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Abstract—Traffic congestion is a perpetual challenge in
metropolitan areas around the world. The ability to understand
traffic dynamics is thus critical to effective traffic control and
management. However, estimation of traffic conditions over a
large-scale road network has proven to be a challenging task for
two reasons: first, traffic conditions are intrinsically stochastic;
second, the availability and quality of traffic data vary to a great
extent. Traditional traffic monitoring systems that exist mostly
on major roads and highways are insufficient to recover the
traffic conditions for an entire network. Recent advances in GPS
technology and the resulting rich datasets offer new opportunities
to improve upon such traditional means, by providing much
broader coverage of road networks. Despite that, such data are
limited by their spatial-temporal sparsity in practice. To address
these issues, we have developed a novel framework to estimate
travel times, traversed paths, and missing values over a large-
scale road network using sparse GPS traces. Our method consists
of two phases. In the first phase, we adopt the shortest travel time
criterion based on Wardrop’s Principles in the map-matching
process. With an improved travel-time allocation technique, we
have achieved up to 52.5% relative error reduction in network
travel times compared to a state-of-the-art method [1]. In the
second phase, we estimate missing values using Compressed
Sensing algorithm, thereby reducing the number of required
measurements by 94.64%.

Index Terms—Travel Time Estimation, Map Matching, Com-
pressed Sensing, GPS Data, Sparsity

I. INTRODUCTION

Traffic is ubiquitous in modern cities, and it impacts the so-
cial, economic, and environmental development of the world.
Ever-present gridlock and congestion challenge transportation
researchers and urban planners. According to the 2015 Urban
Mobility Scorecard [2], traffic congestion causes an extra 6.9
billion travel hours and 3.1 billion gallons of fuel consumption
in a year. The congestion costs are approximately $160 billion
in the United States, more than £13 billions in the United
Kingdom, and over one trillion dollars worldwide. As more
and more metropolitan areas around the world experience
increasingly severe traffic conditions, the ability to analyze and
understand traffic dynamics is becoming ever more crucial.

Traditionally, measurements of traffic states are collected
through dedicated sensors such as loop detectors and video
cameras [3]. While these sensors produce relatively accu-
rate measurements, the high expenditures for installation and
maintenance prevent them from being deployed over a large
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network and cause them to be used in limited locations on
major roads and highways. Consequently, the lack of sensing
infrastructure for arterial streets—which comprise the majority
of a city—has made the traffic monitoring task substantially
more difficult.

So far, dispersed probe vehicle reports (i.e., GPS traces)
are the most promising data source in estimating citywide
traffic dynamics. However, such data are of limited usefulness
for two reasons: first, inevitable errors in measurement and
transmission often yield reported locations off the road; sec-
ond, due to energy and privacy concerns, GPS data commonly
have a low sampling rate, meaning that the time gap between
consecutive reports is large (e.g., > 30s), and a low penetration
rate, meaning only a small portion of the traffic population is
participated in sending reports.

Together these features introduce a large degree of uncer-
tainty to the data. In order to accurately infer traffic dynamics
from such noisy measurements, several steps are required.
First, off-the-road GPS points need to be mapped onto the
road network, and the probes’ true traversed paths need to be
identified. This process is called map-matching. Second, the
time taken to travel each road segment must be accurately
estimated. Because of the low sampling rate, the identified
path between two nearby GPS points is likely to cover multiple
road segments, and only the aggregate travel time (i.e., the dif-
ference between GPS timestamps) is known. Consequently, the
aggregate travel time needs to be decomposed and distributed
to individual road segments. These operations are performed
in travel time allocation. Third, in order to understand the full
traffic dynamics of a road network, traffic data are needed over
longer periods of time for each road segment. However, GPS
data often do not provide complete temporal coverage for a
road segment. In particular, they are scarce in the late night
and early morning hours. Currently, the missing information
is filled in through missing value completion.

Many efforts have been made towards alleviating the afore-
mentioned problems over the recent years. To be specific,
in reference to map-matching, the data’s low sampling rate
introduces problems; two consecutive reports are likely to be
spatially far apart, and there may be many paths connecting
the two reports in a complex urban environment, making the
identification of the true traversed path difficult. To alleviate
this issue, many approaches have been proposed that use the
shortest-distance criterion [1], [4], [5], [6], [7], [8]. While the
shortest-distance assumption is viable when a road network
is under or close to the free-flow condition, this assumption
induces bias in a congested environment, where other paths
can be traveled in a shorter time than the shortest-distance
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Fig. 1: Overview of the system pipeline. Map Matching and
Travel Time Allocation are applied to individual time intervals.
Missing Value Completion is performed over all time intervals.

path. Once introduced, this bias will be carried over to the
subsequent step (i.e., travel time allocation), deteriorating the
estimation accuracy.

