
Interactive View-Dependent Rendering with Conservative Occlusion
Culling in Complex Environments

Sung-Eui Yoon Brian Salomon Dinesh Manocha
University of North Carolina at Chapel Hill

http://gamma.cs.unc.edu/VDR (includes video)

Abstract
This paper presents a novel algorithm combining view-dependent
rendering and conservative occlusion culling for interactive display
of complex environments. A vertex hierarchy of the entire scene
is decomposed into a cluster hierarchy through a novel clustering
and partitioning algorithm. The cluster hierarchy is then used for
view-frustum and occlusion culling. Using hardware accelerated
occlusion queries and frame-to-frame coherence, a potentially
visible set of clusters is computed. An active vertex front and face
list is computed from the visible clusters and rendered using vertex
arrays. The integrated algorithm has been implemented on a Pen-
tium IV PC with a NVIDIA GeForce4 graphics card and applied
in two complex environments composed of millions of triangles.
The resulting system can render these environments at interactive
rates with little loss in image quality and minimal popping artifacts.

Keywords: Interactive Display, View-Dependent Rendering,
Occlusion Culling, Level of Detail, Multiresolution Hierarchies

1 INTRODUCTION
Complex models composed of millions of primitives have become
increasingly common in computer graphics and scientific visual-
ization. One of the major challenges is rendering these datasets at
interactive rates on commodity hardware. Different rendering ac-
celeration algorithms based on model simplification and visibility
culling have been developed that reduce the number of primitives
sent through the graphics pipeline.

Model simplification algorithms reduce the number of primitives
by replacing highly tessellated objects in the scene by coarser rep-
resentations. These algorithms generate different levels-of-detail
(LODs). At a high level, they can be classified into static and dy-
namic algorithms. The static LOD generation algorithms precom-
pute discrete approximations and switch between them at runtime
based on the viewer’s position. These algorithms have very little
runtime overhead and can efficiently use vertex arrays and display
lists. However, switching between different LODs can lead to pop-
ping artifacts at runtime.

Dynamic simplification (orview-dependent rendering(VDR))
algorithms represent an environment using a hierarchy of simpli-
fication operations (e.g. vertex hierarchy). The rendering algorithm
traverses the hierarchy in an incremental manner and computes a
front that satisfies the error bound based on the viewing parameter.
VDR algorithms offer several benefits over static LOD-based sys-
tems. First, the level of mesh refinement can vary over the surface of
an object to provide consistent error in the screen space. This alle-
viates the popping artifacts that occur when an LOD changes. Fur-
thermore, view information not available during a preprocess can
be used to preserve effects such as silhouette edges and specular
highlights. Despite these advantages, the application of VDR algo-
rithms to complex environments has been limited. Problems arise
from traversing and refining an active vertex front, or cut, across the
vertex hierarchy. In practice, refining a front for a model composed
of hundreds of objects or millions of polygons can take hundreds of
milliseconds or more per frame. Moreover, rendering the triangles
in the front at interactive rates may not be possible, especially on
models with high depth complexity.

Conservative occlusion culling algorithms cull away portions of

Figure 1: Coal-Fired Power Plant: This environment consists of
over 12 million triangles and 1200 objects. Our view-dependent
rendering with occlusion culling algorithm can render this environ-
ment at10 − 20 frames per second with very little loss in image
quality on a Pentium IV PC with a NVIDIA GeForce 4 graphics
card.

the scene that are not visible from the current view location using a
potentially visible set (PVS). Most of these algorithms represent the
scene using a spatial partition or bounding volume hierarchy and
perform object-space or image-space culling tests to compute the
PVS at runtime.

Given the complexity of large environments, integrated ap-
proaches that combine model simplification and occlusion culling
are needed for interactive display. However, current techniques
merely combine static LODs with conservative occlusion culling
or VDR with approximate occlusion. Each of these techniques can
generate popping artifacts at runtime. It is important to develop an
integrated representation that can be used both for VDR and con-
servative occlusion culling.

Main Contributions: We present a novel algorithm that combines
VDR with conservative occlusion culling. We precompute a vertex
hierarchy of simplification operations for a large environment and a
cluster hierarchy on top of the vertex hierarchy. We discuss a num-
ber of criteria to design an optimal cluster hierarchy and present
heuristics that automatically compute the hierarchy for large envi-
ronments. We associate a bounding volume with each cluster so
that the cluster hierarchy implicitly functions as a bounding volume
hierarchy and is used to perform occlusion culling using hardware
accelerated occlusion queries.

The runtime algorithm maintains a list of active clusters. This list
is traversed as the mesh is refined within visible clusters to meet the

Interactive View-Dependent Rendering with Conservative Occlusion Culling Page 1 of 8



error bound. The primitives within the refined clusters are rendered
using vertex arrays. This cluster-based occlusion culling algorithm
limits the size of the active vertex front. As a result, the algorithm
can refine and render the front at interactive rates.

The overall algorithm has been implemented on a Pentium IV PC
with a NVIDIA GeForce 4 graphics card. It has been applied to two
complex environments: a power plant model with more than1200
objects and12.2 million triangles, and a scene composed of100
bunnies with6.9 million triangles. The algorithm can render these
datasets at10 − 20 frames a second with very little loss in image
quality and minimal popping artifacts.

New Results:Some of the novel aspects of our work include:
• An integrated scene representation for simplification and vis-

ibility computations based on a vertex hierarchy and a cluster
hierarchy.

• An automatic cluster generation algorithm that takes into ac-
count several criteria important for occlusion culling.

• The first integrated algorithm for VDR and conservative oc-
clusion culling that runs on commodity hardware, uses vertex
arrays and is applicable to large and complex environments.

Organization: The rest of the paper is organized as follows: We
give a short survey of previous work on VDR and occlusion culling
in Section 2. In Section 3 we give a brief overview of our approach
as well as the underlying representation. Section 4 describes the
cluster hierarchy generation and partitioning algorithm. The run-
time algorithm for view-dependent refinement and occlusion culling
is detailed in Section 5. We describe our implementation and high-
light its performance on two complex environments in Section 6.
Finally, in Section 7 we provide conclusion and future work.

