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Figure 1: Simulation of butterflies moving on a prairie.

Abstract
Representing the majority of living animals, insects are the most ubiquitous biological organisms on Earth. Being
able to simulate insect swarms could enhance visual realism of various graphical applications. However, the very
complex nature of insect behaviors makes its simulation a challenging computational problem. To address this,
we present a general biologically-inspired framework for visual simulation of insect swarms. Our approach is in-
spired by the observation that insects exhibit emergent behaviors at various scales in nature. At the low level, our
framework automatically selects and configures the most suitable steering algorithm for the local collision avoid-
ance task. At the intermediate level, it processes insect trajectories into piecewise-linear segments and constructs
probability distribution functions for sampling waypoints. These waypoints are then evaluated by the Metropolis-
Hastings algorithm to preserve global structures of insect swarms at the high level. With this biologically inspired,
data-driven approach, we are able to simulate insect behaviors at different scales and we evaluate our simula-
tion using both qualitative and quantitative metrics. Furthermore, as insect data could be difficult to acquire, our
framework can be adopted as a computer-assisted animation tool to interpret sketch-like input as user control and
generate simulations of complex insect swarming phenomena.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation; I.6.8 [Simulation and Modeling]: Types of Simulation—Animation

1. Introduction

Representing the majority of living animals, insects are the
most ubiquitous biological organisms on Earth. Fascinated

by their collective behaviors, researchers from various dis-
ciplines have studied intrinsic operating mechanisms of in-
sect swarming phenomena with various aims, such as health
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and food issues, but also more surprisingly novel meth-
ods to facilitate design, architecture, construction, and opti-
mization of many complex structures. In graphics research,
with increasingly more realistic animation of various life
forms, simulation of insect swarms can enhance visual re-
alism of many graphical applications from virtual environ-
ments, computer games, to cinematography.

The fascination with insect swarms lies in the very com-
plex and diverse nature of insect behaviors as individuals
and in aggregation. This variety, arising from the hetero-
geneity in sensing and cognitive abilities, survival strate-
gies, interpretations of environmental factors, etc [CDF∗03],
makes simulation of insect behaviors one of the most chal-
lenging computational problems. A complete model to cap-
ture so different and complex phenomena seems infeasible
and can introduce an unmanageable amount of parameter
tuning and tweaking. To overcome this difficulty, we pro-
pose a general biologically-inspired framework to analyze,
evaluate and simulate insect swarms. We also evaluate sim-
ulation results both qualitatively and quantitatively.

Swarming of insects often exhibits complex global pat-
terns as a whole, yet frequently combines local random-
ness and chaotic individual movements. Motion of insect
swarms can be generally decomposed into different spatial
scales [Oku86]. At the microscopic scale, insects have lo-
cal interactions among them (e.g. collision avoidance). At
some intermediate mesoscopic scale, insects move in some
preferred direction and form trajectories of various shapes.
At the macroscopic level, more coherently, global structures
emerge from collections of individual movements. What
drives the overall direction of an insect swarm has been con-
jectured due to various reasons, including food seeking and
hunting, predator avoidance and evasion, courtship and mat-
ing, and seasonal migration, etc.

Given the complex causalities leading to insect swarm-
ing, we propose a multi-scale approach that is biologically
inspired [Sum10] and experimentally validated. Our objec-
tive is to recreate realistic visual simulation of insect swarms
by learning from real insect motion data. We analyze the in-
sect motion data at micro-, meso- and macroscopic scales
to configure and estimate parameters of various components
residing in our simulation framework. More specifically the
captured data enable us to (1) automatically select and con-
figure the most suitable local steering algorithm, (2) gener-
ate statistically accurate waypoints at mesoscale using seg-
mented piecewise-linear trajectories, and (3) parametrize a
global guiding field that captures swarming spatial patterns.

Since insects motion data are not always available and
sometimes animators prefer to have direct control over the
resulting simulation, our framework can further serve as an
assistive animation tool that empowers artists and amateurs.
Our prototype system can interpret sketch-like input and
generate similar patterns; or the user can provide “guiding
simulation results” with specifications on exploited motion

models and related parameters, our simulation can then re-
target the motion onto different swarming behaviors.

In summary, the main contributions of this work are the
following:

• A general biologically-inspired framework is developed
to analyze, evaluate and simulate insect swarms (Sec-
tion 3).

