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Abstract

We present a hybrid path planning algorithm for rigid
bodies translating and rotating in a 3D workspace. Our
approach generates a Voronoi roadmap in the workspace
and combines it with “bridges™ computed by a randomized
path planner with Voronoi-biased sampling. The Voronoi
roadmap is computed from a discrete approximation to
the generalized Voronoi diagram (GVD) of the workspace,
which is generated using graphics hardware. By this use
of the GVD, portions of the path can be generated with-
out random sampling, substantially reducing the number
of random samples needed for the full query. The planner
has been implemented and tested on a number of bench-
marks. Some preliminary comparisons with a randomized
motion planner indicate that our planner performs more
than an order of magnitude faster in several challenging
scenarios.

1 Introduction

Given an environment, computing a collision free trajec-
tory for a rigid body from an initial configuration to a goal
configuration is a classic problem in robotics literature.
This problem has been extensively studied and a number of
algorithms have been proposed [Lat91]. Recently Latombe
classified earlier approaches to motion planning into two
categories:

o Criticality Based: Criticality based planners rely on
an explicit, global geometric analysis to generate a
provably complete representation of the configuration
space for the robot, in a form that can be efficiently
searched for a path. Such planners are always guar-
anteed to find a path, if one exists. Examples include
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the general planner based on cylindrical algebraic de-
composition [SS83] and the roadmap planner based
on Whitney’s stratified sets [Can87].

e Random Sampling: These planners are based on prob-
abilistic approaches, inferring a description of the C-
space by sampling rather than explicit analysis. They
are relatively easy to implement and perform well in
practice, but they are only probabilistically complete.
They may not find a path, even if one exists. Exam-
ples of such planners include potential field planners
[Lat91] and probabilistic roadmap planners (PRM)
[KL94, 0S95].

While the criticality based planners can provide a com-
plete solution, they are difficult to implement, and also
quite slow for complex environments. These problems
rapidly become more severe as the dimension of the con-
figuration space increases. On the other hand, randomized
approaches such as PRM planning are simple and work
well in many situations. However, their efficiency can de-
grade in configurations containing narrow passages or clut-
tered environments. ldeally, one would like to combine
some of the benefits of both approaches.

Main Contribution: We present a hybrid path planning
algorithm for free-flying, rigid bodies translating and ro-
tating in a 3D workspace. Our approach utilizes global
geometric analysis of the workspace to generate an ap-
proximate path in configuration space. We then identify
invalid segments of this estimated path, for which the con-
figurations in the estimated path cause the robot to collide
with the obstacles. We complete the query by computing
linking subpaths or “bridges” [CL93] to replace the invalid
segments. These bridges are generated by a randomized
planner with carefully restricted sampling around narrow
passages.

Our geometric analysis uses a discrete approximation of
the generalized Voronoi diagram (GVD) of the workspace,



computed using graphics hardware [HCK*99]. Unlike
classical criticality based methods, the approximate GVD
computation is fast and simple to implement. It gives us
information about the configuration space that is global in
nature, but not necessarily complete.

The two key distinctive features of our approach are:

o \We generate an estimated path based on the discrete
Voronoi diagram of the scene, and only use random-
ized planning for invalid segments of that path.

e When randomized planning is used, it is guided by
information from the Voronoi diagram to generate
smarter samples that have a higher probability of
landing in the free space.

The planner has been implemented and applied to com-
plex benchmarks. We have also compared its performance
with an earlier implementation of Stanford’s PRM plan-
ner [HLM99]. Some preliminary results indicate that our
hybrid planner for rigid bodies is more than an order of
magnitude faster than the PRM planner on many of these
benchmarks.

The rest of the paper is organized as follows. In Sec-
tion 2 we discuss related work. In Section 3 we introduce
terminology related to the Voronoi diagram, and in Sec-
tion 4 we explain our algorithm. In Section 5 we give im-
plementation details and present performance results. In
Section 6 we analyze the performance of the algorithm,
and in the final section we conclude and indicate areas of
future work.

