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Acoustic pulse propagation in outdoor urban environments is a physically complex phenomenon due

to the predominance of reflection, diffraction, and scattering. This is especially true in non-line-of-sight

cases, where edge diffraction and high-order scattering are major components of acoustic energy

transport. Past work by Albert and Liu [J. Acoust. Soc. Am. 127, 1335–1346 (2010)] has shown that

many of these effects can be captured using a two-dimensional finite-difference time-domain method,

which was compared to the measured data recorded in an army training village. In this paper, a full

three-dimensional analysis of acoustic pulse propagation is presented. This analysis is enabled by the

adaptive rectangular decomposition method by Raghuvanshi, Narain and Lin [IEEE Trans. Visual.

Comput. Graphics 15, 789–801 (2009)], which models sound propagation in the same scene in three

dimensions. The simulation is run at a much higher usable bandwidth (nearly 450 Hz) and took only a

few minutes on a desktop computer. It is shown that a three-dimensional solution provides better

agreement with measured data than two-dimensional modeling, especially in cases where propagation

over rooftops is important. In general, the predicted acoustic responses match well with measured

results for the source/sensor locations. [http://dx.doi.org/10.1121/1.4874495]

PACS number(s): 43.28.Js, 43.28.En [PBB] Pages: 3231–3242

I. INTRODUCTION

Acoustic propagation in urban environments is a physi-

cally complex problem that has many practical applications.

In urban planning and city design, acoustic propagation

models can inform decisions on the location of noise-

sensitive buildings like hospitals and schools.1 Accurate

computational modeling is also useful in designing baffles

near areas of high traffic to control noise levels in residential

neighborhoods.2,3 Acoustic modeling is also useful in sound-

source localization: Numerous sensors are placed in an urban

environment to detect sound events and calculate the sound

source’s position using the peak arrival times of the sound

waves. This computation of the sound source’s position can

be used for gunshot localization, which is useful for crime

control in urban areas4 and in many military applications.5

Acoustic propagation modeling for urban areas is a

challenging computational problem because of the complex

building geometry and large domain size. High-order diffrac-

tion and scattering play a significant role in acoustic energy

transport in urban areas, especially in cases when the source

and receiver are not in line-of-sight. Previous work in the field

has mainly focused on continuous noise sources to determine

statistical quantities like reverberation time and noise levels.6–8

However, these are gross acoustic parameters and do not give a

detailed view of the actual propagation. Geometric techniques

have been used to evaluate noise levels and calculate sound

propagation in urban streets.9,10 However, due to these techni-

ques’ inherent assumption of rectilinear propagation of sound

waves, modeling wave effects such as diffraction and interfer-

ence remains a significant challenge with these techniques.

Recent work in numerical techniques has focused on the

use of acoustic pulse propagation techniques in the time do-

main to get detailed characteristics of the complex propaga-

tion effects in urban scenes. Time-domain pulse propagation

is preferred in urban acoustic modeling as it gives direct

insight into the propagation by producing animations of

pressure wavefronts. This allows one to quickly inspect the

propagation path corresponding to dominant peaks in the
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response at a given sensor location. Recent studies used a

finite-difference time-domain simulation to model acoustic

pulse propagation and compared the results with real-world

measurements.11–13 Those studies were limited to 2D model-

ing due to the high computational cost and memory require-

ment of the finite-difference technique for this large domain

size.

In this paper, a full 3D analysis of acoustic pulse propa-

gation in the time domain is presented. Our analysis is made

on a virtual 3D model of the same scene as the prior 2D

investigation;13 this 3D analysis is made computationally

feasible by using Adaptive Rectangular Decomposition

(ARD),14 an efficient time-domain numerical solver, which

allows us to model propagation in this scene in three dimen-

sions. ARD is more computation- and memory-efficient for

homogenous media than the finite-difference time-domain

technique. The improved efficiency allows the ARD simula-

tions to have a much higher usable bandwidth (up to mid-

range frequencies of 450 Hz, compared to 200 Hz in prior

work13), while taking just a few minutes on a desktop com-

puter. A detailed analysis of errors between measured data

and simulated data is performed, showing that 3D simula-

tions provide better agreement with measured data than 2D

simulations. The agreement is markedly better in cases

where propagation over rooftops is important, a case which

the 2D modeling cannot capture at all. In general, the pre-

dicted acoustic responses match well with measured results

for most source/sensor locations, with typical errors being on

the order of 3 dB. Visualizations of the time-domain simula-

tion show that a rooftop-diffracted path provides important

energy contributions at certain locations in the scene.