• Comparative evaluations of various local steering algo-
rithms are performed to select and configure the best
model for insects local collision avoidance (Section 4.1).

• A statistical learning and evaluating approach is devel-
oped for modeling individual behaviors within the swarm
and preserving spatial structures of the swarm (Section
4.2 and 4.3).

• The resulting framework can serve as an assistive anima-
tion tool for users to either turn sketched patterns into
animations or utilize existing simulations for re-targeting
purposes (Section 5).

2. Related Work

Insect swarms can be interpreted as multi-agent systems.
Multi-agent simulation has been a flourishing research topic
for nearly three decades. Many aspects including local col-
lision avoidance, global path planning, behavior modeling,
group motion and user interaction have had striking results.
A large portion of these problems have been addressed un-
der the focus of crowd simulation. In this section, we will
first discuss models that proposed for generating agents’
local and global behaviors, then proceed to models devel-
oped from biology, physics and mathematics perspectives in
studying insect swarms.

At microscopic level, a variety of approaches have been
developed to address the local collision avoidance prob-
lem. These include the seminal rule-based Boids model
[Rey87], Social Force model [HM95], Cellular Automata
model [KS02], velocity obstacle based models [GCK∗09,
vdBGLM11], synthetic vision model [OPOD10] and other
hybrid approaches [PAB07, SKH∗11]. Generally speaking,
local collision avoidance is performed to steer agents away
from other agents so that no or less collisions would occur
and usually reflected by changes of the preferred velocity
to the actual velocity. However, while each agent is treated
as an independent entity and obeys local rules, the formed
global motion patterns from multiple agents may not be de-
sired.

When global behavior becomes the focus, several con-
tinuum models have been developed to navigate agents,
examples including [Hug03, TCP06, NGCL09]. These ap-
proaches usually take positions and velocities of the agents
and construct density and velocity fields as the guiding graph
in order to simulate a large crowd. Other work have fo-
cused on providing users the flexibility to alter crowd flows.
For example, Kown et al. [KLLT08] and Takahashi et al.
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[TYK∗09] enabled group editing capability in order to gen-
erate believable formations. Patil et al. [PvdBC∗11] built a
navigation field which can interpret sketch-like data as input.
The most recent work done by Wang et al. [WJDZ14], com-
bining noisy local behavior and smooth global trajectory,
introduced field-based approach to simulate insect swarms.
While the visual believability has been improved, in order to
generate emergent global structures of the swarm, empirical
design is required.

From biology, physics and mathematics perspectives,
there exist two major approaches in studying and simu-
lating insect swarms, namely individual-based models and
continuum models. Individual-based models include Self-
Propelled Particles (SPP) model [VCBJ∗95], variants of
the SPP model [CkJ∗02, DCBC06], force-based models
[FGLO99] and Brownian particles [SESG08]. These mod-
els, taking the Lagrangian system viewpoint, introduce local
rules to each particle and focus on its response to neigh-
boring particles or external stimuli or both. As of certain
models such as the SPP model, by maneuvering local rules
alone, global orders appear and sometimes a close approxi-
mation to the actual insect dynamics is observed [BSC∗06].
Continuum models, instead, adopt the Eulerian representa-
tion, depict swarms in certain features such as density and
velocity fields and use these features to guide member in-
teractions, examples including [MEK99, TBL06]. Another
modeling trend is based on the assumption that insect move-
ments contain certain degrees of randomness. Thus a general
macroscopic regulation cannot describe overall dynamics of
an system but rather statistical values of it. Many work such
as [DCBC06,YEE∗09,BKBS13] built on top of this assump-
tion and incorporated various potential functions and noise
types into the simulation.

While many aspects of the animal aggregation have been
studied and various models have been developed, these
work mainly focus on either functional or mechanical as-
pects of insect swarms, to name a few, mating strate-
gies [BMD∗13], phase transitions and kinematic fluctua-
tions [VCBJ∗95, ACC∗13], and population clumping phe-
nomenon [TBL06]. The effectiveness of applying these ap-
proaches on graphical applications is unclear and compar-
ative evaluations of these approaches seem scarce. In ad-
dition, noted by Butail et al. [BMD∗13], few models are
validated against reference data giving that animals motion
tracking task is non-trivial. In comparison to previous work,
our system takes data-driven approach, independent of in-
sect species, automatically conducting model evaluation and
configuration, and generates realistic insect swarming be-
haviors on multiple scales.

