigation attempts to drive the agent
towards that goal while avoiding collisions with other agents and
dynamic obstacles.

The immediate goals are typically represented by single points,
known as “way points”. At any given time in the simulation, an
agent has a point goal which it strives to reach. The use of a point
goal is computationally efficient but it leads to undesirable artifacts
in the simulation.

When agents follow similar paths, they often end up sharing way
points. By definition, only one agent can “occupy” a point goal
at any time, so the agents are vying for an unsharable resource.
This contention gives rise to several undesirable motion artifacts.
The only way to resolve the contention is to serialize access, which
causes the agents to form a line. In most cases, the contention is
artificial. The point goals are coarse approximations of wide por-
tals. Every portion of that portal could be considered equally valid
toward reaching a final, global goal.

We seek to reduce, if not eliminate, the source of this contention
by eliminating the point approximation of a region. We increase
the dimension of the intermediate goal, a way point, from a point
goal to a line segment goal, creating a “way portal”. The way portal
communicates the full size of the portal to which the agent is mov-
ing. With greater information, the local navigation algorithm can
select collision-free velocities while still making progress through
the portal; the agent has more flexibility in responding to dynamic
obstacles.

Main Contributions. We present a novel reformulation of local
navigation in which an agent seeks to reach, not a single interme-
diate goal, but one of a continuous set, defined by a line segment.
This concept is general and should apply to many types of local
navigation algorithms. We show, specifically, how this model can
be implemented in a velocity obstacle-based navigation system. To
effect this integration, we present a new segment-based optimiza-
tion algorithm to compute an “optimal” collision-free velocity for
each agent. Our formulation includes analysis of error and how
to select a single velocity when there is a space of equally fea-
sible velocities. Finally, we show how way portals can be easily
extracted from a common global navigation data structure: a navi-
gation mesh. The algorithm is straightforward and is very compu-
tationally efficient. We show that the average computaion time, per
agent, is approximately 3 µs. Furthermore, the navigation system
is sufficiently stable to admit large time steps (as large as 0.2 s.)
The small cost and large stability make it ideal for games; naviga-
tion work can be done in less than a millisecond every few frames.
Finally, we demonstrate how performing navigation with local line
segment goals improves the behavior of agents in a complex, dy-
namic environment.

The rest of this paper is organized as follows. In Section 2 we

http://gamma-web.iacs.umd.edu/WayPortals

present related work. We discuss the form line segment goals take
in velocity obstacle-based local navigation in Section 3. In Sec-
tion 4 we provide details and analysis of using line segment goals
in practice. We show how line segment goals easily integrate with
navigation meshes in Section 5. And finally, we give experimental
results and discussion of the impact of line segment goals in Sec-
tions 6 and 7.

2 Related Work

The prevalent approach to global navigation in games has been
based on roadmaps [Latombe 1991]. In roadmap-based methods,
game agents are constrained to the edges of a graph between inter-
mediate goal nodes (way points). Increasingly, navigation meshes
[Snook 2000; Kallmann 2010; Van Toll et al. 2011] and similar
methods [Pettré et al. 2005; Geraerts et al. 2008] have begun to sup-
plant roadmaps in games. Navigation meshes are a decomposition
of the freespace of game world into a mesh consisting of convex
polygons. The connectivity of the graph is stored as a graph, similar
to roadmaps. Navigation meshes have advantages over roadmaps in
that all edges of a polygon are implicitly connected to each other,
i.e. because of the convexity there is a straight-line path from any
point in the polygon to any boundary. In addition, a single naviga-
tion mesh can encode clearance for arbitrarily sized agents. Finding
a global path with a navigation mesh consists of searching the con-
nectivity graph for the shortest path between two polygons. The
cost of a graph edge between two polygons depends on the length
of the shared edge of those two polygons. If the edge is not large
enough to accommodate the agent, the cost is infinite. The clear-
ance of the freespace is intrinsically part of the navigation mesh.
For these reasons, we focus on navigation meshes over roadmaps.

Algorithms are available to generate navigation meshes, includ-
ing triangulation algorithms [Hertel and Mehlhorn 1985], space-
filling volumes [Tozour 2003], and Recast [Mononen 2009], allow
for automatic navigation mesh generation. Frequently, however,
roadmaps and navigation meshes are manually defined during level
design. Roadmap-based planners have also been adapted to accom-
modate dynamic environments by reusing previously computed in-
formation [Jaillet and Simeon 2004; Kallman and Mataric 2004;
Ferguson et al. 2006; Zucker et al. 2007] or integrating dynamic
obstacle movement directly into the planner [Hsu et al. 2002].

Alternatives to changing a precomputed roadmap or navigation
mesh include potential field planners [Khatib 1986], which use gra-
dient descent to move toward a goal at a sink, inevitable collision
states [Petti and Fraichard 2005], which adds a time parameter to
allow for dynamic obstacles, and elastic or deformable roadmaps
[Sud et al. 2007; Yang and Brock 2007].

Velocity-based methods, such as the reciprocal velocity obstacle
[Van den Berg et al. 2008a] and its extensions [Van den Berg et al.
2011; Snape et al. 2011] have exhibited improvements in terms of
local collision avoidance and in the behavior of game agents, as
well as improved computational performance. However, all of these
formulations assume point-based goals positions.