II. PREVIOUS WORK

Over the years, many techniques have been developed to

study acoustic propagation in urban environments.1

Analytical solutions are available for simple scenarios involv-

ing building edges and noise barriers.15 Theoretical predic-

tions have been used to predict the noise levels in urban street

complexes.16 Statistical analysis17,18 has been performed on

measured data to analyze the reverberation time and sound

levels in streets and to study the relationship between different

noise descriptors in urban areas. Many ray-tracing based

approaches8,9 have been proposed to evaluate the increase in

traffic noise for street canyons due to the presence of build-

ings. Kang et al.10 used a radiosity-based model to calculate

sound propagation in interconnected urban streets. And the

radiosity-based model has been combined with the image-

source method to handle diffuse and geometrical boundaries

for street canyon scenarios.19

Typical numerical approaches used to study urban

acoustic propagation are Finite Difference Time-Domain,20

Finite Element Method,21 Boundary Element Method,22

Equivalent Source Method,23 and Pseudo-Spectral Time-

Domain.24 The boundary element method has been applied

to acoustic propagation in areas with noise barriers25 and in

outdoor scenes.26 To model sound propagation in city can-

yons, Ogren and Kropp (2004) used the equivalent source

method, and Van Renterghem et al. (2006) used a coupled

finite-difference parabolic equation method.27,28 Ovenden

et al. (2009) coupled the analytical calculation to a parabolic

equation method for modeling noise propagation in urban

freeways.29 To model atmospheric sound propagation, a

pseudo-spectral time-domain (PSTD) approach30 was pro-

posed. The finite-difference approach has been used in recent

years to model acoustic pulse propagation in urban environ-

ments, and the results were compared with measured wave-

forms recorded at the physical site, including propagation

for a right-angled wall,11 a single building,12 and a training

village with multiple buildings.13 However, due to computa-

tional limitations, all these approaches have been limited to

propagation in two dimensions.

Some recent studies have modeled three-dimensional

sound propagation. Ketcham et al. (2008) used a finite-

difference approach for modeling the effect of urban infra-

structure on sound scattering in three dimensions,31 but the

modeling required a computer cluster with hundreds of pro-

cessors. Pollès et al. (2004) proposed a diffusion-equation-

based approach to model 3D sound propagation in urban

areas with multiple buildings.32 Recently, a fast and efficient

time-domain approach was proposed; this technique, called

adaptive rectangular decomposition, solves the wave equa-

tion in three dimensions for spatially invariant speed of

sound.14,33 It is related to the PSTD technique but avoids the

discrete integration in time by using analytical solutions of

the wave equation for rectangular domains. For a more

detailed survey of outdoor sound propagation techniques, the

survey paper34 is recommended.

FIG. 1. (Color online) (a) Top view of the urban scene used in the experimen-

tal study. Reproduced with permission from Albert and Liu (2010). (b) An ap-

proximate 3D model of the scene constructed based on the 2D layout,

photographs of the scene, and heights of the buildings’ corners and roof tops.
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III. MEASUREMENTS

In this section, we discuss the real-world measurements

used in the validation of the numerical simulation. This data-

set was presented in the work of Albert and Liu (2010).13

We provide a brief discussion here, but more details can be

found in their previous work.

A. Scene layout

The experiment was conducted in an artificial village

spanning a 150 m� 150 m area with 15 buildings and two

cross-streets: “Main street” running perpendicular to the

“Church street.” Figure 1(a) shows the 2D layout (top view)

of the urban scene. The buildings in the village were two or

three stories tall and made up of concrete blocks. The ground

areas consisted of streets, grass areas, and hard-packed soil.

B. Weather conditions

The experiment was conducted over two sunny days with

temperature, wind, and relative humidity variation between

8 �C to 19 �C, 2 to 5 m/s, and 30%–50%, respectively.

C. Sources

Acoustic pulses were produced by using small explo-

sives of 0.57 kg of C4 suspended at a height of 1.5 m from

the ground. The measurements were recorded for four source

positions, SP1–SP4.

D. Receivers

Sensors were placed at 14 different receiver positions

spread throughout the scene, in both line-of-sight (LOS) and

non-line-of-sight (NLOS) positions. These sensors were con-

nected to digital seismographs that recorded the pressure sig-

nal at a sampling rate of 5 or 8 kHz.

IV. ADAPTIVE RECTANGULAR DECOMPOSITION
NUMERICAL MODELING

In this section, we give an overview of the adaptive rec-

tangular decomposition (ARD) simulation technique for

modeling acoustic pulse propagation.14,33,35

A. The adaptive rectangular decomposition method

Our starting point is the wave equation for constant

sound speed,

@2p

@t2
� c2r2p ¼ f ðx; tÞ; (1)

where p (x, t) is the time-varying pressure field, f (x, t) is the

force term corresponding to the volume sound sources, c is the

speed of sound, and r2 is the Laplacian operator. The speed

of sound in the medium is assumed to be spatially invariant.