We have developed a novel framework to estimate citywide
traffic dynamics based on two observations: 1) Traffic patterns
exhibit weekly periodicity [9], and 2) traffic conditions are
quasi-static [6]. Based on these observations, we examine
traffic dynamics over the period of a week and treat traffic con-
ditions within that weekly period (the discretized time interval)
as static. Our framework consists of two phases. The first phase
is conducted in each individual time interval and the second
phase is performed over all time intervals. Algorithmically, in
the first phase, based on Wardrop’s Principles [10], we use the
shortest travel time instead of the shortest distance criterion to
perform map matching. Along with a travel-time allocation
technique adapted from [11], a novel computation scheme is
designed to reconstruct the velocity field of a road network. In
the second phase, exploiting the sparsity embedded in traffic
patterns, we have developed a novel method based on the
Compressed Sensing [12], [13] algorithm to fill in missing
travel information over an entire traffic period. The overview
of our framework pipeline is shown in Figure 1.

The effectiveness of our approach has been extensively
evaluated and compared to a state-of-the-art method, using
a synthetic road network and traffic data from the city of
San Francisco. The results demonstrate major improvements
over existing methods in various steps during the estimation
process. In summary, our contributions include:
• A novel perspective in addressing map-matching of sparse

GPS traces and an improved travel time allocation tech-
nique that incorporates estimated traffic conditions;

• An efficient method for estimating missing travel infor-
mation by exploring sparse structures embedded in traffic
patterns;

• Extensive analysis of our method’s performance and
comparison of our method to existing methods under
various traffic scenarios.

The rest of paper is organized as follows. In Section II, we
discuss related work and highlight the differences between our
work and existing studies. In Section III, we take a holistic
view of map matching and travel time allocation problems,
and detail the process of reconstructing the velocity field of
a road network. In Section IV, we explain our method on
estimating missing travel information; In Section V, we show
estimated traffic dynamics of San Francisco and analyze key

features within the recovered traffic pattern. We conclude with
a discussion of future work in Section VI.

II. RELATED WORK

Over the last few decades, the estimation of traffic con-
ditions has gained increasing scholarly attention [14], [15],
[16], [17], [18], [19]. Early works on traffic estimation have
studied traffic states on highways using relatively accurate
measurements from stationary sensors such as loop detectors
and video cameras [3]. Recent advancements have focused
on combining multiple data sources and traffic simulation
models [20], [21], [22], [23], [24], [25] to achieve highly
accurate estimations. However, these previous methods are
limited to road segments with lengths of a few kilometers.
The increasing availability of GPS data provides new means
for conducting large-scale estimations. However, as GPS data
are inherently noisy, the estimated traffic conditions usually
do not satisfy the flow conservation requirement assumed by
many simulation models [26], [27], [28]. Consequently, new
studies are emerging and these studies commonly take several
steps to perform the estimation.

To utilize GPS data in estimation of traffic dynamics, the
first step, map-matching, addresses the problem of mapping
off-the-road GPS points onto a road network and identifies
the true traversed path between consecutive GPS points.
However, GPS data has a low sampling rate, meaning that
two consecutive GPS reports could come from two spatially
distant locations. Given a complex urban network, many paths
connecting the two reports could exist. In order to determine
the “actual" traversed path, a common approach is to use the
shortest-distance criterion [1], [4], [5], [6], [7], [8]. Nonethe-
less, the shortest-distance assumption gives rise to bias in a
congested environment, where alternative paths can be traveled
faster than the shortest-distance path. Essentially, the shortest-
distance criterion only uses the spatial information (i.e., longi-
tude and latitude), and ignores the temporal information (i.e.,
timestamps) recorded in GPS data. This happens primarily due
to the travel times for road segments of a network are largely
unknown so that the temporal information has nothing with
which to be compared [29], [30].

After map-matching is completed, travel time must be
estimated, and this estimation has been approached in various
ways. For example, Hellinga et al. [11] have developed an
analytical solution to estimate travel times of road segments
using intuitive and empirical observations of traffic patterns.
Rahmani et al. [31] take a non-parametric approach, perform-
ing the estimation using a kernel-based method. Probabilistic
frameworks are also often used to conduct the estimation [32],
[33], [34], [35], [36]. While significant improvements in traffic
estimation have been achieved, these previous methods all do
the steps sequentially, meaning that limitations of the map-
matching process constrain the accuracy of subsequent steps
and reduce these methods’ overall accuracy and performance.