3. Approach Overview

In this section, we give an overview of each part of our
framework. As part of the off-line process, our simulation
pipeline processes all the insect motion data into a collec-

tion of linear trajectory segments and a density field. We
then use these information to (1) perform automatic selec-
tion of local steering algorithms, (2) construct probability
distribution functions for generating intermediate waypoints
for insects traveling, and (3) capture the spatial pattern of
collective swarming behaviors at the global scale. Lastly, we
describe how we combine these components into the final
simulation system. The process is illustrated in Figure 2.

3.1. Data Processing

Insects’ trajectories have been observed to be zig-
zags [Oku86]. Inspired by this observation, we divide the tra-
jectories into successive linear segments using the piecewise
linear regression [NWK90] with a goodness of fit R2 = 0.9.
These segments will serve to choose the best collision avoid-
ance model and set up the mesoscopic goal-selecting algo-
rithm.

Stating this formally, the data [KO13, PKO14] z can be
defined as containing the agents’ position information at any
timestep k. Thus, assuming m timesteps are recorded in the
data:

z =
m⋃

k=1

zk. (1)

For a given trajectory segment s of the ith agent, the data
zsi is:

zsi =
⋃

k∈si

zk, (2)

where si = [s1
i , ...,s

n
i ] groups all timesteps in the linear

section, starting with s1
i ≥ 1 and ending with sn

i ≤ m.

At this phase, we exploit data frames which contain po-
sitions and velocities of insects [PKO14]. Piecewise-linear
segments and turning angles were automatically extracted to
establish corresponding segment length and turning angles
distributions. For the experiments in this paper, we used ap-
proximately one million frames for more than 500 insects
recorded at 100 FPS. Given about 100,000 extracted seg-
ments, the average segment length is 14.57 mm (median =
7.22, standard deviation = 19.01) and the average turning
angles are around 2.34 degrees (median = 2.73, standard de-
viation = 40.02). We also discretized the simulation space
into a number of cells and calculated the visiting frequency
of all insects within each cell to construct a static density
distribution.

While this work is inspired by zig-zag traveling fashion
of common insects, as a merit of the piecewise linear regres-
sion, our approach does not require “zig-zag" trajectories.
The data processing steps and simulation methods are gen-
eral, independent of insect species, and applicable to smooth
insect trajectories as well.
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Figure 2: The schematic view of our simulation pipeline.

3.2. Simulation Algorithm Setting

At the lowest level of our simulation pipeline, lies the col-
lision avoidance algorithm which ensures no insects would
collide into each other. A collision avoidance algorithm can
be defined as a function f which, given the current timestep
k, the current positions of all agents xk, the agents’ current
velocities vk as well as their goals g, computes the agents’
positions and velocities at the next timestep:[

xk+1
vk+1

]
= f (xk,vk,g) . (3)

Our framework using optimization techniques automat-
ically configures candidate local steering algorithms. This
configuration aims at finding the best performance of each
steering algorithm during approximation to the actual trajec-
tories from the data [BKHF14,WGO∗14]. After getting con-
figured optimal parameters of each steering algorithm, we
can perform comparative evaluations and determine which
model is the most suitable one for simulating insect behav-
iors at the microscopic level.

Note that, to actually generate trajectories for each in-
sect agent, the local collision avoidance algorithm requires
a method for computing waypoints at the meso-scale. To
achieve that, the segment length and angle distributions con-
structed at the data processing phase are sampled and used
for calculating the next waypoint once an agent has reached
its current one. This statistical approach aims to compensate
the noisy and chaotic aspects of insect local behaviors.

However, by using only the wayfinding algorithm with lo-
cal collision avoidance, there is no control over the swarming
spatial structure. In order to capture emergent patterns arise
from individual insect trajectories, we adopt the Metropolis-

Hastings algorithm to implicitly coordinate the motion and
swarming patterns. This Markov Chain Monte Carlo method
guarantees that, with enough samples the overall spatial
structure would resemble the reference data with respect to
the density distribution. The reason we take this stochas-
tic approach instead of explicit rule-based specifications,
e.g. speed and direction alignment, separation maintenance,
etc, is because rule-based approaches are more context-
dependent while our objective is to develop a general frame-
work that can work with and learn from any types of data for
a diverse variety of insects.