2 RELATED WORK
We give a brief overview of the previous work in view dependent
rendering, occlusion culling, and integrated approaches.

2.1 View-Dependent Rendering
View-dependent rendering originated as an extension of the pro-
gressive mesh [21]. A progressive mesh is built from an input mesh
by a sequence of edge collapses used to form a coarse mesh. Vertex
splits, the inverse of an edge collapse, are used to restore the origi-
nal mesh from the coarse mesh. Xia and Varshney [39] and Hoppe
[22] each reported that many edge collapses are independent and
can be organized as hierarchies instead of linear sequences to allow
refinement at runtime. This representation allows an application to
take into account view-dependent effects such as silhouette preser-
vation and lighting. Luebke and Erikson [28] developed a similar
approach using octree-based vertex clustering operations. El-Sana
and Varshney [12] extended these ideas using a uniform error met-
ric based on cubic interpolants, reducing the cost of mesh fold-over
tests, and a Voronoi-based method for creating “virtual edges”.

Pajarola [31] improved the update rate of runtime mesh selection
by exploiting properties of the half-edge mesh representation. This
approach is well suited to individual manifold objects. However,
CAD/CAM models often contain disjoint objects and non-manifold
topology. El-Sana and Bachmat [9] presented an alternate approach
to increase the update rate of VDR by using a prioritization scheme.
Several out-of-core VDR approaches have been proposed in the lit-
erature for handling large datasets [8, 10, 27].

2.2 Occlusion Culling
The problem of computing the visible set of primitives from a view-
point has been extensively studied in computer graphics and related
areas. A recent survey of occlusion culling algorithms is given in
[5]. Occlusion culling algorithms may be classified as region or
point-based, image or object space, and conservative or approxi-
mate.

Many occlusion culling algorithms have been designed for spe-
cialized environments, including architectural models based on cells
and portals [1, 29, 35] and urban datasets composed of large occlud-
ers [6, 23, 32, 36, 37]. These approaches generally precompute a po-
tentially visible set (PVS) for a region. However, these algorithms

may not obtain significant culling on large environments composed
of a number of small occluders.

Object space algorithms make use of spatial partitioning or
bounding volume hierarchies [6, 23]; however, performing “oc-
cluder fusion” on scenes composed of small occluders with object
space methods is difficult. Image space algorithms including the
hierarchical Z-buffer [18, 19] and hierarchical occlusion maps [40]
are generally more capable of capturing occluder fusion.

The PLP algorithm [25] subdivides space into cells which are
assigned solidity values based on the triangles in each cell. When
rendering, traversal is prioritized in a view dependent manner based
on solidity value. This algorithm can provide guaranteed frame rate
at the expense of non-conservative occlusion culling. Klosowski
and Silva [26] augment PLP with an image based occlusion test to
design a conservative culling algorithm. TheiWalk system [7] uses
the PLP algorithm along with out-of-core preprocessing to render
large models on commodity hardware.

A number of image-space visibility queries have been added by
manufacturers to their graphics systems. These include the HP
occlusion culling extensions, item buffer techniques, ATI’s Hy-
perZ hardware, and the NVGL occlusionquery OpenGL exten-
sion [3, 18, 20, 30, 26, 33]. Our integrated algorithm also utilizes
these occlusion queries to perform occlusion culling.

2.2.1 Clustering
Often the original objects of a model are not represented in an op-
timal manner for occlusion culling algorithms. These algorithms
need to represent the scene using an object hierarchy. Therefore,
they create an object hierarchy by partitioning and clustering the
model, and at runtime classifying objects as occluders and poten-
tial occludees. One recent approach to partitioning and clustering
is presented by Baxter et al. [4] and used in the GigaWalk system.
It decomposes a large environment into almost equal-sized objects
that are used for static LOD computations. Sillion [34] and Garland
et al. [15] presented hierarchical face clustering algorithms for ra-
diosity and global illumination. These approaches are not directly
applicable to generating a cluster hierarchy from a vertex hierarchy
for view-dependent rendering and occlusion culling.

2.3 Integrated Approaches
Many algorithms have been proposed that combine model simpli-
fication and occlusion culling. The Berkeley Walkthrough system
[14] combines cells and portals based on visibility computation al-
gorithms with static LODs for architectural models. The MMR sys-
tem [2] precomputes static LODs of objects and used hierarchical
occlusion maps at runtime for interactive display. The system as-
sumes that the model is partitioned into rectangular cells.

Other approaches combining precomputed static LODs and con-
servative occlusion culling have been proposed [4, 17]. These al-
gorithms represent the environment as a scene graph, precompute
HLODs (hierarchical levels-of-detail) for intermediate nodes and
use them for occlusion culling. However, switching between static
LODs and HLODs can cause popping. Moreover, these algorithms
use additional graphics processors to perform occlusion queries and
introduce one frame of latency in the overall pipeline.

El-Sana et al. [11] combined view-dependent rendering with
the PLP algorithm to perform approximate occlusion culling. The
integrated algorithm uses the solidity values to guide simplifica-
tion, producing fewer triangles in mesh regions that are deemed
highly occluded. This approach has been applied to portions of the
power plant model consisting of hundreds of thousands of triangles.
However, the algorithm does not perform conservative occlusion
culling.

3 OVERVIEW
In this section we introduce some of the terminology and concepts
used in our algorithm and give a brief overview of our approach.

3.1 Preprocess
Most view-dependent rendering algorithms use a vertex hierarchy
built from an original triangulated mesh. The interior nodes are
generated by applying a simplification operation such as an edge

Interactive View-Dependent Rendering with Conservative Occlusion Culling Page 2 of 8



collapse or vertex clustering to a set of vertices. The result of the
operation is a new vertex that is the parent of the vertices to which
the operator was applied. Successive simplification operations build
a hierarchy that is either a single tree or a forest of trees. At runtime
the mesh is refined to satisfy an error bound specified by the user.

We use the edge collapse operator as the basis for our vertex hi-
erarchies and allow virtual edges so that disjoint parts of the model
can be merged. We store an error value corresponding to the local
Hausdorff distance from the original mesh with each vertex. This
value is used to refine the mesh at runtime by projecting it to screen
space where the deviation can be measured in pixels, which is re-
ferred to as “pixels of error.”