Researchers have also proposed solutions to the missing
value completion problem. For example, tensor-based ap-
proaches [37], [38] that explore correlations among nearby
road segments have been developed. In [39] and [40], Com-
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pressed Sensing–based algorithms have been proposed by tak-
ing the entire network into account. The estimation of missing
values has also been addressed in an online fashion [41].
However, these methods were not tackling the problem of
estimating full traffic dynamics of individual road segments
and aggregately an entire city network, in which subject little
progress has been made [9].

III. TRAFFIC VELOCITY FIELD RECONSTRUCTION

We take a holistic view of the map-matching and travel time
allocation problems and propose a method to reconstruct the
velocity field of a road network. Starting with some definitions,
we then discuss methodologies and implementation details of
our approach. Our algorithm is evaluated and validated using
a synthetic road network with microscopic traffic simulations.

A. Definition and Notation

A road network is defined as a directed graph G = (V,E)
in which edges E denote road segments and nodes V rep-
resent intersections and terminal points. Each road segment
e ∈ E contains several attributes: the length e.len, the
maximum/free-flow travel speed e.vmax , the minimum/free-
flow travel time e.tmin =

e.len
e.vmax

, and the maximum/jam
density e.kmax .

A path from node g to node h on a network g
p
{ h is a

collection of road segments p = {e1,e2, . . . ,en }, where g is the
starting node of e1 and h is the ending node of en . A trace is
a sequence of GPS points S = {s1, s2, . . . , sn } in which each
point is a tuple si =< si .x, si .y, si .t > containing longitude,
latitude, and a timestamp.

B. Velocity Field Estimation

Given the periodicity of traffic patterns over a week [9], we
study traffic dynamics over the region of interest in a weekly
period. We discretize one week into many time intervals, and
assume that traffic conditions remain the same within a time
interval. For simplicity, we restrict our discussion of estimating
the velocity field to one time interval. The process can be
trivially extended to cover an entire traffic period.

Ideally, if the actual traversed path of a vehicle is known
and the generated GPS points are exactly on the road, we can
derive the average travel speed of a path p that connects GPS
points si and si+1 as p.t =

∑
e∈p e.len

si+1 .t−si .t
. However, GPS points

are often off-the-road due to inherent measurement and sensing
errors, and the underlying path of a vehicle is also unknown.
To address these issues, first, a number of candidate nodes of
the network are considered for mapping a GPS point based on
their distances to the point. Then, one of the paths connecting
a pair of candidate nodes of consecutive GPS points is selected
to represent the actual path. As mentioned earlier, one common
approach for choosing such a path is based on the shortest
distance criterion [1], [4], [5], [6], [7], [8], which fails in some
situations (see Figure 2).

According to Wardrop’s Principles [10], the traffic in con-
gested networks would move in a way such that no vehicle
can reduce its travel cost by switching routes. This state is

Fig. 2: An example illustrating a failure using the shortest
distance criterion on map matching trace S to T1, T2, or T3.
By matching travel time of trace S and road conditions, the
correct path T1 is identified (left). By using only the shortest
distance criterion, S is mismatched to T3 (right).

called user equilibrium, and is a result of every user non-
collaboratively attempting to minimize the traveling cost—
which commonly appears to be the travel time. Under such
an equilibrium state, the average travel time is balanced for
all users of the network.

Assumption: Based on these principles and the observation
that modern GPS largely adopts the fastest route planning
strategy, we assume all GPS traces are planned using the
shortest travel time criterion.

Denoting the network with true traffic conditions as Gtrue ,
all GPS traces represent the fastest routes planned on Gtrue .
However, as we don’t have Gtrue , our goal is to use available
GPS traces and an initial road network Gest , with all road
segments set to their speed limits, to estimate Gtrue or, in
other words, to reconstruct the velocity field of Gtrue .

Collorary 1: A GPS trace with travel time t matching a path
g

p
{ h implies that no path in Gtrue from g to h has a travel

time smaller than t.
Proof: By our Assumption above, the traffic along every

traveled route between g and h in Gtrue is in user equilibrium,
and all routes have equivalent travel times. A travel time value
for one path between g and h thus provides a lower bound for
the travel times of all paths.

Collorary 2: A pair of GPS points from a trace matched to
locations g and h are sufficient to bound the travel time for
paths between g and h.