3 Local Navigation and Line Segment Goals

Local navigation methods compute velocities for agents based on
strictly local data: local goals and obstacles. There are many
methods for performing local navigation (cellular automata, social
forces, and velocity obstacles, etc.) In order to incorporate line seg-
ment goals into a local navigation algorithm, three issues must be
addressed. First, how does the point goal manifests itself in the
model? Second, how would that manifestation change if the under-
lying goal changed from a point to a line segment? And, third, at

run-time, determine what portion of the line segment goal is acces-
sible to the agent due to occlusion by dynamic obstacles.

While we believe it is possible to extend many forms of local navi-
gation to include line segment goals, in this paper we focus on one
particular type of local navigation model: velocity obstacles. We’ve
selected velocity obstacles for several reasons. First, there has been
considerable recent interest in using velocity obstacles and efficient
implementations are available as part of a publicly available library.
Second, many games (e.g. Warhammer 40,000: Space Marine) are
using these techniques for NPCs. Finally, velocity obstacle for-
mulations inherently model space-time occlusion in its planning;
i.e. it explicitly encodes the occlusion state over a period of time.
Force-based local navigation has also been used in games to avoid
collisions. However, the repulsive forces typically have extreme re-
sponses in close proximity. This leads to potentially stiff systems
which require small simulation time steps. As shown in Section 6,
the velocity obstacle approach provides very consistent and stable
simulation results even for quite large time steps.

3.1 Velocity Obstacles

Velocity obstacles originated in robotics [Fiorini and Shiller 1998]
and correspond to a geometric construct in velocity space. It rep-
resents the space of all velocities an agent can take which will lead
to a collision with another entity at some point in time (the other
entity is assumed to have a constant velocity.) The velocity obsta-
cle is a cone in velocity space. If the computation is modified to
limit the obstacle to collisions within a specified time, τ , then the
cone becomes a truncated cone (Fig. 1(a).) The cone encodes goal
occlusion in a time-dependent manner. The moving obstacle will
occlude a particular region for a finite period of time and velocities
which cause the agent to arrive at the location sufficiently before or
after the obstacle’s arrival would be collision free. Thus, a direc-
tion that appears occluded at one moment of time may not actually
limit the agent’s ability to move in that direction because it will no
longer be occluded by the time the agent arrives. When velocity
obstacles are applied in a multi-agent context, each agent computes
a new velocity respecting multiple velocity obstacles–one for each
obstacle it seeks to avoid.

Velocity obstacles are used in local navigation by providing a pre-
ferred velocity. The velocities outside the union of the velocity ob-
stacles are feasible velocities. The planning agent selects a feasible
velocity which minimizes some cost function (where the preferred
velocity has the globally minimum value.) Unsurprisingly, the pre-
ferred velocity is derived from the point goal. The velocity’s direc-
tion is the direction from the agent towards the goal (Fig. 1(a).) The
magnitude of the velocity is some pre-determined preferred speed.
For velocity obstacles to be extended to use line segment goals,
the preferred velocity must represent the space of velocities which
would reach the line segment goal.

3.2 Goal Space to Velocity Space

A point goal implies a single preferred velocity. A line segment
goal produces an arc of preferred velocities. Given a line segment
goal defined by the end points (p0, p1), the representation of that
goal in velocity space is a circular arc with radius equal to the pre-
ferred speed, vpref , spanning the angle subtended by the goal from
the agent’s perspective. Specifically, we represent it with two vec-
tors: v0 and v1, where

vi = vpref
pi − pA

‖pi − pA‖
, i ∈ {0, 1} (1)

Figure 1: Computation of optimal feasible velocity using ORCA-
constraints using both a point goal and line segment goal. (a)
The basic feasible velocity computation using a truncated veloc-
ity obstacle with a point goal. (b) The truncated velocity obstacle
is bound by an ORCAlinear constraint with a point goal. (c) The
ORCAconstraint is used to optimize with respect to a velocity arc.
Compared to the feasible velocity from (a) and (b), the new feasible
velocity maintains preferred speed by changing direction towards
the unoccluded region of the portal.

for an agent with position pA. The line segment goal subtends the
angle θG = cos−1(< v0,v1 > /v2

pref). Local navigation would
then consist of finding a velocity outside the union of velocity ob-
stacles “near” the velocity arc.

Finding this “near” velocity is problematic. Computing the feasible
regions of an arbitrary set of cones is computationally expensive
and algorithmically complex. The free space could easily consist of
numerous disjoint regions. Secondly, the circular arc isn’t convex
which means for many cost functions there may not be a unique
minimum for selecting the best alternative velocity when the arc lies
entirely within velocity obstacles. Finally, in the event that portions
of the arc are in the feasible regions, a mechanism must exists for
selecting one velocity from the valid set. To address the issues of
computational efficiency and optimization, we approximate the arc
with its corresponding chord—a velocity segment.