A mesh “fold-over” occurs when a face normal flips during a ver-
tex split or edge collapse. Vertex splits can be applied in a different
order at runtime than during the hierarchy generation. This means
that even though no fold overs occur during hierarchy generation,
they may occur at runtime [12, 22, 39]. To detect this situation we
use a neighborhood test. The face neighborhood is stored for each
edge collapse and vertex split operation when creating the hierar-
chy. At runtime, an operation is considered fold-over safe only if its
current neighborhood is identical to the stored neighborhood.

The vertex hierarchy can be interpreted as a fine-grained bound-
ing volume hierarchy. Vertices have bounding volumes enclosing
all faces adjacent when the vertex is created during simplification.
However, such a bounding volume hierarchy is not well suited for
occlusion culling because each bounding volume is small and can
occlude only a few primitives. Furthermore, the culling algorithm
will have to perform a very high number of occlusion tests.

To address this problem, we partition the vertex hierarchy into
clusters and represent them as a cluster hierarchy. Each cluster con-
tains a portion of the vertex hierarchy. All vertex relationships from
the vertex hierarchy are preserved so that a vertex node may have
a child or parent in another cluster. The relationships of the cluster
hierarchy are based on those of the vertex hierarchy, so that at least
one vertex in a parent cluster has a child vertex in a child cluster.

We characterize clusters based on theirerror ratio and error
range. The error ratio is defined at the ratio of the maximum error
value associated with a vertex in the cluster to that of the minimum.
The error range is the difference between the maximum and mini-
mum error values in a cluster. The error ratio and range are used in
hierarchy construction, as described in Section 4.

We present a novel clustering algorithm that traverses the ver-
tex hierarchy to create clusters that are used for occlusion culling.
The performance of the occlusion culling algorithm depends highly
upon the properties of these clusters.

3.2 Runtime Algorithm
In a standard VDR algorithm, theactive vertex front(also referred
to as theactive vertex list) is composed of the vertices making up
the current mesh representation. The front must be updated every
frame by determining whether vertices on the front should be re-
placed with their parent to decrease the level of detail, or replaced
by their children to increase the detail in a region [22, 28, 39]. In
our algorithm the front is divided among the clusters. The active
front will only pass through a subset of the cluster hierarchy which
is called the “active clusters.” These active clusters are traversed,
and the active vertex front is refined within each active cluster. We
do not refine active clusters that are occluded, leading to a dramatic
improvement in the front update rate and decreased rendering work-
load while still conservatively meeting the error bound.

Occlusion culling is performed by exploiting temporal coher-
ence. Each frame, the set of clusters visible in the previous frame is
used as an occluder set. These clusters are first refined by traversing
their active fronts and then rendered to generate an occlusion rep-
resentation. Next, the bounding volumes of clusters on the active
front are tested for visibility. Only the visible clusters are refined
and rendered using vertex arrays. This visible set then becomes the
occluder set for the subsequent frame.

4 CLUSTERING AND PARTITIONING
In this section we present the cluster hierarchy generation algorithm.
We initially describe some desirable properties of clusters for occlu-

sion culling and present an algorithm designed with these properties
in mind. We also present techniques to partition the vertices and
faces among the clusters.

4.1 Clustering
We highlight some criteria used to generate the clusters from a ver-
tex hierarchy, before describing our clustering algorithm. We have
chosen oriented bounding boxes (OBBs) as our bounding volume
because they can provide a tighter fit than spheres or axis aligned
bounding boxes [16]. OBBs require more computation than simpler
bounding volumes, but clustering is a preprocess that is performed
once per environment.

Initially we consider issues in generating clusters that are not di-
rectly descended from each other; that is, they come from different
branches of the cluster hierarchy. Such clusters should have mini-
mal overlap in their bounding volumes for two reasons. First, highly
interpenetrating clusters are unlikely to occlude each other. Sec-
ond, when rendering their bounding volumes, the required fill-rate
is higher when they overlap. However, a parent cluster’s bounding
box should fully contain the bounding box of its children so that
when it is deemed fully occluded, the subtree rooted at that cluster
may be skipped. We also want to control the number of vertices
and faces in a cluster so that we have uniformly sized occluders and
occludees.

For occlusion culling it is desirable to have only one active cluster
in a region of the mesh. If clusters have low error ratios, it is likely
that multiple clusters will have to be active in a mesh region. On the
other hand, a cluster that has a high error ratio will contain vertices
spanning many levels of the hierarchy in its mesh region. In this
case, few of the vertices contained in a cluster will be active from
any given viewpoint. Therefore, we must balance the error ratio of
clusters. Also, the error range of a cluster should not overlap with
its parent or children. Otherwise, it is likely that they will contain
active vertices simultaneously.

Theseproperties for the clusters can be summarized as:

1. Minimal overlap of bounding boxes of clusters not directly
descended from each other.

2. The bounding box of a cluster is fully contained within its
parent bounding box.

3. Minimal or no overlap of error range between parent and chil-
dren clusters.

4. The error ratio is not too small or too large for a cluster.

5. The vertex and face count within a cluster are neither very
large nor very small.

4.2 Cluster Hierarchy Generation
Our clustering algorithm works directly on an input vertex hierar-
chy without utilizing a spatial subdivision such as an octree. We
assume that the vertex hierarchy from which the cluster hierarchy
is generated exhibits high spatial coherence and is constructed in a
bottom-up manner using edge collapses or vertex merges.

A cluster hierarchy can be generated by either a bottom-up or
top-down approach. A benefit of the bottom-up approach is spatial
localization, but we assume that the vertex hierarchy already has
this property. The top-down approach enables us to minimize the
overlap of cluster bounding boxes. For this reason, we have chosen
the top-down approach.

We descend the vertex hierarchy from the roots while creating
clusters. An active vertex front is maintained and vertices on the
front are added to clusters. When a vertex is added to a cluster, it
is removed from the front and replaced with its children. We do
not add a vertex to a cluster if it cannot be split in a fold-over safe
manner. Thus, the construction of such a cluster will have to wait
until dependent vertices are added to other clusters. For this reason,
we use a cluster queue and place a cluster at the back of the queue
when we attempt to add a vertex that is not fold-over safe. Then,
the cluster at the front of queue is processed.