Figure 2 demonstrates the main stages of the ARD pipe-

line. The technique starts with a 3D model of the scene, vox-

elizes the air volume, and then decomposes the voxelization

into rectangular partitions. The wave equation has a known

analytical solution for rectangular domains for spatially

invariant speed of sound. Consider a rectangle in 3D of size

(lx, ly, lz) with perfectly reflecting walls. The analytical solu-

tion of the wave equation in this case can be written as

pðx; tÞ ¼
X

i¼ðix; iy; izÞ
miðtÞUi ðxÞ; (2)

where ix are x-indices in the range [1 � lx] and, iy and iz are

y- and z-indices, respectively. Here i¼ (ix, iy, iz) is a general-

ized index over three dimensions, mi(t) are time-varying

mode coefficients, and Ui(x) are eigenfunctions of the

Laplacian, given by

UiðxÞ ¼ cos
Pix
lx

x

� �
cos

Piy

ly
y

� �
cos

Piz

lz
z

� �
; (3)

for a perfectly reflecting boundary condition. In discrete

interpretation, pressure can be transformed into mode coeffi-

cients Mi at each time step by a Discrete Cosine Transform

(DCT), since the eigenfunctions are cosines. The update rule

for mode coefficients can be derived by taking a DCT of the

wave equation and solving the resultant simple harmonic os-

cillator system, giving

Mnþ1
i ¼ 2Mn

i cos ðwiDtÞ � Mn�1
i þ 2Fn

w2
i

ð1� cosðwiDtÞÞ;

(4)

where the superscript indicates the number of time steps, wi

¼ cp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
i2x=l2

x þ i2y=l2
y þ i2

z=l2z
� �q

, Fn is the DCT of force f (x, t)

at nth time step, and Dt is the size of the time step. Mode

coefficients are then transformed back into pressure by an

inverse DCT. This gives the pressure inside each rectangular

partition. The pressure is propagated across neighboring par-

titions by performing interface handling using a sixth-order

finite-difference stencil. To incorporate sound absorption at

the partition boundaries, Perfectly Matched Layer (PML)

absorbing boundary conditions are used. Currently, the ARD

FIG. 2. (Color online) Different stages of the Adaptive Rectangular

Decomposition simulator.
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simulator can handle absorption and reflection of sound

while ignoring transmission through objects. For more

details, please refer to the original texts.14,33

The ARD technique is more efficient than the FDTD

technique because of its larger grid spacing and time steps.

The grid spacing for the ARD technique is h¼ c/(�maxs),
where �max is the maximum simulation frequency and s¼ 2.6

is number of samples per wavelength. The ARD’s simulation

time step is restricted by the Courant-Friedrichs-Lewy (CFL)

condition Dt� h/(c
ffiffiffi
3
p

). In contrast, the FDTD technique

requires a much higher value of samples per wavelength

(s¼ 10 used in Taflove et al.36 or s¼ 20 used in Albert and

Liu13), resulting in much denser grid and smaller time steps.

Therefore, the ARD technique is computationally more effi-

cient and requires less memory than the FDTD technique.

This efficiency enables the ARD technique to perform 3D

wave-simulations on large, complex scenes at a higher simu-

lation frequency than FDTD can, all on a desktop computer.

The ARD technique has few intrinsic limitations. Its pri-

mary limitation is its assumption that the speed of sound is

spatially invariant. Sound speed can change spatially due to

many factors, such as temperature gradient, humidity, or

wind, and the ARD technique does not model the effect of

these factors on sound propagation. Another limitation is that

the atmospheric absorption is currently not modeled in the

simulation. Also, the simulation does not model sound trans-

mission through the objects (walls, buildings, etc). In a general

scenario, these limitations can have an effect on the quality of

the simulation results. However, in the present study, these

limitations have negligible effect on the prediction quality.

The sensors are placed at a height of 1.5 m and most of the

energy recorded at these sensors is due to the acoustic propa-

gation happening close to the ground (< 15 m). For such small

elevations, the temperature gradient of the atmosphere is neg-

ligible and therefore does not affect the speed of sound. The

wind speed is also too low (2–5 m/s) to have any significant

effect on arrival times of the acoustic pulses. Also, atmos-

pheric absorption can be safely ignored in this case, as the

simulation frequency is less than 500 Hz and the propagation

distances are on the order of hundreds of meters, for which

the intrinsic absorption of the atmosphere is negligible. As for

sound transmission, due to the very high impedance contrast

between the air and the concrete buildings, very little acoustic

energy can get transmitted through the buildings.