4. Optimization and Runtime Algorithms

In this section, we describe how we use the reference data
to choose the best collision avoidance algorithm for insects
simulation and develop our mesoscopic and macroscopic
goal-selecting algorithms.

4.1. Microscopic Reactive Behavior

The collision avoidance algorithm generally regulates
agents’ movements at microscopic level. Such algorithms
usually have several tunable parameters (e.g. agents’ size,
agents’ preferred velocity...) which can influence the simula-
tion results. With all agents’ parameters p, a collision avoid-
ance algorithm f (Equation 3) can be extended to the param-
eterized version as:[

xk+1
vk+1

]
= f (xk,vk,g,p) . (4)

Considering a parameterized collision avoidance algorithm,
a simulation on a linear section zs of the data at the meso-
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Figure 3: Evaluation results of three steering algorithms un-
der the Progressive Difference metric with various optimiza-
tion techniques.

scopic level can be defined as follows:

f (zs,p) =
⋃
k∈s

f (xk,vk,g,p) , (5)

initialized with xsstart = zsstart , vsstart = speed (zsstart ) and g =
zsend .

Now, given a distance metric dist () between the data zs
and the simulation f (zs,p), we seek the parameter set popt

that minimizes this distance:

popt, f = argmin
p

dist ( f (zs,p) ,zs) . (6)

Once this parameter set is found, we can rank collision
avoidance algorithms. For two such algorithms f1 and f2,
we can say that f1 is better than f2 if and only if:

dist( f1(zs,popt,f1),zs)< dist( f2(zs,popt,f2),zs). (7)

To perform what is described in Equations 6, 7, we rely
on the framework described in [WGO∗14]. The framework
has adopted several widely-used combinatorial algorithms
including Greedy, Genetic, Simulated Annealing and hy-
brid versions of these algorithms to handle high-dimensional
tasks such as the multi-agent simulation.

To evaluate insect movements and derive optimal param-
eters of a model that can provide the best approximation of
a simulation to the reference data, we use the microscopic
metric Progressive Difference. This metric measures the dif-
ference between the simulated and the reference trajectory
between the starting and ending points of a segment while
resetting the simulation to configurations of the reference
data at each time step. The reason for us to pick this met-
ric is due to the data contain many frames representing long
and split trajectories (not losing track of insects during the
motion capture is very challenging). Thus, to learn the col-
lision avoidance behavior of the insects, it makes sense to
focus on decisions being made at any given moment with
limited influence from the past states of the swarm.

The specific steering algorithms we are evaluating are
Boids model [Rey87], Social Force model [HM95] and
ORCA model [vdBGLM11]. In particular, for Boids model,
we only examine its collision-avoidance mechanism not
other flocking rules. Since the distribution of evalua-
tion scores appears to be non-Gaussian, we choose non-
parametric within-subject tests to analyze differences be-
tween these models. The evaluation results shown in Figure
3 depict the median of scores across different steering algo-
rithms before and after various optimization techniques have
applied. As all metrics are measuring the distance between
simulated and reference trajectories, smaller scores indicate
better models.

By using default parameters, a Friedman test revealed a
significant effect of different steering algorithms on their
scores (p < 0.01). A post-hoc test of pairwise comparisons
using Wilcoxon signed rank tests with Bonferroni correction
showed significant differences between all paired groups
(p < 0.01). As results, Boids is better than Social Force and
latter is better then ORCA. We interpret this result as Boids’
collision-avoidance is more reactive (direct dependence on
agents’ positions) than other two algorithms.

However, after applied various optimization techniques,
across all evaluations, the Friedman test revealed a signif-
icance effect on different models and the post-hoc tests
showed no significance between Boids and Social Force
(p > 0.01), but significant difference between Boids and
ORCA, and Social Force and ORCA (p < 0.01). These re-
sults indicate, after optimization, the Boids and Social Force
model perform relatively the same, while ORCA outper-
forms both by taking into account both positions and veloc-
ities as part of its anticipatory capabilities.