Each cluster in this cluster queue has an associated vertex priority
queue sorted based on error values. A cluster’s vertex queue con-
tains its candidate vertices on the active front. Initially, the cluster

Interactive View-Dependent Rendering with Conservative Occlusion Culling Page 3 of 8



Figure 2: Construction of the Cluster Hierarchy : On the left is
the input vertex hierarchy. The vertices are colored based on the
cluster to which they are assigned. The nodes drawn with dotted
lines represent the candidate vertices for the clusters, which reside
in the vertex priority queue. The two clusters within dotted circles
are still in the cluster queue, while the cluster inside the solid circle
is finished processing.

queue contains a single cluster. The vertex priority queue associ-
ated with this initial cluster contains the roots of the vertex hierar-
chy. Since candidate vertices for a cluster are processed in order
of decreasing error value, it is never the case that a vertex split is
dependent upon a split in its own vertex queue.

While the cluster queue is not empty the following steps are per-
formed:

1. Dequeue the cluster,C, at the front of the cluster queue.

2. Dequeue the vertex,v, with highest error from the vertex pri-
ority queue.

3. If splitting v is not fold-over safe, return it to the vertex pri-
ority queue, placeC at the back of the cluster queue and go
back to Step1.

4. If addingv to C makes the error ratio ofC too large or in-
creases its vertex count beyond the target:

(a) Create two children clustersCl andCr of C in the clus-
ter queue.

(b) Partition the vertex priority queue and assign the two
resulting queues toCl andCr.

(c) Go back to Step1 without placingC in the back of the
cluster queue; no more vertices will be added to this
cluster.

5. Addv to C, update the number of vertices and the error ratio
associated withC.

6. Replacev on the active vertex front by its children and en-
queue the children in the vertex priority queue associated with
C. Go back to Step2.

This clustering algorithm ensures the properties highlighted in
Section 4.1. Section 4.3 will explain how Property1 is enforced
when a cluster is partitioned. Property3 is maintained by our al-
gorithm as the vertices are inserted into the clusters from the vertex
priority queue in order of decreasing error, so that children clusters
always contain vertices with less associated error than their parent
cluster. Properties4 and5 cause the clusters to be split as the pro-
cedure traverses down the vertex hierarchy in Step4.

Property2 is enforced in a second pass after clustering by a
bottom-up traversal which computes each parent cluster’s bound-
ing box by taking the union of its children. An example of a simple
cluster hierarchy that is generated from vertex hierarchy is shown in
Figure 2.

4.3 Partitioning a Cluster
In Step4b of the cluster generation algorithm, it is necessary to
divide the cluster by splitting its vertex priority queue. The two re-
sulting vertex priority queues form the initial vertex priority queues
for the two children clusters. We also compute bounding boxes of
each child cluster when partitioning.

Figure 3:The clusters of the bunny model are shown in color. Clus-
ters at 0 pixels of error are on the left and at 4 pixels of error are on
the right.

To partition cluster we compute a splitting plane for the vertices
in the queue using principal component analysis. The eigenvec-
tor associated with the largest eigenvalue is initially used to define
a splitting plane through the centroid of the vertices to maximally
separate the geometry [24]. The vertices and associated faces are
divided based on this splitting plane, and an oriented bounding box
is computed that contains the faces of each cluster. Bounding boxes
are oriented with the splitting plane.

Some faces have a vertex in each of the newly created priority
queues. As a result, their bounding boxes can overlap. This overlap
can be very large when the cluster being split contains long, skinny
triangles. LetV be the volume of the bounding box of the parent
node andV0 andV1 be the volumes of the children bounding boxes.
We use(V1 + V2−V ) as a measure of the overlap of the children’s
bounding boxes. If this value exceeds a threshold fraction ofV then
the overlap is too large. In this case, the eigenvector corresponding
to the second largest eigenvalue is used to define a new splitting
plane. If this split again fails the overlap test, the third eigenvector is
used. If all three fail, then we enforce Property1 by abandoning the
split and keeping the parent cluster in the cluster queue and increase
either the target vertex count or the error ratio. Figure 3 shows the
clusters on a bunny model at runtime.

4.4 Memory Localization
After assigning vertices to clusters, we store the vertices in their
corresponding clusters along with their associated faces. Perform-
ing this memory localization is useful for rendering using vertex
arrays and on demand loading of clusters at runtime. Also, memory
accesses when processing a cluster are more likely to be localized.

However, the vertices of a triangle can reside in different clus-
ters. This is unavoidable in practice, no matter how the vertices are
partitioned among different clusters. We deal with this situation by
assigning each triangle to a single cluster containing at least one of
its vertices. The cluster must store all three vertices of any trian-
gle assigned to it, leading to some duplication of vertex data. Note,
however, that only the data necessary to render the vertex are dupli-
cated. The vertex hierarchy relationships are stored for each vertex
only in the cluster to which they were assigned in cluster generation.

5 INTERACTIVE DISPLAY
In this section we present the runtime algorithm that uses the vertex
and cluster hierarchy to update the active mesh for each frame and
to perform occlusion culling. First, we present algorithms for model
refinement followed by occlusion culling.

5.1 View-Dependent Model Refinement
In our algorithm the active vertex front or list and active face list,
defined in Section 3.2, are divided among the clusters so that each
cluster maintains its own portion of the active lists. Only clusters
that contain vertices on the active front need to be considered during
refining and rendering. These clusters are stored as anactive cluster
list. Figure 4 shows a cluster hierarchy, its active cluster list, and
active vertex lists.

Prior to rendering a cluster, its active face and vertex lists are up-
dated to reflect viewpoint changes since the last frame. We traverse
its active vertex list and use the aforementioned vertex error value
to compute which vertices need to be split or collapsed. The error
value is projected onto the screen and used as a bound on the de-

Interactive View-Dependent Rendering with Conservative Occlusion Culling Page 4 of 8



Figure 4:The cluster hierarchy is used at runtime to perform oc-
clusion culling. On the left, the active cluster list is drawn as a front
across the cluster hierarchy. This list is composed of visible clusters
and occluded clusters. Each cluster contains a portion of the vertex
hierarchy as seen on the right. A subset of vertices in active clusters
make up the current mesh. These are shaded on the right.

viation of the surface in screen pixels. Vertex splits are performed
recursively on front vertices that do not satisfy the bound. For sib-
ling pairs that meet the error bound, we recursively check whether
their parent vertex also meets the error bound and if so, collapse the
edge (or virtual edge) between the vertex pair.