Proof: By the Assumption, the path indicated by a GPS
trace is a time-optimal path. Therefore, it has an optimal
substructure. A subset of two is thus time-optimal and can
provide a bound on the travel time for paths from g to h.

As Collorary 2 implies, during reconstruction of the velocity
field we can inspect two consecutive GPS points at a time
(optimal substructure). Considering two arbitrary GPS points
si and si+1, the true path si

ptrue
{ si+1 is the fastest path

between si and si+1 on Gtrue . By Collorary 1, the travel time
ptrue .t = si+1.t− si .t is the lower bound of all travel times be-
tween the two points. Subsequently, we enforce the constraint
that no path in Gest between si and si+1 has a smaller travel
time. If such a path pest exists, the speeds of the road segments
on pest should be decreased utill pest .t ≥ ptrue .t. We refer to
such pest as an overestimated path as its speed is higher than
it should be. In practice, pest connects candidate nodes of si
and si+1 rather than si and si+1 themselves, and there exists
a set of paths {pest }all for si and si+1, in which one is the
“closest" to ptrue . Denoting an arbitrary element in {pest }all
as pest , ptrue , and pest are likely to contain different sets of
road segments. If pest and ptrue happen to be the same path,
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Fig. 3: An illustration of the relaxation process of two traces
S1 and S2. The actual traffic conditions and trace matching
results are shown in the top left panel. The inputs listed
in the top right panel contain the initial network and trace
information (i.e., sources, targets, and travel time). After
relaxation of trace S1, paths T1 and T3 have their travel time
increased from the minimum value to S1.t. While S1 can be
matched to either T1 or T3, the situation is resolved after
relaxation of S2 due to further increase in travel time of the
road segment e.

then pest .t should be equal to ptrue .t, otherwise pest .t should
be larger than ptrue .t. Since there is no further information
for us to estimate the excessive time of pest .t over ptrue .t,
we take a conservative approach by setting pest .t = ptrue .t.
We refer to this process of removing overestimated paths in
{pest }all as relaxation.

The relaxation will make all paths in {pest }all have the
same travel time (i.e., ptrue .t). However, it is very difficult
to deterministically derive the “closest" path to ptrue .t using
a single GPS trace. To remedy this issue, we rely on the
“collective intelligence" of multiple GPS traces with shared
road segments. As these segments will get gradually updated
during relaxation of each GPS trace, they will eventually assist
in differentiating the paths that include them from other paths
in terms of the travel time. An illustration of this process using
the travel time as measurements can be found in Figure 3. The
relaxation is essentially a fulfillment of Wardrop’s Principles,
and is conducted in a greedy fashion: we repeatedly extract
the fastest path in {pest }all and relax it, until no path in
{pest }all has its travel time smaller than ptrue .t. Given that
there may exist many paths connecting two nodes in a network,
the number of elements in {pest }all could be large, which
further leads to an expensive computation. A sub-network
with a specified radius is extracted from the network, which
encompasses si , si+1, and their mapping candidates but no
more. With this approach, we greatly reduced the number of
paths in {pest }all . The rationale behind this choice is through
empirical findings that a vehicle rarely takes an opposite
direction or arbitrary long detour from one GPS point to the
next one.

Theorem 1: The speed of a road segment is monotonically
decreasing during relaxation.

Proof: We prove this theorem by contradiction. Assume two
overestimated paths p1

est and p2
est share a road segment e.

Without loss of generality, considering relaxation of p1
est , the

road segment e has its speed e.v decreased to e.v′ and travel
time e.t increased to e.t ′ so that p1

est .t = p1
true .t. Now, during

relaxation of p2
est , e.v′ and e.t ′ are subject to change. If instead

of monotonically decreasing e.v′ gets increased and e.t ′ gets
decreased, then we have p1

est .t < p1
true .t which invalidates the

previous relaxation process and further contradicts Collorary
1.

Taking advantage of Theorem 1, further reduction in com-
putation can be achieved by retaining reduced speeds of each
path in {pest }all . To be specific, as {pest }all is generated for
si and si+1 in a sub-network, many paths in {pest }all will
have shared road segments. Therefore, the speed reduction in
these road segments will make multiple paths in {pest }all to
have increased travel times. As a result, the greedy process of
relaxation is much more efficient than a brute-force enumera-
tion.