2 Reated Work

In this section we survey earlier related work.

2.1 Voronoi Diagramsin Motion Planning

Generalized Voronoi diagrams have long been used as
a basis for motion planning algorithms [OSY83, CB95,
CB96, WAS99a]. The GVD represents the connectivity
of a space but has a dimension lower by one, and (in three
dimensions) it is composed of surfaces of maximal clear-
ance.

The disadvantage of using the GVD has always been
that it is difficult to compute robustly and efficiently. Re-
cently, several approaches to this problem have been pro-
posed. Vleugels and Overmars [VO95] give an algo-
rithm that applies spatial subdivision and isosurface ex-
traction techniques to acquire an approximate model of
the diagram. More recently, Wilmarth, Amato, and Stiller
[WAS99a, WAS99b] have shown how points on the GVD
can be found without computing a representation of the en-
tire set. Finally, Hoff et al. [HCK*99] have introduced a

method that uses graphics hardware to generate a discrete
model at a specified resolution. We use this latter method
in our work.

The Voronoi diagram can be used in several ways:

1. The Voronoi diagram of the free space (or the Voronoi
graph, described below) may simply be searched for a
path, once the start and finish points have been linked
to the diagram [OSY83, CD88]. Such an approach is
only practical if the C-space has dimension no greater
than three.

2. The GVD of the workspace can be used to guide a
potential field planner [HCK*00].

3. The GVD of the workspace can be used to bias sam-
ple generation in a randomized planner [CB95, CB96,
WAS99h, WAS99a, PHLMO00, GHK99, HK00].

Our planner uses method 1 above to generate its initial
workspace path. It also uses method 3 when computing
linking subpaths, because sampling is indirectly biased by
the GVD.

2.2 Randomized Planning

Recently a class of randomized algorithms known as Prob-
abilistic Roadmap Methods (PRMs) have been shown to
be very successful for many planning scenarios [KL94,
HLM99]. The original PRM planner [KL94] generated
samples at random in configuration space, attempting to
connect each sample by a simple C-space path to one of
the points already found. Over time, the graph thus pro-
duced will tend to represent the connectivity of the C-space
reasonably well, and a query can be rapidly performed by
linking the search points to the graph and then searching
the graph. Many variations on this idea have been devel-
oped. The planner we use as a baseline for performance
comparison and as a subroutine in our work is described
in [HLM99]. Some details of its algorithm are given in
Section 4.4.

3 Background and Notation

Generalized Voronoi Diagram: Let a set of geomet-
ric objects, or sites, be denoted sy, so,...,s,. For each
site s;, define a distance function d;(x) = dist(s;, x).
The Voronoi region of s; is the set V; = {x | di(x) <
d;(x) Vj # i}.

The collection of regions V1, . .., V,, is called the gener-
alized Voronoi diagram or GVD, which partitions the space
into cells suitable for proximity queries.

The (ordinary) Voronoi diagram corresponds to the case
when each s; is an individual point. The boundaries of
the regions V; are called Voronoi boundaries, which are



Figure 1. An estimated path for the robot.
The solid rectangles indicate the initial and
goal configurations. The robotis in collision
with the environment as it turns around the
corner.

loci of points equidistant to at least two sites. Sometimes
we use the term GVD to refer to the union of the Voronoi
boundaries, rather than the collection of Voronoi cells. In
three dimensions, the intersection of two Voronoi regions
is a Voronoi face, the intersection of at least two Voronoi
faces is a Voronoi edge, and the intersection of at least two
Voronoi edges is a Voronoi vertex. Together the Voronoi
edges and vertices form a graph, the generalized Voronoi
graph (GVG). For sites such as points, lines, polygons, and
splines, the Voronoi diagram is composed of portions of
algebraic curves and surfaces.

4 Algorithm

Our hybrid planning algorithm can be outlined as follows.