B. Validation

We provide validation results of the ARD technique on

two benchmark test-cases: (a) spherical wave scattering by a

rigid sphere, and (b) edge-diffraction from a right-angled rigid

wall. In the first case, the acoustic wave equation has known

analytical solution.37 The scene setup is as follows: A sphere

of radius a¼ 1 m, surrounded by air with speed of sound

343 m/s and mean density of 1.21 kg/m3, is centered at origin

(0, 0, 0). A spherical sound source (monopole source) is

placed at position (0,0,�3 m). The spherical wave emitted by

the source is scattered by the rigid sphere. The total field (inci-

dentþ scattered field) is computed using the analytical solu-

tion of the wave equation at an angular distribution of listener

positions situated at a distance of 1.5 m. The analytical solu-

tions are compared against the simulation results at different

wave numbers k as shown in Fig. 3. The results are plotted

versus the polar angle h, where h¼ 180� corresponds to the

front end of sphere with respect to the incoming spherical

wave. The comparisons between the analytical expressions

and the ARD simulation results show very good agreement.

In the second case, we perform validation of the ARD

technique by comparing it against the edge diffraction model

proposed by Svensson et al.38 This model is an extension of

Biot-Tolstoy-Medwin solution39 to finite edges. The scene

setup is as follows: A right-angled rigid wall of dimension

8 m� 12 m is considered, with the longer edge being the dif-

fraction edge. Source and receiver are placed at symmetric

positions with respect to the wall at (�1.8 m, �0.9 m,

�6.0 m) and (0.9 m, 1.8 m, �6.0 m), respectively. The time-

and frequency-domain responses are computed using the

BTM finite-edge diffraction model and compared against the

results of the ARD simulation. As shown in Fig. 4, the agree-

ment between the two responses is very good.

C. Simulation parameters

The source function used to model the explosive blast

signal for calculations in the ARD simulator is described in

Liu and Albert (2006).11 Figure 5 shows the corresponding

source function with peak pressure normalized to 1.

In order to run 3D numerical simulation, a virtual 3D

model of the scene is required. However, a detailed 3D model

cannot be constructed due to the lack of availability of archi-

tectural blueprints or a laser-scanned point cloud of the site.

Therefore, we construct a simplified 3D model of the scene

using a 2D layout of the village, photographs, and the heights

of corners and rooftops of buildings. This 3D model is an

approximation to the actual geometry of the scene, since it

lacks particular geometric details (peaked roofs, door/window

locations, facade details, and extraneous geometry such as

cars and a fountain). The dimensions of the simulation domain

are 175 m� 140 m� 14 m. The heights of the buildings are

between 6–9 m. Therefore, depending on the building, a verti-

cal space of 5–8 m exists between the top of the roof and the

top of the simulation domain (excluding PML), allowing cor-

rect simulation of rooftop diffraction. Figure 1(b) is a textured

rendering of the 3D model. Based on the type of material

present (e.g., concrete, grass, soil, etc.), we assign the appro-

priate absorption coefficients to the surfaces of the 3D model.

The ARD simulation was run with an acoustic wave ve-

locity of 375 ms�1 and an air density of 1.2 kg m�3. The high

value for the acoustic wave velocity comes from the propaga-

tion of the high-amplitude acoustic pulse generated by the C4

explosive used as the sound source. In the case of concrete,

the acoustic wave velocity is 2950 ms�1 and density is 2300 kg

m�3, which results in a reflection coefficient of 0.99 for con-

crete. These parameters correspond to the values used in

Albert and Liu (2010)13 for the finite-difference simulation.

We run the ARD simulator to propagate the acoustic

pulse from each given sound source position, one by one. We

record the responses at the specified receiver positions and

compare the results with the recorded measurement data.
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D. The 3D vs 2D wave simulation

We discuss the advantages of the 3D wave simulator

over the 2D wave simulator for acoustic pulse propagation.

First, a 3D wave simulation incorporates propagation paths

over the top of walls or buildings, as well as wave diffraction

from the upper edges, both of which are completely ignored

by a 2D simulation. Second, in 3D simulation, the sound

reflection from the ground terrain is handled accurately for

all frequencies. For a 2D simulation, the pressure is simply

doubled to approximate ground reflections, which is accurate

only for frequencies up to 600 Hz, as discussed in Liu and

Albert (2006). Last, the results of a 2D simulation must be

renormalized by an additional factor of 1/
ffiffi
r
p

to account for

3D geometric spreading. This normalization is valid only for

large kr (where k is the wave number and r is distance to the

source). A 3D simulation requires no such normalization.

V. RESULTS

In this section, we compare the waveforms calculated

by the ARD simulator with the measurements recorded in

the village and with the waveforms calculated by the 2D

FDTD simulation proposed by Albert and Liu (2010).

A. Simulation

The ARD simulations were run for the four source posi-

tions, SP1 to SP4, shown in Fig. 1(a). The parameters used

FIG. 3. (Color online) Validation of the ARD simulation results (dots) with analytical expressions (curves) for the scattering of a spherical wave by a rigid

sphere. Normalized pressure is plotted in the radial axis. The radius of the sphere a¼ 1 m and wave numbers k considered are 0.7 m�1, 1.4 m�1, and 2 m�1,

respectively.
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in the simulator are given in Table I. The total simulation

time for each source was 20 min for the CPU-based ARD

implementation14 and 1–2 min for the GPU-based ARD

implementation.33 The CPU-based implementation is in Cþþ
and the GPU-based implementation uses NVIDIA’s CUDA.