To further measure the relationship between number of
timesteps that a segment contains and its corresponding eval-
uation score. We performed correlation and causality tests.
To be more specific, a Spearman’s rank test shows that
these two variables are very weakly correlated (Spearman’s
ρ ≈ 0.27, p < 0.01) and constructed linear models show
no significant effect of one variable on predicting the other
(Intercept p > 0.01 and Slope p > 0.01). These analyses
indicate that the two variables are in general independent
of each other. Thus we can use a specific steering model
consistently rather than a mixture of steering algorithms
switched at certain timesteps. The latter option may provide
marginal improvement but at the cost of efficiency. Based
on these results, we use ORCA for the local collision avoid-
ance task with its statistically optimal parameters: preferred
speed (m.s−1) = 1.48∈ [1,2], radius (m) = 0.45∈ [0.2,0.8],
neighbor distance (m) = 14.84 ∈ [10,20], time horizon (s)
= 5.27 ∈ [3,7].

4.2. Mesoscopic Waypoints Computation

Once we have chosen the best local steering algorithm, we
need to compute waypoints at mesoscopic level and the seg-
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Figure 4: Comparison of simulations using different sampling techniques to the reference data. Accumulated density distribu-
tions during the simulations are also shown.

ment length and turning angle distributions are utilized. To
be specific, let sampleLength be a function which returns a
sample from the segment length distribution. Similarly, let
sampleTurn be a function which returns samples from the
turning angle distributions. For each agent i, at each timestep
k, li is the length of sampled segment, oi is the calculated di-
rection by using sampled turning angles, xi,k is the agent’s
current position, and si is the agent’s starting position. The
next waypoint gmeso

i,k of agent i at timestep k is calculated as
in Algorithm 1.

Algorithm 1: Waypoints Computation.

if ‖ xi,k−gmeso
i,k ‖≤ ε then

li← sampleLength()
di,k← xi,k− si
oi← direction(di,k,sampleTurn())
si← xi,k
return gmeso

i,k ← si + li.oi

else
return gmeso

i,k unchanged
end

4.3. Macroscopic Swarming

The sole computation of waypoints at mesoscopic level
would result in the agents’ dissemination over the whole
simulation space. To improve this, we need a method at
macroscopic level to preserve the insects’ spatial pattern
and density distribution which are essential aspects of in-
sect collective behaviors [CDF∗03]. We have adopted the
Metropolis-Hastings criterion to achieve this purpose. This
criterion makes no assumption of underlying population
density distribution which is ideal for working with any
types of motion data, especially given that different in-
sect species have different aggregating strategies and result
at complex density distributions within the overall spatial
structure.

The intermediate waypoints are validated as follows. To
begin with, we construct the density field found in the data
by discretizing the simulation space and computing the visit-
ing frequency of each cell by all insects. Each cell c then has
a frequency wc. Later, during simulation, when a new meso-
scopic waypoint is computed and proposed, we check this
waypoint with the Metropolis-Hastings criterion. That is, if
xi,k is agent i’s current position, gmeso

i,k is its proposed new
waypoint, cx is the cell corresponding to xi,k and cg is the cell
corresponding to gmeso

i,k , we compute α =
wcg
wcx

. and accept the
proposed waypoint with probability min(α,1). If the pro-
posed waypoint gets rejected, another waypoint would be
sampled and generated [CG95].

This criterion guarantees agents to aggregate at regions
with higher densities and lead to the overall swarming phe-
nomenon. We can also easily handle obstacles by assigning
a zero frequency to the cells that are occupied by said obsta-
cles. Not surprisingly, the discretizing precision of the sim-
ulation space affects simulation results. The analysis of this
effect is elaborated in Section 5.2.

5. Results

In this section, we show our simulation results illustrated in
several examples and provide both qualitative and quantita-
tive evaluations.

5.1. Simulation

Our first example (Figure 4) shows the simulation of 100
insects moving in a confined space. This setting aims at
mimicking the capturing environment of the collected data
[PKO14]. In this example, we compare simulations of ran-
dom sampling approach, meso-scale sampling approach, our
combined meso- and macro-scales sampling approach, to
the reference data. Using random sampling method, agents’
trajectories tend to be very smooth; after applying meso-
scale sampling method, agents start to exhibit swerving
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Figure 5: (Left) Simulation of 200 midges swarming around a lantern. (Right) Simulation of 50 butterflies moving on a prairie.

Figure 6: A swarm of insects is traveling to successive light sources while avoiding obstacles.