1. Compute the generalized Voronoi graph.

2. Search the GVG to find a path for a point robot in the
workspace.

3. Use shape analysis to choose orientations for the ac-
tual robot along the point robot path, generating an
approximate path in C-space.

4. Find all portions of the estimated path for which the
robot is colliding with the obstacles. See Figure 1 for
an example.

5. Use Voronoi-biased randomized planning to replace

each path segment where the robot is colliding with
the environment.

Details are given in the rest of the section.

4.1 Computingthe GVG

Our method for computing the generalized Voronoi dia-
gram is based on the algorithm presented by by Hoff et
al. [HCK*99]. It relies on the ready availability of stan-
dard Z-buffered graphics hardware. The color buffer stores
the attributes (intensity or shade) of each pixel in the image
space; the depth buffer (Z-buffer) stores the depth of every
visible pixel. Given the vertices of a triangle, the rasteriza-
tion hardware interpolates depth linearly across the trian-
gle’s interior. All raster samples covered by a triangle have
an interpolated depth.

We compute a discrete Voronoi diagram by rendering
a three-dimensional distance mesh for each site. The 3D
polygonal distance mesh is an approximation of a possi-
bly non-linear distance function over a plane. Each site is
assigned a unique identifying color, and the correspond-
ing distance mesh is rendered in that color using a parallel
projection. The graphics system performs a depth test for
each pixel in order to resolve the visibility of surfaces. The
depth buffer maintains the minimum depth at each point
as polygons are rendered. When the minimum depth is
updated, the frame buffer is also updated with the pixel’s
color. Thus, the rasterization provides, for each pixel, the
identity of the nearest site (encoded as a color) and the dis-
tance to that site (encoded as a depth value).

For the 3D workspace, we generate the Voronoi dia-
gram in slices. For each slice and each Voronoi site, there
is a distance function giving the distances in R3 from
points on the slice to the given site. The graphics sys-
tem renders and composites these distance functions as
described above to produce a single slice of the discrete
\oronoi diagram.

We compute the generalized Voronoi graph by scanning
the resulting pixel map, two slices at a time, seeking loca-
tions whose neighboring pixels exhibit at least three dif-
ferent colors. We store the resulting locations in an edge
list representation. The vertex data structure contains the
coordinates of the point and the clearance distance to the
obstacles (because it is a Voronoi vertex, the point will be
equidistant to at least four sites). The edge data structure
has a list of sampled coordinates of points on the edge, and
the minimum clearance distance for the whole edge. Note
that all the sample points are restricted to a uniform grid,
so that the vertex and edge points do not lie on the actual
\oronoi boundaries, but instead on nearby grid points.

4.2 Generating a Path in the Workspace

After generating the GVG, we use it to find an approxi-
mate path in the workspace for the robot to follow, called
the workspace path. Define a query configuration to be
an initial or goal configuration, and a query location to be
the projection to R3 of a query configuration. Then the



workspace path links the initial and goal query locations.

Before we can search the GVG for a path, we need to
link the query locations to the GVG. To link a query lo-
cation, we first determine the Voronoi cell containing it.
We then compute line segments from the query location to
each Voronoi vertex of the cell, and eliminate any segments
that pass through obstacles.

We add the query locations and their linking line seg-
ments to the GVG data structure as (formal) Voronoi ver-
tices and edges. Each newly added edge contains a list of
points and the value of the minimum distance to the envi-
ronment.

After linking the query locations to the GVG, we use a
generalized single-source shortest paths algorithm, where
the length of a path is determined by a combination of the
Manhattan distance along the path and the maximal clear-
ance over the whole path. This path, the workspace path,
is a solution to the query for a point robot, and it satisfies a
partial criterion of maximal clearance.

4.3 Orienting the Robot

After finding the workspace path, we must choose an ori-
entation for the robot at each point on the path. To do this,
we determine a major axis for the robot, and align it with
the tangent vector of the path, as determined by a finite
difference estimate.