These timing results were measured on a single core of a 4-

core 2.80 GHz Xeon X5560 desktop machine with 4 GB of

RAM and on a NVIDIA GeForce GTX 480 GPU with 448

CUDA cores and 1.5 GB memory.

The ARD responses were computed for four source posi-

tions, up to a maximum frequency of 450 Hz. The measured

waveforms were low-passed to 450 Hz for source positions 2

and 3 to compare with the calculated ARD waveforms. For

source positions 1 and 4, both the ARD and the measured

responses were low-passed to 200 Hz, since the 2D FDTD

waveforms are available only up to 200 Hz. In this scene, the

simulation frequency is less than 500 Hz and the propagation

distances are on the order of hundreds of meters, for which the

intrinsic absorption of the atmosphere is negligible. Therefore,

we have ignored atmospheric absorption during the simulation.

Figure 6 shows the visualization of the time-domain

ARD simulation at specified time steps. These visualizations

show the propagation of wave fronts in the scene and how

they are modified by the multiple reflections and diffractions

from the buildings, and reflections from the ground. These can

be helpful in guiding engineering modifications to the scene.

B. Varying propagation speed

In the training village scene considered in this study, the

sound source used is a C4 explosive. The high-amplitude

explosion caused by this source generates a varying sound-

speed profile. Figure 5 in Albert and Liu (2010) shows the

measured values: Over 400 m/s a meter or two away and

FIG. 4. (Color online) Time and frequency responses produced by the Biot-

Tolstoy-Medwin diffraction model (reference) and the ARD simulation for a

right-angled rigid wall. Grid spacing h used in the ARD simulation is given

by h¼ c/(�maxs) where c is the speed of sound, �max is the simulated fre-

quency, and s is samples per wavelength (s¼ 2.6 for ARD).

FIG. 5. The source pulse used for modeling the blast signal produced in the

experiment as calculated from Eq. (5) (Liu and Albert, 2006) (Ref. 11).

TABLE I. Parameters for the ARD technique.

Parameters Values

Simulation frequency 450 Hz

Grid size 175 m� 140 m� 14 m

Grid spacing 0.31 m

# Grid points 11 million

Time step size 385 ls

# Time steps 2000

Simulation length 0.77 s

FIG. 6. Calculated acoustic response for the source position SP1 in the artifi-

cial village scene using the ARD technique. Simulated wavefields are shown

at times t¼ 75, 150, 225, and 300 ms.
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375 m/s at about 20 m distance. The speed varies with the

amplitude of the traveling pulse, reducing with distance.

To make things more complicated, the amplitude of a wave

that diffracts around a building corner is reduced, and that

diffracted wave travels slower than waves at the same propa-

gation distance that are in line-of-sight paths. This generates

a complicated wave-speed profile that is harder to model.

The measured waveform’s peak arrival times can differ from

those of the calculated waveforms, which assume a constant

speed of sound. The individual peaks can also get stretched

due to decreasing wave speed in the measured waveforms.

There are complicated changes in acoustic wave speed even

for different waves at the same location.

As in the 2D finite difference simulation of Albert and

Liu (2010),13 our 3D ARD simulation does not allow us to

track the changes caused due to amplitude. To do that cor-

rectly, one would have to either follow the individual wave-

fronts or modify the code to explicitly include non-linear

effects. Instead, we chose a constant wave speed to get the

best waveform fits when compared with the measured data.

Also, similar to Albert and Liu (2010),13 we time-shift the

response of the linear simulation to align the first arrival

peak with the measured waveform. In addition to that, we try

to account for these kinematic errors due to the varying

sound speed with the “robust” error metric discussed later.

C. Error metrics

1. Basic error metric

In order to perform a quantitative comparison of the

measured and the calculated waveforms, two types of error

metrics are used in the comparison: The spectrogram differ-

ence metric and the average dB error metric. The spectro-

gram difference metric (SDM) is computed on the

spectrograms SPEC of the time-domain pressure signals

af gN
i¼1 and bf gN

i¼1:

SDMða; bÞ ¼

XM
j¼1

XT

k¼1

kSPECðaÞjk � SPECðbÞjkk
2

XM

j¼1

XT

k¼1

kSPECðaÞjkk
2

; (5)

where M¼ {N/2 if N is even or N/2þ 1 if odd} and T is the

number of time segments in the spectrogram.

The average dB error metric (ADM) is computed on the

pressure signals in the dB scale fdBðaÞgN
i¼1 and fdBðbÞgN

i¼1

as follows:

ADMða; bÞ ¼
XN

i¼1

kdBðaÞi � dBðbÞik=N: (6)

2. Robust error metric

The error metrics defined above are very sensitive to the

time of arrival in the waveforms. In scenarios where the speed

of sound is constant, these metrics perform well. However, in

this case, where the speed of sound varies as discussed in Sec.