Figure 7: Example sketches (3D) with density fields derived
from the Gaussian distribution.

and zig-zaging behaviors. However, since there exists no
macroscopic-level guidance for governing the spatial pat-
tern, agents would eventually spread out the simulation
space. By adding the macroscopic level method, our tech-
nique finally shows close approximation to the reference
data in preserving the swarming spatial pattern. The accumu-
lative density information during entire simulations is also
shown in Figure 4.

As we mentioned in previous sections, our framework can
also be adopted as an assistive animation tool to interpret
sketch-like input and generate corresponding simulation. By
combining features learned from the captured data (e.g., seg-
ment length and turning angles distributions) and user spec-

ifications including sketched trajectory and other settings
(e.g., density distribution, steering models and parameters).
Our framework is capable of creating insects simulation of
the same or variable sizes – even different species of insects.

To better demonstrate, we embedded the simulation in
virtual environments†. The first example (Figure 5 Left) is
showing by interpreting a circle sketch at the left side of
Figure 7, we get sampled trajectories – within density field
derived from the Gaussian distribution along the sketch –
for multiple agents. In this particular scene, we are simulat-
ing 200 insects orbiting around a lantern. Similarly, taking
sketch at the right side of Figure 7 as input, we generated
the simulation of 50 butterflies moving on a prairie (Fig-
ure 5 Right). Our technique can also be easily integrated
with existing global path planning algorithms. An exam-
ple shown in Figure 6 demonstrates our framework incor-
porated with a navigation algorithm similar to the one pre-
sented in [PvdBC∗11].

† The virtual environments’ creation and design are inspired by An-
drew Price.
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5.2. Evaluation

For evaluating our technique, we conformed the size of our
simulation domain to the same scale as the data capturing en-
vironment, and adopt both qualitative and quantitative mea-
surements.

To start with, one of the most prominent features of
swarming phenomenon is the spatial pattern and correspond-
ing density information. The comparison result can be seen
in Figure 4. As of random waypoints sampling and our
mesoscopic waypoints sampling approaches, the latter tends
to have small clusters reflected in intensity due to the fact
that most processed segments have relatively small length
comparing to the capturing environment. Thus by sampling
the segment length distribution, agents travel frequently in
short distances. After combining the macroscopic level sam-
pling, the density distribution of our simulation approxi-
mates closely to the data and demonstrates the spherical pat-
tern as of the data. In this case, the density decreases when
the distance to swarm centroid increases resulting the aggre-
gation gathered around the centroid. This finding is consis-
tent with previous literature in biology and also dispels the
assumption that insects can be simulated in a purely random
fashion which would result in roughly uniform distribution
within any predefined simulation space.

While visual similarity is an intuitive way to evaluate the
results, for large dynamic systems, we also need quantita-
tive measurements. In particular, as we are using Metropolis-
Hastings algorithm to govern mesoscopic-level waypoints
generation based on discrete density distribution constructed
from the data, different discretizing scales of the simula-
tion space could alter simulation qualities. In Figure 8, we
show by altering cell numbers the change of average dis-
tance of all agents to the swarm centroid during a period
of time. Notably, adding mesoscopic level computation in-
creases the average distance and the reason is probably by
traveling short distances and with random assigned initial
locations, agents tend to stay closely to their initial positions
while under random assigned waypoints agents travel across
the whole space more frequently resulting shorter distances
to the centroid at many timesteps.

Another notable feature of biological systems is the or-
der in collective behaviors. While swarms of flies are rarely
similar to other animal species (e.g., fish) that would polar-
ize their state and make the group behave as a whole, they
have been reported do show some features as collective be-
haviors [ACC∗13]. To measure such an order, we use the
polarization factor which is a common metric in studying
the collective animal behavior [VCBJ∗95]. The polarization
Φ of a swarm is calculated as follows:

Φ = ‖ 1
N

N

∑
i=1

−→vi

‖vi‖
‖ (8)

Figure 8: Agents’ average distances of different sampling
techniques on various discretizing scales comparing to the
motion data.

Figure 9: Polarization scores of different sampling tech-
niques on various discretizing scales comparing to the mo-
tion data.

where−→vi indicates the velocity of ith agent and N is the total
number of agents. When Φ is zero, it means all individual
velocities are canceling each other in terms of the direction.
When Φ is close to one, it means velocities of all agents
have nearly parallel directions. The values of polarization Φ

at different discretizing scales under various sampling meth-
ods are shown in Figure 9. In general, by combining more
waypoints sampling techniques we get closer Φ as compared
to the reference data.