Algorithm 1 Velocity Field Reconstruction
Input: Initial estimated road network Gest = (V,E) with e.v =
e.vmax , ∀e ∈ E; GPS traces S = {S1, . . . ,Sm }; Discretized
time intervals {1, . . . ,D}; Maximum distance for computing
candidate nodes of a GPS point cDis; Maximum number of
candidate nodes cNum
Output: Reconstructed road network Gest

1: for each time interval d ∈ (1, . . . ,D) do :
2: Sd = ExtractGPSTraces(S,d)
3: for each trace Sd

j ∈ Sd do :
4: for consecutive GPS points si , si+1 ∈ Sd

j do :
5: radius = dist (si,si+1)

2 + cDis
6: H = ExtractSubgraph(Gest ,radius, si , si+1)
7: C1 = GetCandidateNodes(H, si ,cDis,cNum)
8: C2 = GetCandidateNodes(H, si+1,cDis,cNum)
9: ptrue .t = si+1.t − si .t

10: Hrelax = RelaxNetwork (H,ptrue .t,C1,C2)
11: Gest = UpdateNetwork (Gest ,Hrelax )
12: return Gest

The overall process is described in Algorithm 1. Subroutines
RelaxNetwork and Relaxation are specified in Algorithm 2 and
3, respectively. In particular, two types of paths are considered
as outliers and are excluded from the computation: one has a
travel time shorter than its free-flow travel time and one has a
travel time longer than the travel time under the jam density.
The procedure TravelTimeAllocation in Line 10 of Algorithm
3 is discussed next.

C. Travel Time Allocation

During relaxation, we need to address each overestimated
path pest between GPS points si and si+1 by making pest .t =
ptrue .t = si+1.t− si .t. Due to the low sampling rate, pest often
spreads several road segments, and the aggregate travel time
ptrue .t needs to be appropriately allocated to individual road
segments of pest . To address this issue with respect to traffic
flow analysis, we adopt and modify the solution proposed in
[11].

According to [11], the travel time of a road segment e
can be decomposed into three categories: free-flow travel
time τe, f , congestion time τe,c , and stopping time τe,s . For
an overestimated path pest , we denote its total free-flow
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Algorithm 2 RelaxNetwork
Input: Subgraph H; True travel time ptrue .t; Candidate node
sets C1, C2
Output: Relaxed subgraph Hrelax

1: for each node n1 ∈ C1 do :
2: for each node n2 ∈ C2 do :
3: if n1 == n2 or distance(n1,n2) == 0 then
4: continue . no valid path exists
5: pest = GetFastestPath(H,n1,n2)
6: if IsOutlier (pest ) == true then
7: continue
8: while true do :
9: if test ≥ ttrue then

10: break . not an overestimated path
11: if NumberO f Nodes(p) < 2 then
12: break . not a valid path
13: Erelax = Relaxation(pest ,ptrue .t)
14: H = UpdateNetwork (H,Erelax ) . update

travel times of H using Erelax

15: pest = GetFastestPath(H,n1,n2) . get the
shortest travel time path between n1 and n2 on H

16: return Hrelax = H

travel time as Tf =
∑

e∈pest
τe, f , total congestion time as

Tc =
∑

e∈pest
τe,c , total stopping time as Ts =

∑
e∈pest

τe,s ,
and the allocation time as Ta = ptrue .t. To validate pest , we
must have Tf +Tc +Ts = Ta . While Tf can be derived trivially
as Tf =

∑
e∈pest

τe, f =
∑

e∈pest

e.len
e.vmax

, the computations of
Tc and Ts require additional considerations.

Algorithm 3 Relaxation
Input: A set of road segments E (initially contains all road
segments in pest ); Time budget T (initially set to ptrue .t)
Output: A set of relaxed road segments Erelax

1: avgSpeed =
∑

e∈E ‖e ‖
T . average travel speed

2: T ′ = T . store the time budget
3: for each road segment e ∈ E do :
4: if e.v ≤ avgSpeed then
5: T = T − e.t . the leftover time budget
6: E = E \ {e} . exclude e based on theorem 1
7: if T ′ , T then . some e have been excluded
8: Erelax = Relaxation(E,T ) . recursive call
9: else

10: Erelax = TravelTimeAllocation(E,T )
11: return Erelax

By assuming nearby road segments have similar traffic
conditions, the path congestion level is defined as w = Tc

Tc+Tf
.