V B, the arrival times can be off by a few milliseconds.

Though this small time-shift might not cause a big difference

in individual waveform characteristics, such as shape, fre-

quency content, etc., it can generate a large error with these

error metrics. Although it would appear that regular cross cor-

relation could remedy this situation, it will match the peak ar-

rival but will misalign the rest of the measured waveform.

We propose changes to the above error metrics that will

make them more robust to the small time-shifts and peak

stretching caused by varying sound speeds. Our proposed

change is based on the idea of Dynamic Time Warping

(DTW), which is a standard tool in signal-processing com-

munity to handle non-linear transformations in the time axis.

In the DTW technique, the two input time signals are

allowed to shift, stretch, or contract in a limited manner to

generate the optimal match between the signals. This tech-

nique has been widely used in the areas of speech process-

ing,40 acoustics,41 bioinformatics,42 and medicine.43

In our proposed solution, we align the first arrival peaks

of the calculated and measured waveforms. This removes any

time-shift before the arrival of the first peak. Next, we take

these signals and apply the DTW technique to align the

remaining part, thus taking into account small time shifts and

stretching. Finally, the above error metrics are applied to these

aligned signals to give a quantitative measure of the error; we

define at the same time the confidence we have in the resulting

measure. The confidence measure is based on the intuition

that the less warping required to align the signals, the more

confidence we have in the similarity of the signals.

Confidence ¼ ð1� dw=loÞ � 100 ðin percentÞ;

where dw ¼ jlw � loj is the difference in the length of the

warped signal lw and the original signal lo. For all results

shown in this paper, we allow a warping length change of only

5%–10%, resulting in a confidence measure of 90%–95%.

D. Comparison with measurements in time domain

In this section, we compare the waveforms calculated

using the ARD simulation with the measured waveforms for

different source and receiver positions. Note that waveform

modeling requires a strong agreement between the amplitudes

and phases of the calculated and measured waveforms, making

it a stringent test for any acoustic pulse propagation technique.

Figure 7 compares the ARD waveforms and the measure-

ments for the source SP2 and the receiver positions. The upper

traces in each panel correspond to the calculated ARD wave-

forms, and the lower traces correspond to the measurements.

The source is located to the left of the narrow street canyon

formed between buildings A and E [see Fig. 1(a)]. For all the

line-of-sight (LOS) positions (R01 thru R06), we get an excel-

lent match between the calculated and measured waveforms for

the direct sound (first arrival) and the subsequent reflections.

The main characteristic of LOS responses is the strong first ar-

rival which dominates the signal, followed by (comparatively)

weaker reflections. For receivers very close to the source (R01

thru R04), the high amplitude of direct sound completely domi-

nates the later reflections, whereas for receivers far away (R05,

R06), the reflections have considerable energy.
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For non-line-of-sight (NLOS) positions, the waveform

characteristic is position dependent and more complex. In

the case of receiver R20, the propagation paths mainly con-

sist of diffraction around and from the top of building E. For

receiver R08, the diffracted first arrival is followed by high-

order reflections from buildings C, H, D, and I. In the case of

receiver R15, diffracted arrivals around and from the top of

buildings A and B are followed by high-order reflections and

diffractions from A, F, and B. Similarly, for R09, the first ar-

rival corresponds to diffraction from the rooftop of building

A followed by high-order reflections and diffractions from

buildings A and E. For receivers R17 and R18 the first ar-

rival is via diffraction, followed by multiple reflections

trapped between buildings F and G. In the case of R17, the

diffraction angle is 10�–15�, resulting in a high amplitude

diffraction peak; in R18, by contrast, the diffraction angle is

90�, which results in a low amplitude diffraction peak.

As can be seen in Fig. 7, the calculated waveforms

incorporate all the features and match with the measured

waveforms to a high degree of accuracy. The biggest mis-

match between the waveforms is for sensor R12, which is a

NLOS position around the corner of the building A on Main

Street. In this case, the ground floor room at the corner had

two open windows facing Main Street and one open window

around the corner, between Main Street and the sensor at

R12. This resulted in a shorter path through that room to the

sensor for sound coming from source positions SP2. This is

probably what can be seen before the large arrival, which

presumably diffracted around the building corner itself. The

open windows had no glass at all and were about 2 ft� 4 ft

in area, so this small size (compared to a wavelength of

about 7 m at the source) would reduce the amount of energy

traveling on that shorter “indoor” path. Some of the addi-

tional high frequency arrivals later on in the measured wave-

form may be caused by reverberation inside that room.

Because of lack of availability of window-position data,

these were not included in the virtual 3D model constructed

for the ARD simulation. Therefore, these early arrivals are

not modeled in the simulation results. The same behavior is

observed at receiver R12 for source positions SP1 and SP3.