Faces in the active face list adjacent to a vertex involved in ei-
ther an edge collapse or vertex split are replaced with faces adjacent
to the new vertex. When a vertex is to be split, we use the neigh-
borhood test to determine whether the vertex split is fold-over safe.
However, vertex splits must occur to satisfy the error bound. To al-
low a split, we force any of its neighboring vertices to split when
they are not part of the stored neighborhood as in [22].

5.2 Maintaining the Active Cluster List
A vertex that is split may have children that belong to a different
cluster. The children vertices are activated in their containing clus-
ters and these clusters are added to the active cluster list if they were
not previously active. Similarly, during an edge collapse operation,
the parent vertex is activated in its containing cluster and that cluster
is added to the active cluster list. When the last vertex of a cluster
is deactivated, the cluster is removed from the active cluster list.

5.3 Rendering Algorithm
Our rendering algorithm exploits frame-to-frame coherence in oc-
clusion culling, by using the visible set of clusters from the previ-
ous frame as theoccluder setfor the current frame. The algorithm
proceeds by rendering the occluder set to generate an occlusion rep-
resentation in the depth-buffer. Then, it tests all the clusters in the
active cluster list for occlusion. Meanwhile, the occluder set is up-
dated for the next frame. An architecture of the runtime algorithm is
shown in Figure 5. Different phases of the algorithm are numbered
in the upper left of each box.

5.3.1 Occlusion Representation Generation
We use clusters that were visible in the previous frame for comput-
ing an occlusion representation. Before generating the representa-
tion, the active vertex list and active face list in each of these clusters
are updated to meet the error bound. This refinement occurs as de-
scribed in Section 5.1. This is Phase 1 of our algorithm. In Phase 2,
the active faces are rendered and the resulting depth map is used as
an occlusion representation.

5.3.2 Occlusion Tests
We traverse the active cluster list and cull clusters that are occluded
or outside the view-frustum in Phase 3. The visibility of a cluster
within the view frustum is computed by rendering its bounding box
and then issuing a hardware occlusion query to determine whether
any fragments passed the depth test. Depth writes are disabled dur-
ing this operation to ensure that the bounding boxes are not used as
occluders. Moreover, depth clamping is enabled so that we do not
need to consider special case bounding boxes that are intersecting
the near clip plane. The active vertex front may pass through a clus-
ter and some of its descendant clusters. Since the bounding box of
a cluster fully contains the bounding boxes of its children, once a
cluster is found to be occluded we do not have to check its children.

Figure 5:Runtime System Architecture: In each frame the clusters
visible in the previous frame are used as an occluder set. In Phases
1 and 2, the occluder set is refined and then rendered in to create a
depth map in the z-buffer. Phase 3 tests bounding boxes of all the
active clusters against this depth map using occlusion queries. The
clusters passing the test are refined and rendered in Phases 4 and 5
and also used as occluders for the next frame.

During this phase, all the clusters in the active cluster list are
tested, including those in the occluder set. This test is necessary
because the clusters that pass the visibility test are used as occlud-
ers for the subsequent frame. In this manner, clusters that become
occluded are removed from the occluder set.

5.3.3 Refining Visible Clusters
The previous phase allowed us to determine which clusters are po-
tentially visible. Before rendering the potentially visible clusters in
Phase 5, their active face and vertex lists must be updated in Phase
4. While refining, additional clusters may be added to the active
cluster list through vertex splits and edge collapses. These clusters
are assumed to be visible in the current frame.

5.4 Conservative Occlusion Culling
The bounding box test conservatively determines whether the ge-
ometry within a cluster will be occluded, since a bounding box con-
tains all the faces associated with a cluster. We also ensure conser-
vativeness up to screen-space precision by refining the occluder set
in Phase 1 before generating the depth map in Phase 2.

To prevent refining and rendering the same cluster two times dur-
ing a frame, the occluder set rendered in Phase 2 is also rendered
into the color buffer. Then, when refining and rendering the visible
clusters in Phases 4 and 5, we omit the clusters that were already
refined and rendered in Phases 1 and 2. This optimization requires
an extra step to ensure conservativeness.

As explained in Section 5.1, the neighborhood vertices may be
forced to split to satisfy the error bound. A problem arises when a
vertex split in Phase 4 forces a vertex in a cluster already rendered in
Phase 2 to split. We detect such cases and redraw the resulting faces,
so that no visual artifacts remain in the final image. We rerender the
affected faces prior to the split into the stencil buffer after setting
the depth function to GLEQUAL. After the split, the correct faces
are rendered and overwrite pixels where the stencil has been set. We
have found that this occurs very rarely.

5.5 Vertex Arrays
On current graphics processors display lists and vertex arrays are
significantly faster than immediate mode rendering [38]. The
changing nature of the visible primitives and dynamically gener-
ated LODs in a VDR system are not well suited for using display
lists. Thus, we use vertex arrays stored in the graphics processor
unit (GPU) memory to accelerate the rendering.

We use a memory manager when the size of the vertices in the ac-
tive clusters is less than the amount of the memory allocated on the
GPU (e.g. 100 MB). Using a least recently used replacement pol-
icy, we keep the vertices in GPU memory over successive frames.
When the front size exceeds the memory requirement, we still use
GPU memory, but do not attempt to keep clusters in this memory
for more than one frame.

In many rendering applications all or most of the vertices in a
vertex array are used to render faces. But in our case only a fraction
of the vertices for a cluster, the active vertices, are used for render-

Interactive View-Dependent Rendering with Conservative Occlusion Culling Page 5 of 8



Model Poly×106 Obj×103 Cluster×103

Bunny Scene 6.9 0.1 8.4
Power Plant 12.2 1.2 20.1

Table 1: Details of our test environments.Poly is the polygon
count. TheObj column lists the number of objects in the original
dataset and theCluster column lists number of clusters generated.

ing. This increases the number of bytes per rendered vertex that
are transferred to the GPU when using vertex arrays stored in GPU
memory. To obtain maximum throughput, we use a minimum ratio
of active vertices to total vertices, and any active cluster that does
not meet this threshold is rendered in immediate mode.