4 Velocity Segment

Van den Berg et al. [2011] proposed an alteration to the canon-
ical representation of velocity obstacles: ORCA. They bound the
velocity obstacle with a half plane (Fig. 1(b).) The problem of find-
ing an alternate, feasible velocity becomes an optimization problem
with linear constraints. The set of linear constraints define a convex
region of feasible velocities and, using a Euclidian-distance met-
ric, the “optimal” feasible velocity is the point on the convex region
nearest the preferred velocity (Fig. 1.) Furthermore, the authors rec-
ommend a randomized algorithm which can compute this optimal
velocity in O(n) time for n constraints.

The velocity arc is non-convex and, therefore, cannot be used with
this algorithm. By approximating the velocity arc with its corre-
sponding chord (as a velocity segment), we can adapt the optimiza-
tion framework from ORCAto find the optimal velocity with respect
to a space of velocities, defined by a line segment. By doing so, we
benefit from the computational efficiency and theoretical collision-
free guarantees of ORCA, while extending the local navigation to
exploit multiple, equally valid immediate trajectories (Fig. 1(c).)

We define the velocity segment as V ∈ R6 = [v0, t0,v1, t1]T .
Where v0 and v1 are the end points of the segment as defined in
Equation 1 and t0 and t1 are corresponding parameter values for
the end points (see Section 4.2.)

In this section, we describe the algorithm to optimize with respect
to the velocity segment, show how to select a single velocity from
a set of feasible velocities, analyze the approximation error, and
present additional navigation strategies to exploit the line segment

goal formulation.

4.1 Segment-based Optimization

We use a variation of the randomized linear programming algorithm
presented in [De Berg et al. 2008]. The algorithm is an iterative
algorithm. The algorithm works by maintaining a “best” optimal
solution. Each constraint line is processed one at a time.

• If the best optimal solution is still feasible (i.e. both both end
points lie in the feasible region) with respect to the new line,
no action is taken.

• If the optimal solution is infeasible (i.e. none of the end points
lie in the feasible region), in any way, with respect to the new
line, we know that the new optimal solution is uniquely de-
fined by the new line.

• If the previous optimal solution is partially feasible (i.e. only
one end point lies in the feasible region) with respect to the
new constraint, then the resulting optimal solution is clipped
by the half plane.

In the case where the best optimal solution is infeasible (even par-
tially) the new optimal solution must lie on the boundary of the new
half plane.

The set of constraints we use differs from that used in ORCA. We
include two new constraints to the system: half planes aligned with
the extents of the velocity arc. This guarantees that any feasible
velocity determined leads in the direction of the goal.

Algorithm 1 describes the full iterative process. The descrip-
tion relies on four functions: notFeasible, clipBoundary,
clipVelocity and nearestOnBoundary.

The function notFeasible takes as arguments a velocity space
(which can be either a point or a segment) and a single linear con-
straint and determines if any portion of the velocity space lies in the
infeasible region of the linear constraint.

The function clipBoundary takes as arguments a set of linear
constraints and a line and returns the portion of the line which is in
the feasible space of all the linear constraints. The result could be a
line, a ray, a segment, a point or the empty set.

When the optimal solution is a velocity segment and the new con-
straint intersects the segment, then the function clipVelocity
is called. As the name suggests, the velocity segment is clipped to
span the space from the feasible end point to the point of intersec-
tion between segment and half-plane boundary.

The function nearestOnBoundary computes the region on the
clipped boundary closest to a the optimization velocity space. The
closest region is typically a point, but if the boundary and optimiza-
tion segment are parallel, the closest region could, in turn, be a seg-
ment. It’s also possible for the optimal solution to be a single point
but by adding another constraint, the subsequent optimal solution is
again a line segment.

The algorithm finds the optimal space of velocities with respect to
the preferred velocity and the set of linear constraints. This space
may be a single velocity or a velocity segment. In the case of a
velocity segment, a single velocity must be selected from the space.

4.2 Velocity Bias

Velocity bias determines which specific velocity, from a continu-
ous feasible velocity segment, the agent will take. The name arises
from the idea that even when there is a space of equally reasonable

Algorithm 1: Compute the best velocity with repsect to a preferred
velocity space and a set of half planes represented by lines.
input : A set of Lines, lines, representing half planes, and a

VelocitySpace, velOpt, the space of preferred velocities.
output: A VelocitySpace, possibly empty, representing the best

feasible velocities.
prevLines = {}
best← velOpt
while |lines| > 0 do

line← getRandomLine(lines)
lines = lines− {line}
if notFeasible(line, best) then

boundary = clipBoundary(line, prevLines)
if boundary 6= ∅ then

if best
⋂
boundary = ∅ then

best← nearestOnBoundary(boundary,
velOpt)

else
best← clipVelocity(boundary, best)

else
best← ∅
break

prevLines = prevLines ∪ {line}
return best

velocities available, the agent is biased towards one in particular.
We’ve defined a bias function, β(V), such that for any single sub-
section of the segment, the agent will have the most bias towards
a single, unambiguous velocity (e.g. it has a single extremum on
the domain of the segment.) Furthermore, the bias value is used for
global navigation. By setting the bias function towards the global
path, the agent will follow the global path when there are no dy-
namic obstacles.