For a complex shape, there are many reasonable defini-
tions of the “major axis.” For our purposes, we want an
axis around which the robot fits as tightly as possible. To
determine such an axis, we use linear regression to com-
pute a best-fit line approximating the vertices of the robot.
This line is chosen to minimize the root mean square of
the (Euclidean) distances of the vertices to the line. The
origin of the robot is defined to be the center of gravity of
the vertices.

Once we have determined how to align the specified
major axis of the robot, it is still free to rotate about that
axis. The choice of orientation about the major axis (i.e.,
the “roll””) on any geometric information is made arbitrar-
ily. We simply make sure that, up to discrete approxima-
tion, the orientation varies continuously as the robot tra-
verses the path.

4.4 Bridging Invalid Segments

In this section, we explain how the estimated path is mod-
ified into a final path for the robot. First, using a simple
straight-line local planner, we attempt to connect each con-
figuration with its successor. Configurations for which the
robot is colliding with the obstacles, or which cannot be
connected to a neighbor, are marked “invalid”.

The path has now been decomposed into valid seg-
ments, for which the robot is free, alternating with invalid

Configuration space for
randomized sampling

Figure 2. The two dashed rectangles indi-
cate valid configurations that will be linked
by randomized planning. The larger dotted
rectangle indicates the restricted configura-
tion space used for randomized planning.

segments, for which it is not. For each invalid segment,
we apply the randomized planner [HLM99], with initial
and goal configurations biased by the tangent vectors of
the GVG. This planner maintains trees of free configura-
tions rooted at the start and finish. At each iteration (called
an expansion iteration), it chooses a configuration p from
one of the trees, generates new configurations in a neigh-
borhood of p, and retains those which can be linked to p
by a free path. The local planner terminates when the two
trees are connected. This algorithm automatically biases
sampling towards configurations known to be free.

The query configurations for the randomized planner
are the valid configurations immediately preceding and fol-
lowing the invalid segment. The configuration space for
the planner is defined to be the tightest axis-aligned box
that contains bounding balls for the robot at both query lo-
cations. See Figure 2.

It is possible for the robot to get into a tight spot for
which the restricted configuration space does not provide
enough room for the robot to maneuver from the begin-
ning of the invalid segment to the end of it. To handle
such situations we use a simple expedient: If, after a fixed
number of expansion iterations, the planner has not linked
the two ends of the invalid segment, the planner’s config-
uration space is enlarged to the full original C-space, and
randomized planning is resumed. If this is not successful
after another predetermined number of iterations, then it
is assumed that the heuristics guiding the initial path esti-
mate have failed, and the planner simply uses other plan-
ning methods (i.e., PRM in our current implementation) to
link the original start to the original finish.

4.5 Localized Sampling

While an invalid segment is being bridged, what was a nar-
row passage on the scale of the entire scene is now a rel-



atively open area within the restricted configuration space
(see Figure 2). However, there may be a portion of the in-
valid segment which constitutes a narrow passage even on
this smaller scale. To increase sampling in these bottleneck
areas, we generate a new configuration near the narrowest
point on the invalid segment (“narrowest” being measured
in terms of distance from Voronoi sites, i.e., the obstacles).
We find the new configuration by uniform random sam-
pling in a neighborhood of the narrowest point.

We then perform two randomized sampling steps, one
linking the beginning of the invalid segment to the new
configuration near the narrowest point, and the other link-
ing the new configuration to the end of the invalid segment.
The new configuration acts as a seed, causing a number of
configurations to be generated near the narrowest point on
the narrow passage.

If the Voronoi site distance at the narrowest point is
greater than half the radius of the robot’s bounding ball,
then this operation is not performed since in practice we
have found that a single randomized planning step works
well in such cases.

5 Implementation and Performance

The algorithm has been implemented in C++. We used
PQP [LGLMZ99] for collision detection during random-
ized planning, and Magic Software written by D. Eberly
to compute the major axis of the robot. The program has
been compiled on g++, Microsoft Visual Studio, and the
SGI CC compiler.