In terms of the basic error metric (not shown in the fig-

ure), the highest value for this source simulation occurs at re-

ceiver R18 (basic SDM error¼ 1.67) due to a decrease in the

wave speed after the first diffraction from building F. This

causes subsequent strong reflection from the opposite build-

ing G to arrive much later in time than the calculated wave-

form (which assumes a constant sound speed 375 ms�1).

This time stretching cannot be modeled by a constant time

shift applied at the beginning of the signal. Thus, the meas-

ured waveforms for R18 appear to be the stretched equiva-

lents of the calculated waveforms; this results in a higher

error using the basic metric. The DTW-based robust error

metric takes this stretching into account, correctly predicting

a low error as shown in the figure. Similar behavior can be

observed for receivers R16 and R17.

In Fig. 8, we perform the same comparison between cal-

culated and measured waveforms for the source position

SP3. All the LOS positions (R01 to R06, and R20) exhibit

excellent matches between the calculated and measured

waveforms. For NLOS positions involving first-order dif-

fraction (i.e., R09), the calculated responses incorporate dif-

fraction paths from both around and on top of the buildings

to generate the correct waveform. For R08, the first diffrac-

tion arrival is weaker than the later reflection; this behavior

is correctly modeled by the calculated ARD response. As

described before, the measured waveforms at receivers R16,

R17, R18 get stretched in time by the variable acoustic

speed; this stretching results in high error with the unwarped

metric and low error with DTW-based metric. Aside from

sensor R12, the biggest mismatch between the waveforms is

for receiver R15, for which the calculated waveform shows

two distinct peaks, as compared to only one peak for the

measured waveform. One possible explanation is that the

FIG. 7. Waveforms calculated by the 3D ARD simulator (upper) and the

measured data (lower) in the artificial village for source position 2 at 14 re-

ceiver positions. All the waveforms have been individually normalized and

low-passed to the maximum frequency of 450 Hz. The error between the 3D

ARD simulation and measurement has been calculated using the DTW-

based SDM and ADM metric.
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arrival times between the two diffraction peaks shown in the

calculated response is smaller in the real scene due to vary-

ing speed of sound, resulting in a constructive interference

and peak merging in the measured waveform.

E. Comparison with 2D FDTD

In this section, we compare the calculated ARD and

FDTD waveforms to the measured waveforms for two source

positions, SP1 and SP4. The ARD waveforms are calculated by

running a 3D simulation on the 3D model. The FDTD wave-

forms are calculated by running a 2D finite-difference simula-

tion on a 2D grid as described in Liu and Albert (2006).11

Figure 9 shows the calculated and measured waveforms

for the source position SP1 and its receiver positions. The

upper trace in each panel correspond to the calculated ARD

response, the middle trace to the measured waveform, and

the lower trace to the calculated FDTD response. At LOS

positions (R01 to R06), the dominant propagation happens in

the XY plane containing the sources and receivers.

Therefore, the waveforms calculated using the 3D ARD sim-

ulation and the 2D FDTD simulation match equally well to

the measured waveforms. The main difference between a

fully 3D and a 2D simulation arises in cases where the sound

waves diffract over the rooftops of the buildings, resulting in

shorter propagation paths and higher energy (as illustrated in

Fig. 10). For receiver R09, the diffraction path from the top

of building A is the shortest path and corresponds to the first

FIG. 8. Waveforms calculated by the 3D ARD simulator (upper) and the

measured data (lower) in the artificial village for source position 3 at 14 re-

ceiver positions. All the responses have been individually normalized and

low-passed to the maximum frequency of 450 Hz. The error between the 3D

ARD simulation and measurement has been calculated using the DTW-

based SDM and ADM metric.

FIG. 9. Waveforms calculated by the 3D ARD simulations (upper), 2D

FDTD simulations (lower), and the measurement data (middle) in the artifi-

cial village for source position 1 at 14 receiver positions. All the responses

have been individually normalized and low-passed to the maximum fre-

quency of 200 Hz. The error between the 2D FDTD simulation and mea-

surement (dashed line) and 3D ARD simulation and measurement (solid

line) has been calculated using the DTW-based SDM and ADM metric.
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arrival. This shortest path is modeled correctly by the 3D

ARD simulation. In the case of receiver R20, the secondary

arrival peak corresponds to the rooftop diffraction path,

which is missing in the 2D simulated waveform. For receiver

R15, the energy from rooftop diffraction paths is missing

from the 2D simulation but not from the 3D simulation.

Therefore, for these NLOS cases, the 3D simulated wave-

forms match far better with the measured waveforms than

the waveforms from the 2D simulation.

In Fig. 11, we do a similar comparison for source posi-

tion SP4. This source is positioned outside the main village

compound, and most of the receiver positions are NLOS.