Parameter bias We have defined the velocity segment with param-
eter values for the end points. When the preferred velocity segment
is initialized, t0 and t1 are assigned the values zero and one, re-
spectively. During optimization, when the solution is truncated or
projected, the parameters from the corresponding points on the pre-
ferred velocity are stored with the best solution. The bias velocity
is computed in the following manner:

β(V) = (1− α)v0 + αv1 (2)

α =

([
min

t∈[t0,t1]
|t− ζ|

]
− t0

)
/(t1 − t0),

where ζ ∈ [0, 1] is the bias value. When ζ is 0.5, the agent prefers
to walk through the middle of the portal. As ζ deviates from 0.5,
the agent is biased towards one end of the portal or the other. This
formulation satisfies the requirements of being well behaved. The
function has a single global minimum at ζ. Furthermore, if ζ is
set to be the parameter value of where the global path crosses the
portal, the agent will be biased to follow the global path.

4.3 Segment-Arc Error

A velocity arc and its corresponding velocity segment span the
same space of velocity directions. In the arc, all vectors have uni-
form magnitude. In the segment, the magnitude varies, greatest at
the ends and smallest at the center. By approximating the arc with a
segment, we introduce speed error. The maximum amount of speed
error, ε, found in the center of the arc spanning θ◦ at a speed of
vpref , is equal to:

ε = vpref (1− cos(θ/2)) (3)

For a fixed speed, as the angle increases, the maximum error in-
creases. And, similarly, for a fixed angle, as the speed increases
the maximum error likewise increases. By optimizing with respect
to the segment, we may end up selecting a velocity vector whose
speed is significantly different from the preferred speed. At the
limit, where the arc spans 180◦, the maximum error is exactly equal
to the preferred speed because the segment cuts through the center
of the circle; the zero velocity is considered to be a preferred veloc-
ity. This case is quite common; the arc angle goes to 180◦ as the
distance to the portal goes to zero. The effect of this error is that, as
the agent gets closer to an uncongested portal, it gradually slows to
a stop.

We address this by bounding the error. We can bound the error
in two ways: relative bound and absolute bound. The relative
bound limits the speed error to some fraction of the preferred speed:
εR(V) ≤ σvpref . The absolute bound limits the speed error to a
fixed amount, regardless of speed: εA(V) = σ. The two bounding
strategies have different effects.

For relative error, the approximation error is guaranteed to be within
the allowable error when the following expression is satisfied:

cos(θ) ≥ 2(1− σ)2 − 1. (4)

The relative bound defines a constant limit on the arc size. Regard-
less of what the preferred speed may be, the maximum arc angle is
constant. For a fixed value of σ, the maximum arc angle allowed is
θmax = cos−1(2(1− σ)2 − 1).

Similarly, for absolute error, the following condition guarantees al-
lowable error:

cos(θ) ≥ 2

(
1− σ

vpref

)2

− 1 (5)

The constraint on the arc angle defined by the absolute error bound
depends on the preferred speed. At high speeds, the arc must be
narrower to satisfy the error constraint, but the viable angle in-
creases with lower preferred speeds. When the preferred speed
falls below σ, the arc is allowed to span the full 180◦. For a
fixed value for σ, the maximum angle allowable velocity arc is
θmax = cos−1(2(1− σ/vpref)2 − 1).

4.4 Arc Contraction

If the arc exceeds the angle allowed by the error bound, the arc must
be contracted to an acceptable angle. However, there are an infinite
number of arcs of the reduced angle which are subsets of the full
arc. We require a strategy to select a particular arc.

Our contraction strategy uses a contraction vector. Given a contrac-
tion vector, we reduce the span of the arc, proportionately, towards
the contraction vector. We compute how much the arc needs to
contract, φ. Given the contraction vector N = (Nx, Ny), we then
compute an angle of rotation,R0 andR1, for the vectors that bound
the velocity space, v0 and v1. respectively.

R0 =

 0◦ if x0Ny − y0Nx > 0
φ− θ if x1Ny − y1Nx < 0
−φθ0

θ
otherwise

(6)

R1 =

 θ − φ if x0Ny − y0Nx < 0
0◦ if x1Ny − y1Nx > 0
φθ1
θ

otherwise
(7)

We define the contraction vector based on the bias function. Using
the parameter bias function, N = (1− ζ)v0 + ζv1.

4.5 Arc Expansion

As the distance to the portal increases, it subtends an increasingly
smaller angle. It is tempting to define a threshhold, below which
the portal no longer defines an arc, but collapses down to a point.
This would increase computational efficiency; optimizing velocity
with respect to a point is cheaper than for a segment. However, it is
contrary to the underlying motivation of using a line segment goal.

We use a line segment goal so that, as the agent responds to dy-
namic obstacles, the local navigation doesn’t artifically increase
contention by approximating a goal region as a goal point. Col-
lapsing a small arc into a point returns the agent to the overly con-
strained goal model.

When an agent is a great distance from its goal, perturbations in the
agent’s trajectory towards the goal have little significance. For ex-
ample, for an agent 100 m away from its goal, taking a 1 m detour
perpendicular to the direction toward the goal and then walking di-
rectly towards the goal only increases the total distance travelled by
1%. If this 1 m detour helps the agent avoid a congested region, the
actual time to the goal may improve. To exploit this, we expand the
arc when the agent is far from the goal.