We used several benchmark scenarios, described below:

Benchmark 1: Two open areas separated by a channel
with two right angle turns. The robot is a narrow box.
See Figure 3.

Benchmark 2: Eight Chairs, a table, and a piano (Fig-
ure 4). The goal is to move the piano through the
window. The window is smaller than the convex hull
of the piano, forcing the piano to rotate in order to
reach the goal. This benchmark was provided to us
by Jean-Paul Laumond and Nicola Simeon at LAAS,
Toulouse.

Benchmark 3: A simple maze, navigated by a spike-
shaped robot (Figure 5). This maze is not inherently
three dimensional, but it still provides a reasonable
test for both the randomized planner and our planner.

Benchmark 4: A stack of four connected mazes, each
similar to Benchmark 4.

Benchmark 5: A series of tilted pegs that a human figure
must avoid (Figure 6).

Figure 3. Benchmark 1: Spiral Channel. The
robot in the goal confuration is behind the
partially transparent wall.

Figure 4. Benchmark 2: Room with Furniture
and a Moving Piano.
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Figure 5. Benchmark 3: Maze.



Figure 6. Benchmark 5: Scene with Many
Tilted Pegs.

e | Res| GVG | Query | PRM | Gain
128 | 104 0.70 894 88
64 | 5.05 41.9 603 14
128 | 2.14 5.74 | 341.1 43
128 | 24.9 23.8 450 9
64 | 2.87 19.7 | 97.40 4

U‘I-b(a)l\)l—‘sg?

Table 1. Benchmark timings. Res: Voronoi
resolution. GVG: Voronoi graph computa-
tion. Query: query phase, after Voronoi
computation. PRM: the randomized planner
alone. Gain: speedup factor.

The results of the benchmarks are summarized in Ta-
ble 5. Resgives the resolution, along the largest axis of the
scene, at which the Voronoi graph was computed. GVG
is the time for computing the Voronoi graph, Query the
time for the query phase after the Voronoi graph was con-
structed, and PRM is the time for the randomized planner
alone. Gain indicates the speedup factor using our hybrid
planner (including preprocessing and query time) vs. the
randomized planner with uniform sampling. All times are
in seconds on a 300 MHz MIPS R12000 processor.

The randomized planner has several adjustable param-
eters that can affect performance. The timings for the ran-
domized planner alone, as well as our new planner, reflect
our best efforts to choose parameters that will give optimal
performance for the given scene.

6 Discussion

In this section, we discuss the performance of our planner.
We consider properties of the robot and workspace that af-
fect the performance, and we describe the approach of our
planner to the problem of narrow passages.

6.1 FactorsAffecting Performance

We can make the following observations about the perfor-
mance of our planner.

e Our planner works well when the robot is small rela-
tive to the environment. In such cases, a robot placed
on the Voronoi graph has a high likelihood of being
free, whatever its orientation.

e The planner also works well when the robot is orga-
nized compactly around a linear axis. In such cases,
aligning that axis along the tangent of the Voronoi
graph is likely to result in a free configuration.

e Conversely, our use of the GVG provides relatively
little benefit if the robot is large compared to the scene
and has a highly complex shape.

In some cases, our simple analysis of the Voronoi graph
may produce an estimated path that is not usable. If this
happens, then the randomized planner will ultimately be
called on the original query. We can set the number of ran-
domized planning iterations that will be expended trying
to bridge an invalid segment before the estimated path is
abandoned. We generally choose the number of iterations
on the assumption that the Voronoi based planner should
succeed in a few tens of seconds. If it does not, then the
scene is likely to be a difficult one for the randomized plan-
ner as well, so the time spent unsuccessfully trying to use
the Voronoi diagram will be only a very small portion of
the total planning time.

6.2 Narrow Passages.

Here we consider in general terms the issue of narrow pas-
sages as it relates to our planner.