The only LOS position is receiver R20, where both the cal-

culated waveforms match well with the measured wave-

forms. For NLOS positions, the measured waveforms are

again stretched as compared to the calculated waveforms, as

discussed before. The speed of sound reduces significantly

after diffraction, resulting in high-order propagation peaks to

arrive later in the measured waveforms than in ARD and

FDTD waveforms (which assume constant speed of sound).

In the case of receivers R04 to R06 and R15 to R18, the cor-

rect modeling of rooftop diffraction with a 3D simulation

(ARD) results in a better match with the measured wave-

forms. The 2D FDTD simulation ignores these paths, result-

ing in a lower first-arrival energy than in the measured data.

The measurement data for receiver position R1 is not avail-

able for the source position SP4. As described in Albert and

Liu (2010), this location was still fitted with the high-pressure

blast sensor from the previous measurement, when it was

measuring the pressure from the nearby explosive charge at

SP1. This high-pressure sensor was unable to detect the low-

pressure waveform produced by the distant source SP4.

F. Comparison with measurements in spatial domain

One of the primary advantages of a time-domain wave

simulation (FDTD or ARD) is the ability to save snapshots

of the pressure field at any time step in the simulation. These

snapshots can be assembled into a movie to elucidate wave-

field evolution in time as the acoustic pulse travels through

the environment. This movie can serve as a useful tool for

studying in detail the complex wave-interactions involved in

the acoustic pulse propagation.

As an example, wave-field snapshots validate the pres-

ence of rooftop diffraction paths in both measured and 3D

ARD waveforms for sensor R09 and source SP1 (see Fig.

12). In Fig. 10 (upper trace), the first arrival for 3D ARD and

measured waveforms happens at t¼ 61 ms. The wave-field

snapshot in Fig. 12 at t¼ 61 ms shows that the corresponding

propagation path is a rooftop diffraction path from the top of

building A, followed by a diffraction from the side of the

building at t¼ 69 ms. The 2D FDTD simulation cannot

FIG. 10. Comparison between the calculated and measured waveforms for

the source position SP1 and receiver R09 behind building A. The upper trace

(solid line) corresponds to the 3D ARD waveform; the lower trace (solid

line) corresponds to the 2D FDTD waveform. The measured waveform is

drawn as dotted line. Note that the 2D FDTD simulation cannot model the

diffraction path from the building’s rooftop resulting in the missing first ar-

rival at 60 ms.

FIG. 11. Waveforms calculated by the 3D ARD simulations (upper), 2D

FDTD simulations (lower), and the measurement data (middle) in the artifi-

cial village for source position 4 at 14 receiver positions. All the responses

have been individually normalized and low-passed to the maximum fre-

quency of 200 Hz. The error between the 2D FDTD simulation and mea-

surement (dashed line) and 3D ARD simulation and measurement (solid

line) has been calculated using the DTW-based SDM and ADM metric.
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model 3D rooftop propagation paths and misses the energy

corresponding to this path. Late arrivals in the waveform

correspond to high-order reflections between building A and

E that get diffracted around the side or the rooftop of build-

ing A before reaching the sensor. These correspond to peaks

at t¼ 83, 104, and 177 ms, which are marked by circles on

top the waveforms in Fig. 10. These peaks are correctly

modeled by the 3D ARD simulation, as shown by the wave-

field snapshots for these times in Fig. 12. The wave-field

snapshots and movies can thus provide a more thorough

understanding of acoustic pulse propagation.

Figure 13 shows the variation of error with distance

between the source-receiver positions. The error seems to be

independent of the source-receiver distance. Note that error

values are much higher for source position SP4 than others.

This is due to the presence of more NLOS positions in SP4,

which typically have more complex propagation characteris-

tics than LOS positions. The top three sensors with consis-

tently high errors across all sources are R12, R16, and R15.

As discussed before, R12 has high errors due to open win-

dows in building A, resulting in shorter propagation paths

that are not modeled in the simulation. As for sensor R16

and R15, these are NLOS positions for all sources, which

typically have higher errors.

VI. CONCLUSION, LIMITATIONS, AND FUTURE WORK

In this paper, acoustic pulse propagation results are pre-

sented for a large urban environment in three dimensions. The

results of the 3D simulation provide better agreement with the

measured data than the 2D simulation, especially in cases

where rooftop diffraction is involved. This technique enables

acoustic propagation in a large three-dimensional scene with a

broad frequency range on a desktop computer.

In future, we would like to explore the acoustic pulse

propagation in three dimensions in the kHz range. This would

require a very accurate geometric description of the scene

(submeter accuracy) and parallelization of the ARD technique

on a computer cluster. Second, we plan to investigate the ben-

efit of a full 3D simulation for time reversal processing5 to

compute the source location given the recorded waveforms at

sensor positions. Last, we also plan to study the transmission

of sound through buildings to determine the noise levels

inside the buildings from exterior sources.
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