We model this in the following manner. An agent at distance d from
a goal can walk a distance, ∆, in a direction α degrees from the
goal direction. After moving that distance, the agent would return
to walking straight toward the goal over a new distance d′. To limit
the magnitude of the detour, we define a maximum deviation factor,
γ > 1 and require ∆ + d′ ≤ γd. The angle to which we want to
expand the velocity arc is θE = 2α, θE ∈ [0, θmax].

For a given detour amount (∆) and deviation factor (γ), the expan-
sion arc reaches its maximum angle (θmax) at:

dmax =
2∆[cos(θmax/2)− γ]

1− γ2
, (8)

and reaches zero at distance ∆. So, we define the expansion angle
as:

θE =


0 if d ≤ ∆

2 cos−1
(

2∆γ+d−γ2d
2∆

)
if ∆ < d ≤ dmax

θmax if d > dmax

(9)

Finally, we compute the actual angle for the velocity arc as follows:

θ = min(θmax,max(θE , θG)). (10)

If the goal arc requires expansion, we expand in the same manner
as we contracted. However, for expansion, the expansion normal is
the middle of the goal and not the bias direction. This provides a
symmetric increase in the appearance of the goal.

5 Global Navigation

Efficiently performing local navigation with line segment goals is
useful only if the global navigation algorithm can produce a path in
which this goal information is encoded. In this section, we describe
the path used with line segment goals and how it is computed from
global navigation data structures such as navigation meshes.

5.1 Waypoints and Way Portals

An agent point-goal path can be generalized as the function Π :
A→ R2, where A is the space of agent configuration state. Essen-
tially, it examines the agent’s current state and produces an immedi-
ate goal point in R2. These immediate goals are often called “way

points”. To produce line segment goals, we simply need to map to
a higher dimension: Π1 : A→ R4. The new path maps the current
agent state into a way portal, π = [p,d]T ,p,d ∈ R2. The way
portal serves as the line segment goal and spans the space p + td,
where t ∈ [0, 1].

In practice, computing a smooth, high-order function for the path
is challenging. Instead, Π is usually approximated by a set of dis-
crete way points. The way points are located at critical points in
the static environment, such as in doorways or portals. The dis-
crete point-goal path is [s,p0,p1, ...,pN,g], where, s and g are
the start and goal positions, respectively. In the equivalent discrete
way-portal path, we replace the intermediate way points with way
portals: [s, π0, π1, ..., πN ,g].

The way-portal path does not uniquely define a single path as the
point-goal path does. The way-portal path defines a space of paths.
When a single agent traverses the environment, one single path
must be selected from the space. For a way portal path with N
portals, a single path is uniquely described by t ∈ RN+1. Each ti
corresponds with a position along the length of each portal. Tradi-
tionally, the desired path is the shortest path. To find the shortest
path, Π∗1, we would find the vector t∗ that minimizes the total path
length subject to the constraint, ti ∈ [0, 1].

t∗ = min
t∈RN+1

(‖s− p0 + t0d0‖+

N−1∑
i=0

‖pi + tidi − pi+1 + ti+1di+1‖+

‖pN + tNdN − g‖) (11)

The values in t would serve as the values for ζ in the bias function.
As the agent heads to portal, πi, the bias function would be set to
ζ = ti. However, this is a tightly-coupled, non-linear system. Find-
ing the optimal shortest path is infeasible for real-time applications.
So, we use a simple heuristic.

5.2 Path Planning

We want to compute a value for the bias parameter, ζi for cross-
ing portal πi such that the path the agent follows approximates the
shortest path through the portals. We apply a simple, O(1) heuris-
tic for defining this value. We compute a line between the agent’s
current position and the center of portal i + k. We then intersect
the line with portal pi. The value of ζi is such that pi + ζidi is the
intersection point. If the line does not intersect the portal, then ζi is
0 or 1, depending on which end of the portal is closest to the line.

The efficacy of this approach depends on the choice for k. The best
choice for k would be a dynamic selection strategy. One should
choose k > i such that πk is the first portal that is not visible from
the agent’s position ~pA. This is the “right” choice because the direc-
tion of the unseen portal communicates the most information about
turning corners. However, this requires frequent visibility queries.
A system-wide constant value for k would make the heuristic very
cheap. But the right choice depends on the scene in which it is ap-
plied. In practice, we find two is a good value. Two portals ahead is
sufficient to optimally turn right-angled corners in the environment.

As the agent progresses along the path, each time it passes one way
portal and selects the next to serve as its immediate goal, it performs
this heuristic to determine where the agent should cross the new
way portal.

Approach vector In the absence of dynamic obstacles, the agent
will walk towards the bias point. The presence of dynamic obsta-
cles can cause the agent to deviate from its path. In principle, this
shouldn’t make a difference because as the agent nears the portal,

the arc subtended by the portal converts to 180◦. However, because
of error bounds, the angle is limited to a much smaller arc (e.g.
∼60◦ for a relative error bound of 0.1.) We introduce the concept
of approach vector. When the agent first computes ζi, it also com-
putes the initial approach vector to the bias point, pi + ζidi. While
making its way to the portal, if the agent’s approach vector to the
bias point exceeds some threshold, the heuristic is applied again
and a new value for ζi is computed.