The minimum value wmin = 0 is reached when the path can
be traveled with the free-flow speed, and the maximum value
wmax =

Tc,max

Tc,max+Tf
where Tc,max = Ta−Tf is reached when the

path is congested but no more so that Ts = 0. With a specific
path congestion level wmin ≤ w ≤ wmax , the probability that
a certain degree of congestion occurred on pest is computed
as:

Pc (w) = min{1,
T prev
c,max + Tc,max

T prev
a + Ta

·
1
w
}, (1)

where T prev
c,max and T prev

a represent the maximum congestion

time and the allocation time of path s j
p
prev
est
{ s j+1, j + 1 ≤ i.

In [11], pprev
est denotes the path which has an allocation time

longer than the jam-density travel time with maximum possible
j. In this work, as we have addressed path outliers, pprev

est

indicates the path connecting si−1 and si , which is the directly
preceding path of pest . Pc (w) is defined under assumptions
that first, when all variables are fixed, the probability of a
specific level of congestion occurring increases as Tc,max

increases; second, given a particular Tc,max , higher level con-
gestions are less likely to appear than lower level congestions.

Next, the stopping likelihood function is defined for com-
puting the probability of stopping. Since the original formula
does not take estimated traffic conditions into account, we alter
it to:

Ls,e (w) = βw + (1 − β)
e.k

e.kmax
, (2)

where β is the weighting factor (set to 0.5 in this work), and
e.k is the estimated density as a result of possible previous
relaxation (otherwise e.k = 0). Equation 2 computes the
likelihood by leveraging the path congestion level w and the
road-segment congestion level e.k

e.kmax
. Intuitively, the road-

segment congestion level becomes higher when the estimated
density e.k approaches the jam density e.kmax . In order
to derive e.k from the estimated speed e.v, we utilize the
Greenshield’s model [42]:

e.k = e.kmax

(
1 −

e.v
e.vmax

)
. (3)

By having the stopping likelihood function, the probability
that a vehicle stopped on a particular road segment is stipulated
by assuming the vehicle stops at most once on pest as:

Ps,ei (w) = Ls,ei (w)
∏

e j ∈pest , j,i

(1 − Ls,e j (w)). (4)

With Equation (1) and (4), the congestion time on a single
road segment is calculated by integrating all path congestion
levels together as:

τe,c =

∫ wmax

0
τe, f

w

1 − w

Pc (w)
∑

e Ps,e (w)
Qs

dw, (5)

where Qs =
∫ wmax

0 Pc (w)
∑

e Ps,e (w)dw is the normalizing
factor. After summing the congestion time of all road segments
Tc =

∑
e∈pest

τe,c , the total stopping time can be derived easily
by Ts = Ta − Tf − Tc . Finally, we can calculate the stopping
time on each road segment using the following formula:

τe,s =

∫ wmax

0
Ts

Pc (w)Ps,e (w)
Qs

dw. (6)

To this point, we have solved the travel time allocation
problem by having τe, f , τe,c , and τe,s for all road segments
of pest and fulfilling Tf +Tc +Ts = Ta (i.e., pest .t = ptrue .t).
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Fig. 4: Average travel time simulated on the synthetic road
network using our approach (top) vs. [1] with the shortest
distance (bottom). Our technique consistently outperforms the
existing method in estimating the average travel time over 30
different congestion levels.

D. Evaluation on A Synthetic Network Using Traffic Simula-
tion

In order to evaluate our technique on estimating velocity
field, we use a synthetic road network and an agent-based
traffic simulator [43]. The road network is modeled as a grid
with 5 × 5 intersections. By considering one hour as a time
interval for a specific congestion level, a set of cars is routed
and average travel times of all road segments are taken as the
ground truth for this congestion level. All traces are simulated
by randomly sampling nodes of the network as sources and
targets using the fastest route strategy in the beginning of a
time interval. As our method operates on size 2 subsets of GPS
traces, we emit pairs of points at the source and target for each
simulated trace. This choice resembles the low sampling rate
feature and enables us to incorporate the travel-time allocation
algorithm into testing.

All road segments share the same setting: length of 150m,
maximum speed at 17.88m/s, and a maximum density of 0.15
cars per meter. In total, 30 congestion levels are created by
simulating 50 to 1500 vehicles in this road network with an
increment of 50 vehicles per time interval. In addition, for each
time interval, five tiers of the vehicle population, at 20%, 40%,
60%, 80%, and 100%, are used to generate GPS traces.