6 IMPLEMENTATION AND RESULTS
In this section we discuss some of the details of our implementation
and highlight its performance on two complex environments.

6.1 Implementation
We have implemented our view-dependent rendering algorithm
with conservative occlusion culling on a2.8 GHz Pentium-IV PC,
with 4 GB of RAM and a GeForce4 Ti 4600 graphics card. It
runs Linux 2.4 with the bigmem option enabled giving3.0 GB
user addressable memory. Using the NVIDIA OpenGL extension
GL NV occlusionquery, we are able to perform an average of ap-
proximately100K occlusion queries per second on the bounding
boxes.

For higher performance, we allocate100MB of the 128MB of
RAM on the GPU to store the cluster vertices and bounding boxes.
The memory allocated on the graphics card can hold about3.5 mil-
lion vertices.

6.2 Environments
Our algorithm has been applied to two complex environments, a
coal fired power plant composed of more than12 million polygons
and1200 objects (shown in Fig. 1) and an environment consist-
ing of 100 copies of the Stanford bunny that are randomly spaced,
rotated, and scaled (shown in Fig. 6). The details of these environ-
ments are shown in Table 1.

We use GAPS [13] to construct our vertex hierarchies because
it handles non-manifold geometry and can also perform topological
simplification. Because the GAPS algorithm requires large amounts
of memory, we built hierarchies for portions of each environment
separately and merged the results to compute a single vertex and
cluster hierarchy. A target of1000 vertices is used while generating
the clusters. The maximum error value of any vertex in the cluster
is twice that of the minimum; that is, the error ratio is2.

Our approach is designed for complex environments consisting
of tens of millions of polygons. Partial loading can be very useful
in such an environment. We decouple the vertex and face data from
the edge collapse hierarchy stored in each cluster as described in
Section 4.4. We do not load the face and vertex data for a cluster
until it needs to be rendered. In this manner, clusters that never fall
within the view-frustum or are always occluded will never be loaded
when performing a walkthrough.

6.2.1 Preprocessing Time and Memory Requirements
Our cluster hierarchy generation algorithm can process about1M
vertices in3.8 minutes. Almost 18% of that time is spent calculating
the eigenvectors computed for principal component analysis when
splitting clusters and determining OBBs. We optionally employ a
step that attempts to tighten the OBBs by minimizing their volume
while still enclosing the clusters. When this step is used, the time
spent in cluster generation increases by ten times; the bounding box
computation accounts for 90% of the time spent clustering. We
performed the minimization step during cluster generation for the
power plant model and not for the bunny scene.

Our current implementation is not optimized in terms of mem-
ory requirements. Each cluster uses300 bytes to store the bounding
box information and other data. Each vertex and face has a4 byte
pointer indicating its containing cluster along with the geometric
data. On average, we use332Mb for 1M vertices. This number is

Figure 6: Bunny Scene. We randomly transformed 100 copies of
the bunny model. This bunny environment consists of nearly 7 mil-
lion triangles and is rendered by our system at interactive rates.

slightly higher in comparison with some earlier systems for view-
dependent rendering. For example, Hoppe’s view-dependent sim-
plification system [22] reported224Mb for 1M vertices. The dif-
ference partly exists because our implementation supports virtual
edges and non-manifold topology, which means some relationships
cannot be stored implicitly.

6.3 Optimizations
We use a number of optimizations to improve the performance of
our algorithms.

6.3.1 Conservative Projected Error
When traversing the active vertex list of a cluster we use a conser-
vative approximation of the distance from a vertex to the viewpoint.
The minimum distance between a sphere surrounding a cluster and
the viewpoint is computed. Then, the maximum surface deviation
meeting the screen space error bound at this distance is calculated
and all active vertices in the cluster are refined using this value. This
approximation is conservative and requires only one comparison per
vertex to determine whether it needs to be split or collapsed.

6.3.2 Multiple Occlusion Queries
The GL NV occlusionquery extension supported on the GeForce
3 and all subsequent NVIDIA GPUs allows many queries to be per-
formed simultaneously. To get the result of a query, all rasterization
prior to issuing the query must be completed. Thus, we wait until
we have rendered all the bounding boxes in the active cluster list
before gathering query results from the GPU.

6.4 Results
We generated paths in each of our environments and used them to
test the performance of our algorithm. These paths are shown in the
accompanying video. We are able to render both these models at
interactive rates (10− 20 frames per second) on a single PC.

We have also compared the performance of our system to VDR
without occlusion culling. We accomplish this comparison by dis-
abling occlusion culling in our system, which involves simply refin-
ing and rendering all the clusters in the active cluster list. Moreover,
we do not use the conservative approximation of the error distance,
since this optimization is possible because of clustering used for
occlusion culling. We use vertex arrays and GPU memory to accel-
erate the rendering of the scene in each case. Figure 8 illustrates the
performance of the system on a complex path in the power plant and
bunny scene, respectively. Notice that we are able to obtain a3− 5
times speedup with conservative occlusion culling. Table 2 shows

Interactive View-Dependent Rendering with Conservative Occlusion Culling Page 6 of 8



Figure 7:Occlusion culling in the Power Plant. The left image shows a first person view. The middle image shows a third person view with
the bounding boxes of visible clusters shown in pink and the view frustum in white. The right image is from the same third person view with
the bounding boxes of occluded clusters in yellow.