5.3 Navigation Mesh

There are many ways to decompose the simulation domain to fa-
cilitate global path planning: roadmaps, guidance fields, navigation
meshes, etc. Any of these can be modified to produce way portal
paths instead of way point paths, but navigations meshes are the
most natural fit. Navigation meshes are also ideally suited to simu-
late agents with different sizes and motion constraints.

A navigation mesh decomposes the free space into a mesh of convex
polygons. The edges of each polygon admits one of two interpreta-
tions. Either an edge is an exterior edge, in which case it represents
a wall of the environment, or it is an interior edge and serves as a
portal between the two adjacent polygons. Because the polygons
in the mesh are convex, an agent inside any given polygon can take
a straight-line path towards any interior edge without encountering
static obstacles. These interior edges naturally encode the portal
data required to form a way portal path. And, conversely, the ex-
terior edges serve as obstacles in terms of local collision avoidance
computation using velocity obstacles.

The connectivity of the mesh implies a graph where each polgyon
is a node and an edge exists between two nodes if they share an
edge. The way portal path is generated in the following fashion:

1. Compute the start node by determining which polygon the
agent is inside.

2. Compute the goal node by determining which polygon the
goal position lies inside.

3. Perform an A∗ algorithm on the graph between the start and
goal nodes.

(a) If the edge length is shorter than agent diameter, 2rA,
edge cost is infinite.

4. For each interior edge, e = (q0,q1), ‖e‖ = ‖q1 − q0‖, ê =
q1−q0
‖e‖ , traversed in the path computed by A∗, create the way

portal, πi = (q0 + rAê, ê(‖e‖ − 2rA)).

6 Results

In this section, we demonstrate the beneftis of our model by ap-
plying various metrics to some representative benchmarks. We will
show the following benefits with the indicated metrics. First, the
algorithm is very efficient; planning for hundreds of agents simul-
taneously takes very little time. In each scenario we will show the
average computation time for the local navigation algorithm, com-
paring it to the cost of the corresponding point-goal algorithm. Sec-
ond, the simulation results are consistent and stable even with large
time steps. To illustrate this point, we’ve run simulations on the
scenarios with widely varying time steps. In each case, we’ll show
that the time on the path is equivalent and that the rate that colli-
sions occur remains the same, even as the time step grows. Finally,
line segment goals reduce the artifcial contention between agents
which cause them to converge to a line. We show graphs of the
environments which show the increased space utilization.

The example scenarios are as follows (see video for full detail):

Figure 2: The space used by agents performing traversing the 16
block scenario. The white regions indicate the aggregate paths of
the agents. (a) The paths using point goals. (b) The paths using line
segment goals. (c) The regions used due to line segment goals over
point goals.

Figure 3: The space used by agents performing traversing the
infinity loop scenario. The interpretation of the figures is the same
as that in Fig. 2.

Figure 4: Four snapshots of the simulation of 97 agents passing
through a dungeon scene. The wall’s protrusions are handled well
by the agents using way portals.

Figure 5: Three moments from the castle scenario. 713 agents
move through a fortress towards the central courtyard.

Table 1: Cost of line segment goal local navigation. Increasing
from a point goal to a line segment goal is a small cost, less than 1
µs per agent.

Scenario Point Goal Line Segment Goal
Average cost Average Cost Per-agent average

16 Blocks 0.24 ms 0.28 ms 3.3 µs
Infinity 0.26 ms 0.36 ms 3.0 µs

Dungeon 0.28 ms 0.32 ms 3.3 µs
Castle 1.46 ms 1.6 ms 2.2 µs

1. 16 Blocks. 85 agents travel a serpentine path through 16
blocks laid out in a uniform array (see Fig. 2.) The agents
in this scenario must take frequent 90-degree turns. This type
of motion makes maintaining cohesion difficult.

2. Infinity loop. 119 agents traverse a loop in the shape of the
infinity symbol (see Fig. 3.) The group of agents represents
a group of agents traversing a long path without significant
turns.

3. Dungeon. 97 agents pass through a tunnel-like dungeon
(inspired by [Mononen 2009].) The tunnel has many local
minima–protusions from the walls act to obstruct agents (see
Fig. 4.)

4. Castle. 713 agents walk paths towards a fortress courtyard
(see Fig. 5.) This illustrates large numbers of agents traversing
an authentic game environment.

Computational efficiency. The linear-constraint optimization
model and algorithm prove to be very efficient. For each of the
four scenarios, we have computed the average computation time,
per simulation step, to compute preferred velocity, optimal veloc-
ity and to update the agent’s state. Table 1 highlights these results.
The computaiton is done in parallel using a simple OpenMP loop.
A larger number of agents better exploits the parallelism, exhibiting
a lower per-agent average, as shown by the Castle scenario. While
optimizing with respect to the velocity segment incurs a greater cost
than for a single velocity, the per-frame cost is still quite small.