The first analysis is conducted by treating the network as
a whole, and the aggregate travel time over the network is
used to represent the global congestion level. The ground truth
compared to estimated quantities using our technique and Lou
et al. [1] are shown in Figure 4. Start with 20% of vehicles,
our technique demonstrates close approximation to the ground
truth at all congestion levels, while such phenomena are not
observed using the shortest-distance based technique devel-
oped in [1]. In Table I, we examine each traffic percentage
by computing the absolute error to the ground truth across
all congestion levels. The smallest error (mean = 3.4s, std
= 3.32s) is achieved by using 80% of GPS traces from the
simulated traffic. The slight increase in error when using 100%
GPS traces is mainly due to imperfect travel-time allocation
method.

In the second analysis, we computed relative improvements

Statistics of absolute errors

Our technique Lou et al. [1]

Traffic percentage mean (s) std. (s) mean (s) std. (s)

20% 8.29 5.31 29.74 21.90

40% 4.25 3.38 29.85 22.66

60% 3.67 3.67 29.33 22.06

80% 3.40 3.32 29.55 22.46

100% 3.58 4.04 29.66 22.35

TABLE I: The absolute errors in the recovered travel time
computed using our technique vs. Lou et al. [1] by using GPS
traces from various percentages of the traffic population. Our
technique results in much smaller errors as compared to [1].

Fig. 5: Relative improvements measured in MSE of our
technique over Lou et al. [1]. Our technique outperforms [1] as
the congestion level increases or as more GPS traces become
available. Our method achieves up to 52.5% improvement.

measured in mean squared error (MSE)1of our method over
[1]. The results are demonstrated in Figure 5.

In general, as the congestion level increases or a higher
percentage of GPS traces becomes available, our technique
outperforms the shortest-distance technique. The improve-
ments are less clear when congestion level is low (i.e., < 10),
but better seen when congestion approaches high level (i.e.,
≥ 10). The smaller improvement at the low-congestion levels
is because when vehicles can travel on roads with speeds
close to the speed limits, the shortest travel-time path and the
shortest-distance path tend to be the same in such cases.

IV. MISSING VALUE COMPLETION

The temporal sparsity of GPS data can lead to missing
values in certain time intervals over a weekly period, and
these missing values inhibit the accurate estimation of full
traffic dynamics. To address this issue, we explore the sparse
structure embedded in traffic patterns and propose a novel
technique based on the Compressed Sensing algorithm [12],
[13].

We have adopted loop-detector data2, which represent com-
plete and relatively accurate measurements of traffic condi-
tions, to explore features of traffic patterns. We use speed

1MSE is computed as 1
n

∑n
i=1 ( ˆe.t − e.t )2.

2The loop-detector data are obtained from Caltrans Performance Measure-
ment System (PeMS): http://pems.dot.ca.gov/.
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Fig. 6: The average speed measurements from loop-detector
data are interpreted as a traffic signal, which exhibits a clear
periodic pattern (TOP); the spectral analysis reveals that the
most prominent frequency is one cycle per day (MIDDLE);
the traffic signal is approximated by a frequency-domain linear
regression model in which 95% energy is retained by keeping
the ten largest frequencies (BOTTOM).

measurements from 38 loop detectors installed in San Fran-
cisco. The time range of these data is the same as that of
the Cabspotting dataset3, which we adopted to estimate traffic
conditions of San Francisco. We refer to the average speed
measurements over a weekly period (discretized hourly) as
a traffic signal. An example traffic signal exhibiting clear
periodicity is shown in the top panel of Figure 6.

We perform a spectral analysis on a traffic signal. In the
analysis, we set the frequencies as the reciprocal of the signal
length (i.e., 1/168) and subtract the signal from its mean to
make the oscillations easier to observe. The results, which are
shown in the middle panel of Figure 6, reveal that the period of
the most salient oscillation is 24 hours. In addition, the signal
exhibits sparsity in the frequency domain, which is reflected
as over 95% energy is preserved by retaining the ten largest
frequencies (Figure 6, BOTTOM).

According to the specification of a traffic signal, the highest
frequency being supported is one cycle per two hours. To
recover a traffic signal from its samples, the Nyquist-Shannon
Theorem says that we need at least 168 measurements. This
number of samples is difficult to obtain because of the tempo-
ral sparsity of GPS data. However, the Compressed Sensing
algorithm [13], [12] suggests that a signal can be recovered
exactly with a small set of samples if the signal has a sparse
representation. This sparse representation can be manifested
by the rapid decaying of the sorted frequency magnitudes. The
analysis of decay rates of traffic signals is presented in the top
panel of Figure 7. On average, the decay rate reaches 45.78%
with the most prominent frequency and 78.93% with the ten
most conspicuous frequencies. After the 15th frequency, the

3http://cabspotting.org/.