If there is a path for the robot which is, to the preci-
sion of our Voronoi computation, wider than the bounding
ball for the robot, then our planner will generally find it
very rapidly, with no resort to randomized planning. Thus,
in the context of our planner, any region of the workspace
wider than the bounding ball of the robot does not corre-
spond to a narrow passage in C-space. We therefore de-
fine a workspace narrow passage to be a portion of the
GVG for which the site distance is less than the radius
of the robot’s bounding ball. By the above observations,
any C-space narrow passage corresponds to some part of a
workspace narrow passage.

Because invalid segments are determined by collision
of the robot with the environment, they can only occur in
workspace narrow passages, or along a segment joining a
query configuration to the GVG. Thus we see that our plan-
ner primarily uses randomized planning in a subset of the
workspace narrow passages. It may seem paradoxical that



narrow passages, which are notoriously difficult for ran-
domized planners, are precisely where we use randomized
planning. This strategy in fact works well because of the
three techniques we use to bias sampling:

o We initially restrict randomized planning to a region
delimited by the endpoints of the invalid segment, in-
creasing the chances that a sample will land in the
narrow passage. Essentially, in the context of this re-
stricted C-space, the narrow passage becomes a rela-
tively open area.

e When a passage is especially narrow, measured in
terms of the workspace, we seed the PRM planner
with an additional configuration near the narrowest
point. These additional seed configurations have the
effect of intensifying sampling in the most restricted
areas.

e We use a PRM planner that generates new samples
near samples already found, and we initialize that
planner with configurations (generated by the tangent
vectors of the GVG) at both ends of the narrow pas-
sage. Because the PRM planner grows trees of con-
figurations rooted at the two ends of the narrow pas-
sage, the trees have a high probability of growing into
the narrow passage. This phenomenon is discussed in
terms of expansive components in [HLM99]. Indeed,
the chief benefit of the restricted C-space is to prevent
the trees of configurations from immediately growing
away from the narrow passage.

7 Conclusion

We have introduced a planner that uses simplified global
geometric analysis to generate an estimated path, and
then uses randomized planning guided by the generalized
Voronoi diagram, to modify the estimated path into a col-
lision free path. We have tested the planner on several
benchmarks and found that it can be over an order of mag-
nitude faster than a comparable purely randomized plan-
ner.

There are several possible directions for future research
in extending this work.

e Automatic setting of parameters. There are a num-
ber of parameters which must be chosen by a user for
each run. Some, such as the resolution at which the
GVG is computed, are associated to the Voronoi com-
putation, while others, such as the size of the sam-
pling neighborhood, come from the randomized plan-
ning. It would be ideal if all these parameters could be
selected automatically at run time based on the scene
complexity.

e Disconnectivity evidence. Our planner samples in-
tensively near the narrowest points in narrow pas-
sages. If no free configuration is found after many
samples, then it is likely there is no path through
that particular narrow passage. Applying our methods
over the entire GVG, rather than a single estimated
path, might enable the planner to quickly give an in-
dication of the likelihood of eventually finding a path.

e Better analysis of the rotational component. We
only use a simple heuristic to orient the robot, before
relying on collision detection and random generation
of configurations to compute correct orientations that
are harder to find. We are investigating ways to apply
better geometric reasoning to further prune the search
space of the robot orientations.

e Articulated robots. We are also considering various
techniques to exploit the information provided by the
GVD to aid in motion planning of articulated robots.

8 Acknowledgements

We would like to thank Kenny Hoff for providing us his
Voronoi computation software. We are also grateful to
David Hsu and Jean-Claude Latombe for helpful discus-
sion on PRM and providing us with an earlier version of
their randomized planner. Finally, credits are due to Jean-
Paul Laumond and Nicola Simeon for the dataset on the
piano scene.

References

[Can87] J. Canny. The Complexity of Robot Motion Planning. ACM - MIT
Press Doctoral Dissertation Award Series. MIT Press, Cambridge,
MA, 1987.

[CB95] H. Choset and J. Burdick. Sensor based planning, part ii: Incremental
construction of the generalized voronoi graph. IEEE Conference on
Robotics and Automation, 1995.