Stability To illustrate the stability of the simulation we compute
the global time required for the last agent to reach the region en-
closing the final goal position. This measures the consistency of
the simulation across different time steps. The last agent’s progress
is constrained by every previous agent. A consistent final time indi-
cates that the simulation produces the same simulation result across
varying time steps. Table 2 shows this consistency. The video al-
lows for a more compelling, qualitative examination of the impact
of different time steps.

Another measure of stability is the number of collisions that oc-
cur in the simulation. An unstable simulation will lead to more
collisions; the underlying assumptions to determine a collision-free
velocity are no longer valid in unstable conditions. Fig. 6 shows the
number of collisions (normalized for number of frames and num-
ber of agents) across multiple time steps. To save space, data from
only two scenarios is shown. The data shows that the larger time
steps produce collisions at a lower rate. In Fig. 6(a) the spikes in
collisions occur as a large portion of the agents negotiate a turn.
Similarly, in Fig. 6(b), those spikes map to the moments when the
mass of agents pass a protrusion from the wall.

Space utilization. Changing the point goal to a line segment goal,
we reduce artificial contention. Agents no longer converge to a line
because there is a space of equally viable velocities which take the
agent towards their goal. Figures 2 and 3 illustrate the importance
of the line goal segment. Figure (a) shows the accumulated paths

Table 2: The simulation time required for the last agent to reach
the final goal region for varying simulation time steps.

Scenario Simulation Time Step
0.01 s 0.02 s 0.05 s 0.1 s 0.2 s

16 Blocks 104.6 s 105.4 s 107.7 s 110.3 s 114.8 s
Infinity 210.7 s 211.4 s 212.3 s 214.0 s 215.6 s

Dungeon 138.0 s 137.8 s 138.7 s 140.3 s 139.8 s

Figure 6: The rate of collisions for two scenarios over a range of
simulation time steps (color in original). The number of collisions
is normalized across time step by multiplying by the time step size.
(a) 16 Block scenario. (b) Dungeon.

of the agents using point goals. Similarly, (b) shows the paths of
the agents using line segment goals. Finally, (c) shows the the dif-
ference in these two regions. The white regions in (c) are those
regions the agents take using line segment goals that they did not
take using point goals. The 16 block demo is quite constrained, so
the difference is smaller, but the agents use the full corridor space.
In the infinity loop, the agents take up a much larger swath of the
space.

Planning. During our experiments we came across a noteworthy
phenomenon. When the intent is to have a group of agents travers-
ing a space as a unit, the bias values should remain 0.5. The group
of agents can be thought of as a meta entity with a larger radius.
This larger radius needs greater clearance and a value of 0.5 gives
maximum clearance. When each individual member of the group
plans a shortest path as if they were alone, the center of mass of the
group seeks to hug the walls. This causes the group to be spread
out, as if material were being worn off the meta entity through fric-
tion with the wall. This phenomenon affects both point-goal and
line segment-goal local navigation (although the point-goal suffers
more.)

7 Conclusions and Future Work

We’ve described a model for improving multi-agent navigation. Us-
ing point goals in a local navigation algorithm causes needless con-
tention between agents vying for the same infinitisemally small goal
point. The result of this contention is the well-known pheonomenon
in which agents converge towards a line. This behavior is unrealis-
tic and destroys the illusion that the agents form any kind of cohe-
sive group.

By performing local navigation with line segment goals, the nav-
igation algorithm has more flexibility in choosing appropriate
collision-free velocities. The line segment goals better approximate
the true intermediate goals in game maps. Seldom do agents truly
need to stand at a single point. Instead, an agent passes through
regions on its way to a final goal position. Any point on this in-
termediate region is basically equivalent for reaching the final goal.
Navigation meshes perfectly encode this information. The interior

edges translate perfectly into way portals and this information can
be fed directly to local navigation. Finally, the stability and effi-
ciency of this approach would allow a game to perform planning
at very low frequency (5-10 Hz) at less that a millisecond for even
hundreds of agents. Our preliminary results are promising; groups
of agents maintain far better cohesion and use the space more ef-
fectively.

Our approach has limitations. Bounding the error introduced by ap-
proximating an arc with a line segment limits the span of velocities
available to the agent. This, in turn, limits the full impact that line
segment goals can have in this formulation. Furthermore, there are
artifacts which arise from the underlying local navigation model
(the group of agents arrays itself to the outside of curves due to
inertia in the ORCAformulation. See Fig. 3.)

This approach is general, in the future we look forward to applying
it to other local navigation models (e.g. social forces) as well as
other global navigation data structures. Applying it to roadmaps is
trivial as a roadmap can, in many ways, be considered the dual of
the navigation mesh. These techniques also apply to structures like
guidance fields and, in fact, applying the concept of non-point goals
may make the calculation of guidance fields simpler.

Acknowledgements

This research is supported in part by ARO Contract W911NF-04-
1-0088, NSF awards 0917040, 0904990, 100057 and 1117127, and
Intel.

References

DE BERG, M., CHEONG, O., VAN KREVELD, M., AND OVER-
MARS, M. 2008. Computational Geometry: Algorithms and
Applications, 3rd ed. Springer, Heidelberg.