Pixels of FPS Front Verts (K) Merge/Split Poly (K) Active Cluster
Model Error VDR VDR+OC VDR VDR+OC VDR VDR+OC VDR VDR+OC VDR+OC

Bunny Scene 1 6.7 22.3 122 72 2077 1092 240 160 212
PP 3 2.62 12.3 297 126 1973 559 433 162 1166

Table 2:Average frame rates and average number of split and merge operations obtained by different acceleration techniques over the sample
path. FPS = Frames Per Second,Poly = Polygon Count,PP = Power Plant model,VDR = View-dependent Rendering,OC = Occlusion
Culling

the average frame rate, front size, and number of edge collapse and
vertex split operations performed during the path. The main bene-
fit of occlusion culling arises from the reduction in the size of the
front (by a factor of one third to one half) as well as the number
of rendered polygons. Table 3, 4 shows a breakdown of the time
spent on the major tasks (per frame) in our system. Due to occlu-
sion culling, the resulting front size and the time spent in refining
the front is considerably smaller and yields improved performance.
Note that our improvement in refining is even more dramatic than
the improvement in rendering due to the conservative distance com-
putation. Figure 7 shows visible and invisible clusters in a given
viewpoint on the power plant model.

6.5 Comparison with Earlier Approaches
To the best of our knowledge, none of the earlier algorithms
can perform view-dependent rendering with conservative occlusion
culling. The iWalk system [7] can also render the power plant
model on a single PC with much smaller preprocessing and memory
overhead than ours. However, it does not use LODs and performs
approximate occlusion culling. The GigaWalk [4] and occlusion-
switch algorithms [17] use static LODs with occlusion culling. Al-
though they can render the power plant model at interactive rates,
they can produce popping due to switching between different LODs.
Furthermore, they use more than one graphics processor, which in-
troduces additional latency into the pipeline.

An integrated algorithm combining view-dependent rendering
with PLP-based approximate occlusion culling is presented in [11].
Finally, [9] have presented a scheme for subdividing the vertex hi-
erarchy at runtime to generate a coarser hierarchy. The cells of this
hierarchy are split and merged to reflect the changes in the active
front of vertices. These cells are prioritized by an estimate of the
number of vertex splits and edge collapses required in each cell.
Refinement occurs over a subset of the active cells in each frame,
considering the priority as well as ensuring that all cells are even-
tually refined. Our algorithm follows the same theme of reducing
the front size and subdivides the vertex hierarchy into clusters as a
preprocess. As a result, our algorithm is applicable to very large en-
vironments and the resulting clusters are used for occlusion culling.

6.6 Limitations
Our occlusion culling algorithm assumes high temporal coherence
between successive frames. If the camera position changes signif-
icantly from one frame to the next, the visible primitives from the
previous frame may not be a good approximation of the occluder

Step Refining Rendering Culling
VDR+OC 15ms (34%) 19ms (43%) 11ms, (23%)

VDR 107ms (72%) 42ms (28%) −
Table 3: A breakdown of the frame time in the bunny scene. Left
values in each cell represent time spent in each step. Right values
represent percentage of total frame time. TheRefining column rep-
resents Phase 1 and 4,Rendering is Phase 2 and 5, andCulling is
Phase 3.

Step Refining Rendering Culling
VDR+OC 23ms (28%) 27ms (33%) 31ms (39%)

VDR 213ms (56%) 169ms (44%) −
Table 4: A breakdown of the frame time in Power Plant. The
columnsRefining, Rendering, andCulling are explained in Table
3

set for the current frame. As a result, the culling performance may
suffer. Furthermore, if a scene has very little or no occlusion, the
additional overhead of performing occlusion queries can lower the
frame rate.

Our algorithm performs culling at a cluster level and does not
check the visibility of each triangle. As a result, its performance
can vary based on how the clusters are generated and represented.

7 CONCLUSION AND FUTURE WORK
We have presented a novel algorithm for integrating view-dependent
rendering with conservative occlusion culling. Our algorithm per-
forms clustering and partitioning to decompose a vertex hierarchy
of the entire scene into a cluster hierarchy, which is used for view-
frustum and occlusion culling. At runtime, a potentially visible
set of clusters is maintained using hardware accelerated occlusion
queries, and this set is refined in each frame. The cluster hierarchy
is also used to update the active vertex front that is traversed for
view-dependent refinement. Our algorithm easily allows the use of
vertex arrays to achieve high triangle throughput on modern graph-
ics cards. We have observed3 − 5 times improvement in frame
rate over view-dependent rendering without occlusion culling on
two complex environments.

Many avenues for future work lie ahead. To apply our approach
to even larger environments, we would like to develop an out-of-
core clustering and partitioning algorithm based on out-of-core sim-

Interactive View-Dependent Rendering with Conservative Occlusion Culling Page 7 of 8



(a) Bunny scene model at 1 pixel of error (b) Power plant model at 3 pixels of error

Figure 8:Frame rate comparison between VDR with and without occlusion culling. We obtain a3− 5 times improvement in the frame rate
when using occlusion culling.

plification and generation of the vertex hierarchy. Our load on de-
mand approach can be extended to create an out-of-core runtime
system. Our clustering algorithm could be extended to consider
view-dependent effects such as specular highlights and silhouettes
that are important in environments with significant surface detail.
We would like to explore other applications of the cluster hierarchy,
including collision detection.

References
[1] J. Airey, J. Rohlf, and F. Brooks. Towards image realism with interactive update

rates in complex virtual building environments. InSymposium on Interactive 3D
Graphics, pages 41–50, 1990.

[2] D. Aliaga, J. Cohen, A. Wilson, H. Zhang, C. Erikson, K. Hoff, T. Hudson,
W. Stuerzlinger, E. Baker, R. Bastos, M. Whitton, F. Brooks, and D. Manocha.
Mmr: An integrated massive model rendering system using geometric and image-
based acceleration. InProc. of ACM Symposium on Interactive 3D Graphics,
1999.

[3] D. Bartz, M. Meibner, and T. Huttner. Opengl assisted occlusion culling for large
polygonal models.Computer and Graphics, 23(3):667–679, 1999.

[4] B. Baxter, A. Sud, N. Govindaraju, and D. Manocha. Gigawalk: Interactive
walkthrough of complex 3d environments.Proc. of Eurographics Workshop on
Rendering, 2002.

[5] D. Cohen-Or, Y. Chrysanthou, and C. Silva. A survey of visibility for walk-
through applications.SIGGRAPH Course Notes # 30, 2001.

[6] S. Coorg and S. Teller. Real-time occlusion culling for models with large occlud-
ers. InProc. of ACM Symposium on Interactive 3D Graphics, 1997.