Worth noting, for both the average distance and polariza-
tion factor analyses, when the cell number gets either too
small or too large, the Metropolis-Hasting algorithm appears
to be less effective. This is due to the discretizing scale af-
fects the visiting frequency of each cell and further influ-
ences the spread of the underlying density distribution. Ex-
treme density spreads would cause either generated samples
are far away (when spread is too large) or longer markov
chains traverse the density resulting low probability regions
undersampled (when spread is too small) [CG95].

For algorithmic analysis, the pre-processing time and
memory complexities are O(n) where n is number of frames
and the sampling methods take O(1) time. On a typical lap-
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top (Intel i5-3230@2.60GHz, 6GB RAM, Windows 8.1 64
bits), the simulation of 100 agents, using ORCA, runs at
4,900 FPS.

6. Conclusion

We present a multi-scale, data-driven framework for visual
simulation of insect swarms. We simulate each insect as an
individual agent; at each stage of simulation we select the
appropriate techniques or parameters based on the analysis
of observed/captured insects motion data. Like many agent-
based methods, our method consists a local avoidance mod-
ule and a waypoint synthesis module to capture local interac-
tion among insects and noisy individual trajectories that re-
sult in the coherent macroscopic motion patterns of a swarm.

We show how to automatically select each module of our
method based on recorded/observed insect motion data. In
general, it is very difficult for an animator to control a swarm
motion, as it is nearly impossible to specify motion trajec-
tory for each individual insect, simulation is the most effi-
cient way to create insect swarms. However, the parameter
space is large and a desired result can be achieved only after
very time-consuming manual, trial-and-error process. Our
algorithm avoids this tedious tuning task and reproduces the
visual animation of insect swarming motion with ease. Our
method is also user-friendly, as it enables direct manipula-
tion of large-scale insect swarming motion by allowing the
animator to sketch out a desirable path and incorporate this
user input into density gradient maps without changing other
modules. In addition, as our approach runs at very high in-
teractive rates, animators can apply iterative refinement on
simulation till the visual quality of animation results is sat-
isfactory.

We tested, evaluated, and demonstrated our approach on
several scenarios both qualitatively through visual inspec-
tion and quantitatively using scoring metrics. In particular,
our quantitative comparisons illustrate the ability of our sim-
ulation to reproduce statistically significant measurements.

6.1. Limitations and Future Work

There are several possible existing future directions to ex-
tend our approach. First, it would be simpler to integrate our
approach with 2D videos instead of 3D insects motion cap-
tured data. Our method requires insect swarm motion data,
which provides the biological basis to our approach and en-
able automatic configuring of a simulation algorithm. The
time-consuming tasks of selecting the appropriate collision
avoidance technique and manually tuning simulation param-
eters are avoided. Although 3D motion capture technology
is becoming more prevalent, recorded insect motion data are
still difficult to obtain, while video recording can be easily
done on commodity devices. Using 2D video input, how-
ever, raises several technical challenges, such as insect track-
ing in videos or 3D motion parameters reconstruction from

2D input. These are interesting computer vision problems by
themselves.

Second, our current implementation assumes that local in-
teraction among insects is largely driven by local collision
avoidance and that each behaves according to the same sta-
tistical laws for simplicity and efficiency in simulation, as
commonly done by many multi-agent simulations. In reality,
there may be multiple types of insects interacting with each
other and their social behaviors can vary. Clustering trajec-
tories before processing them may introduce a new ability
to consider mixed data from multiple species or more com-
plex insects behaviors. Or, one can imagine different factors
to consider and evaluate them for different types of insects
(e.g. crawling vs. flying).

While we consider 3D motion data as a more general case
for testing our algorithm, our method is perfectly able to
handle 2D insect motion data. Adapting our data process-
ing pipeline to such a situation is straightforward. How-
ever, due to the lack of 2D insects motion data, We have
not tested our method on simulating (crawling) insects mov-
ing on a 2D plane. In addition, we consider a static density
field to guide the global, aggregate insects motion based on
the Metropolis-Hastings algorithm. It would be interesting
to consider dynamic fields and to automatically adapt these
fields to significant changes in the surrounding environment.
Finally, the promising results of this paper suggest possibil-
ity of developing more novel tools for animators to guide
simulated swarm motion for artistic control.
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