FERGUSON, D., KALRA, N., AND STENTZ, A. 2006. Replanning
with RRTs. In Proc. IEEE Int. Conf. Robot. Autom., 1243–1248.

FIORINI, P., AND SHILLER, Z. 1998. Motion planning in dynamic
environments using velocity obstacles. Int. J. Robot. Res. 17,
760–772.

GERAERTS, R., KAMPHUIS, A., KARAMOUZAS, I., AND OVER-
MARS, M. 2008. Using the corridor map method for path plan-
ning for a large number of characters. In Motion in Games.
Springer, Heidelberg, 11–22.

HELBING, D., AND MOLNAR, P. 1995. Social force model for
pedestrian dynamics. Phys. Rev. E 51, 4282–4286.

HERTEL, S., AND MEHLHORN, K. 1985. Fast triangulation of
the plane with respect to simple polygons. Inform. Control 64,
52–76.

HSU, D., KINDEL, R., LATOMBE, J.-C., AND ROCK, S. 2002.
Randomized kinodynamic motion planning with moving obsta-
cles. Int. J. Robot. Res. 21, 233–255.

JAILLET, L., AND SIMEON, T. 2004. A PRM-based motion plan-
ning for dynamically changing environments. In Proc. IEEE RSJ
Int. Conf. Intell. Robot. Syst., vol. 2, 1606–1611.

KALLMAN, M., AND MATARIC, M. 2004. Motion planning us-
ing dynamic roadmaps. In Proc. IEEE Int. Conf. Robot. Autom.,
vol. 5, 4399–4404.

KALLMANN, M. 2010. Shortest paths with arbitrary clearance
from navigation meshes. In Proc. ACM SIGGRAPH Eurograph-
ics Symp. Comput. Animat., 159–168.

KARAMOUZAS, I., AND OVERMARS, M. 2010. Simulating the
local behaviour of small pedestrian groups. In Proc. ACM Symp.
Virtual Real. Softw. Tech., 183–190.

KHATIB, O. 1986. Real-time obstacle avoidance for manipulators
and mobile robots. Int. J. Robot. Res. 5, 90–98.

LATOMBE, J.-C. 1991. Robot Motion Planning. Springer, Heidel-
berg.

MONONEN, M., 2009. Recast: navigation-mesh construc-
tion toolset for games. http://code.google.com/p/
recastnavigation/.

PETTI, S., AND FRAICHARD, T. 2005. Safe motion planning
in dynamic environments. In Proc. IEEE RSJ Int. Conf. Intell.
Robot. Syst., 2210–2215.

PETTRÉ, J., LAUMOND, J.-P., AND THALMANN, D. 2005. A
navigation graph for real-time crowd animation on multilayered
and uneven terrain. In Proc. Int. Workshop Crowd Simul.

REYNOLDS, C. 1987. Flocks, herds and schools: a distributed
behavioral model. In Proc. ACM Int. Conf. Comput. Graph. In-
teract. Tech., 25–34.

SNAPE, J., VAN DEN BERG, J., GUY, S., AND MANOCHA, D.
2011. The hybrid reciprocal velocity obstacle. IEEE T. Robot.
27, 696–706.

SNOOK, G. 2000. Simplified 3D movement and pathfinding using
navigation meshes. In Game Programming Gems. Charles River,
Hingham, Mass., ch. 3, 288–304.

SUD, A., GAYLE, R., ANDERSEN, E., GUY, S., LIN, M., AND
MANOCHA, D. 2007. Real-time navigation of independent
agents using adaptive roadmaps. In Proc. ACM Symp. Virtual
Real. Softw. Tech., 99–106.

TOZOUR, P. 2003. Search space representations. In AI Game
Programming Wisdom 2. Charles River, Hingham, Mass., ch. 2,
85–102.

VAN DEN BERG, J., LIN, M., AND MANOCHA, D. 2008. Recip-
rocal velocity obstacles for real-time multi-agent navigation. In
Proc. IEEE Int. Conf. Robot. Autom., 1928–1935.

VAN DEN BERG, J., PATIL, S., SEWALL, J., MANOCHA, D.,
AND LIN, M. 2008. Interactive navigation of multiple agents
in crowded environments. In Proc. Symp. Interact. 3D Graph.
Game., 139–147.

VAN DEN BERG, J., GUY, S., LIN, M., AND MANOCHA, D. 2011.
Reciprocal n-body collision avoidance. In Robotics Research:
The 14th International Symposium ISRR. Springer, Heidelberg,
3–19.

VAN TOLL, W., COOK, IV, A., AND GERAERTS, R. 2011. Navi-
gation meshes for realistic multi-layered environments. In Proc.
IEEE RSJ Int. Conf. Intell. Robot. Syst., 3526–3532.

YANG, Y., AND BROCK, O. 2007. Elastic roadmaps: globally
task-consistent motion for autonomous mobile manipulation. In
Proc. Robot. Sci. Syst., 279–286.

ZUCKER, M., KUFFNER, J., AND BRANICKY, M. 2007. Multi-
partite RRTs for rapid replanning in dynamic environments. In
Proc. IEEE Int. Conf. Robot. Autom., 1603–1609.

http://code.google.com/p/recastnavigation/
http://code.google.com/p/recastnavigation/