[7] W. Correa, J. Klosowski, and C. Silva. iwalk: Interactive out-of-core rendering
of large models. 2002. Manuscript.

[8] C. Decoro and R. Pajarola. Xfastmesh: View-dependent meshing from external
memory. InIEEE Visualization, 2002.

[9] J. El-Sana and E. Bachmat. Optimized view-dependent rendering for large polyg-
onal dataset.IEEE Visualization, pages 77–84, 2002.

[10] J. El-Sana and Y. Chiang. External memory view-dependent simplification.Pro-
ceedings of Eurographics, 2000.

[11] J. El-Sana, N. Sokolovsky, and C. Silva. Integrating occlusion culling with view-
dependent rendering.Proc. of IEEE Visualization, 2001.

[12] J. El-Sana and A. Varshney. Generalized view-dependent simplification.Com-
puter Graphics Forum, pages C83–C94, 1999.

[13] C. Erikson and D. Manocha. Gaps: General and automatic polygon simplifica-
tion. In Proc. of ACM Symposium on Interactive 3D Graphics, 1999.

[14] T.A. Funkhouser, D. Khorramabadi, C.H. Sequin, and S. Teller. The ucb system
for interactive visualization of large architectural models.Presence, 5(1):13–44,
1996.

[15] M. Garland, A. Willmott, and P. Heckbert. Hierarchical face clustering on polyg-
onal surfaces. Technical report, Proc. of 2001 Symposium on Interactive 3D
Graphics, Mar. 2001.

[16] S. Gottschalk, M. Lin, and D. Manocha. OBB-Tree: A hierarchical structure for
rapid interference detection.Proc. of ACM Siggraph’96, pages 171–180, 1996.

[17] N. Govindaraju, A. Sud, S. Yoon, and D. Manocha. Interactive visibility culling
in complex environments with occlusion-switches. Technical Report CS-02-027,
University of North Carolina, 2002. To appear in Proc. of ACM Symposium on
Interactive 3D Graphics.

[18] N. Greene. Occlusion culling with optimized hierarchical z-buffering. InACM
SIGGRAPH COURSE NOTES ON VISIBILITY, # 30, 2001.

[19] N. Greene, M. Kass, and G. Miller. Hierarchical z-buffer visibility. InProc. of
ACM SIGGRAPH, pages 231–238, 1993.

[20] K. Hillesland, B. Salomon, A. Lastra, and D. Manocha. Fast and simple occlu-
sion culling using hardware-based depth queries. Technical Report TR02-039,
Department of Computer Science, University of North Carolina, 2002.

[21] H. Hoppe. Progressive meshes. InProc. of ACM SIGGRAPH, pages 99–108,
1996.

[22] H. Hoppe. View dependent refinement of progressive meshes. InACM SIG-
GRAPH Conference Proceedings, pages 189–198, 1997.

[23] T. Hudson, D. Manocha, J. Cohen, M. Lin, K. Hoff, and H. Zhang. Accelerated
occlusion culling using shadow frusta. InProc. of ACM Symposium on Compu-
tational Geometry, pages 1–10, 1997.

[24] I. Jolliffe. Priciple component analysis. InSpringer-Veriag, 1986.

[25] J. Klosowski and C. Silva. The prioritized-layered projection algorithm for
visible set estimation.IEEE Trans. on Visualization and Computer Graphics,
6(2):108–123, 2000.

[26] J. Klosowski and C. Silva. Efficient conservative visiblity culling using the
prioritized-layered projection algorithm.IEEE Trans. on Visualization and Com-
puter Graphics, 7(4):365–379, 2001.

[27] P. Lindstrom. Out-of-core construction and visualization of multiresolution sur-
faces. InACM Symposium on Interactive 3D Graphics, 2003.

[28] D. Luebke and C. Erikson. View-dependent simplification of arbitrary polygon
environments. InProc. of ACM SIGGRAPH, 1997.

[29] D. Luebke and C. Georges. Portals and mirrors: Simple, fast evaluation of poten-
tially visible sets. InACM Interactive 3D Graphics Conference, Monterey, CA,
1995.

[30] M. Meissner, D. Bartz, T. Huttner, G. Muller, and J. Einighammer. Generation of
subdivision hierarchies for efficient occlusion culling of large polygonal models.
Computer and Graphics, 2002.

[31] R. Pajarola. Fastmesh: Efficient view-dependent mesh. InProc. of Pacific Graph-
ics, pages 22–30, 2001.

[32] G. Schaufler, J. Dorsey, X. Decoret, and F. Sillion. Conservative volumetric
visibility with occluder fusion.Proc. of ACM SIGGRAPH, pages 229–238, 2000.

[33] N. Scott, D. Olsen, and E. Gannett. An overview of the visualize fx graphics
accelerator hardware.The Hewlett-Packard Journal, pages 28–34, 1998.

[34] François Sillion. Clustering and volume scattering for hierarchical radiosity cal-
culations. InFifth Eurographics Workshop on Rendering, pages 105–117, Darm-
stadt, Germany, June 1994.

[35] S. J. Teller. Visibility Computations in Densely Occluded Polyheral Environ-
ments. PhD thesis, CS Division, UC Berkeley, 1992.

[36] P. Wonka, M. Wimmer, and D. Schmalstieg. Visibility preprocessing with oc-
cluder fusion for urban walkthroughs. InRendering Techniques, pages 71–82,
2000.

[37] P. Wonka, M. Wimmer, and F. Sillion. Instant visibility. InProc. of Eurographics,
2001.

[38] M. Woo, J. Neider, and T. Davis.OpenGL Programming Guide, Second Edition.
Addison Wesley, 1997.

[39] J. Xia, J. El-Sana, and A. Varshney. Adaptive real-time level-of-detail-based ren-
dering for polygonal models.IEEE Transactions on Visualization and Computer
Graphics, 3(2):171–183, June 1997.

[40] H. Zhang, D. Manocha, T. Hudson, and K. Hoff. Visibility culling using hierar-
chical occlusion maps.Proc. of ACM SIGGRAPH, 1997.

Interactive View-Dependent Rendering with Conservative Occlusion Culling Page 8 of 8