[CB96] H. Choset and J. Burdick. Sensor based planning: The hierarchical
generalized voronoi graph. Workshop on Algorithmic Foundations of
Robotics, 1996.

[CD88] J. F. Canny and B. Donald. Simplified voronoi diagrams. Discrete and
Computational Geometry, 3:219-236, 1988.

[CL93] J. F. Canny and M. C. Lin. An opportunistic global path planner. Al-
gorithmica, 10:102-120, 1993.

[Don84] B. R. Donald. Motion planning with six degrees of freedom. Master’s
thesis, MIT Artificial Intelligence Lab., 1984. AI-TR-791.

[GHK99] L. Guibas, C. Holleman, and L. Kavraki. A probabilistic roadmap
planner for flexible objects with a workspace medial-axis-based sam-
pling approach. In Proc. of IROS, 1999.

[HCK+99] K. Hoff, T. Culver, J. Keyser, M. Lin, and D. Manocha. Fast compu-
tation of generalized voronoi diagrams using graphics hardware. Pro-
ceedings of ACM SIGGRAPH 1999, 1999.

[HCK*OO] K. Hoff, T. Culver, J. Keyser, M. Lin, and D. Manocha. Interactive mo-
tion planning using hardware accelerated computation of generalized
voronoi diagrams. IEEE Conference on Robotics and Automation, pp.
2931-2937, 2000.



[HK00]

[HLM99]

[KL94]

[Lato1]

[LGLM99]

[0595]

[0SY83]

[PHLMO0]

[SS83]

[VO95]

[WAS99a]

[WAS99b]

C. Holleman and L. Kavraki. A framework for using the workspace
medial axis in PRM planners. IEEE Conference on Robotics and Au-
tomation, 2000.

D. Hsu, J.-C. Latombe, and R. Motwani. Path planning in expansive
configuration spaces. International Journal of Computational Geome-
try and Applications, 9(4 & 5):495-512, 1999.

L. Kavraki and J. C. Latombe. Randomized preprocessing of configu-
ration space for fast path planning. IEEE Conference on Robotics and
Automation, pages 2138-2145, 1994.

J.C. Latombe. Robot Motion Planning. Kluwer Academic Publishers,
1991.

E. Larsen, S. Gottschalk, M. Lin, and D. Manocha. Fast proximity
queries with swept sphere volumes. Technical Report TR99-018, De-
partment of Computer Science, University of North Carolina, 1999.

M. H. Overmars and P. Svestka. A probabilistic learning approach
to motion planning. In Algorithmic Foundations of Robotics. A. K.
Peters, Wellesley, MA, 1995.

C. O’Dunlaing, Micha Sharir, and C. K. Yap. Retraction: A new ap-
proach to motion-planning. In Proc. 15th Annu. ACM Sympos. Theory
Comput., pages 207-220, 1983.

C. Pisula, K. Hoff, M. Lin, and D. Manocha. Randomized path plan-
ning for a rigid body based on hardware accelerated voronoi sampling.
In Proc. of 4th International Workshop on Algorithmic Foundations of
Robotics, 2000.

J. T. Schwartz and M. Sharir. On the piano movers probelem ii, gen-
eral techniques for computing topological properties of real algebraic
manifolds. Advances of Applied Maths, 4:298-351, 1983.

Jules Vleugels and Mark Overmars. Approximating generalized
Voronoi diagrams in any dimension. Technical Report UU-CS-1995-
14, Department of Computer Science, Utrecht University, 1995.

Steven A. Wilmarth, Nancy M. Amato, and Peter F. Stiller. Maprm: A
probabilistic roadmap planner with sampling on the medial axis of the
free space. IEEE Conference on Robotics and Automation, 1999.

Steven A. Wilmarth, Nancy M. Amato, and Peter F. Stiller. Motion
planning for a rigid body using random networks on the medial axis of
the free space. Proc. of the 15th Annual ACM Symposium on Compu-
tational Geometry (SoCG’99), 1999.