Fig. 7: The top panel shows the decay rates of frequency
magnitudes of all traffic signals; the bottom panel shows
the locations and normalized magnitudes of the frequency
components of all traffic signals. The rapid growth of decay
rates and randomly distributed frequency structures indicate
that Compressed Sensing is applicable for recovering traffic
signals.

decay rates become ineligible.
Another merit of Compressed Sensing is that it does not

require any prior knowledge of the sparse structure of a
signal. Since the road condition is intrinsically stochastic,
the sparse structure of a traffic signal varies from one link
to another. This phenomenon is demonstrated in the bottom
panel of Figure 7, in which locations and amplitudes of the
frequency components of all traffic signals are plotted. Besides
the appearance of the prominent oscillations, at 24, 48, and 72
hours, other oscillations are spread out along the frequency
axis. Together, these observations and features confirm the
applicability of using Compressed Sensing to recover traffic
signals.

Given a signal f ∈ Rn and its measurements b ∈ Rm ,
we consider the undersampled case in which the number of
measurements m is smaller than the signal’s dimension n. The
goal is to derive an estimated signal f̂ ∈ Rn from b ∈ Rm such
that the error ‖ f − f̂ ‖L2 is minimized. In general, the better
the desired reconstruction quality, the more measurements are
needed. In order to achieve a predefined accuracy level, signal
reconstruction requires a minimum number of measurements
mmin . According to [44], mmin is on the order of µ2S log(n),
where µ is the coherence between a measurement basis and
a representation basis, S is the signal’s sparsity level, and n
is the signal’s dimension (in this work n = 168). We estimate
S by averaging the number of frequencies in preserving 95%
energy of all traffic signals, which results in S = 17.63. The
minimum coherence value µ = 1 is obtained by performing a
discrete cosine transform (DCT) on a traffic signal f :

Φ fdct = f , (7)

where fdct is the representation of f in the DCT domain
and Φn×n is the DCT matrix. With these estimated values,
the minimum number of samples required to recover a traffic
signal can be computed as: mmin = µ2S log(n) = 12 · 17.63 ·
log(168) ≈ 90.
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Fig. 8: Solution elements (in total 168) by solving an underde-
termined system via convex optimization. Both the actual and
the L1-norm based recovery demonstrate sparsity (i.e., most
solution elements are approximately equal to zero).

Fig. 9: Recovery of a traffic signal via Compressed Sensing.
The actual signal and its 90 random measurements are plotted
(TOP). The L1-norm based recovery (BOTTOM) shows high
similarity to the actual signal.

We test the performance of our method of signal recovery
by first obtaining random measurements via sampling: bm×1 =

Ψm×n fn×1, where Ψ is the sampling matrix constructed by
randomly permuting rows of the identity matrix. Then we
derive the recovered signal in the DCT domain f̂dct from b
by solving the following linear system:

A f̂dct = ΨΦ f̂dct = b. (8)

Equation 8 represents an underdetermined system, in which
there exist infinitely many candidate signals f̂dct for which the
formula can suffice. Among all candidates, the desired f̂dct
should exhibit sparsity as observed in fdct . We can acquire
such a solution by solving the following optimization program:

min ‖ f̂dct ‖L1 ,

s.t . A f̂dct = b.
(9)

An example solution to Equation 9 is shown in Figure 8,
where the actual solution elements of fdct and the recovered
solution elements of f̂dct both demonstrate sparsity. The final
recovered signal f̂ is acquired by performing an inverse DCT
on f̂dct . Figure 9 gives an example in which the recovered
signal exhibits high similarity to the original signal. A more
thorough analysis of the performance of recovering traffic
signals can be found in Figure 10. As a result, both the
standard deviation and the expectation of the L2 loss decrease,
when the number of measurements used in recovery increases.
The average error of using 90 measurements is 1.4m/s.

Fig. 10: The error between recovered and actual traffic signals.
As more samples are used in signal’s recovery, we observe
smaller errors.

To put this framework in terms of GPS data, the measure-
ments used are obtained from travel time estimation rather
than from the sampling operation that we performed on a
traffic signal. In this case, Φ is set to DCT (diag (1, . . . ,1)),
and A = ΨD is taken to solve Equation 9. Since we have
established that mmin = 90, it is worth mentioning that we
only address links that have measurements in more than 90
time intervals. Compared to [45] and [9], we have reduced
the minimum number of measurements required to recover a
traffic signal from 1680 to 90 (by 94.64%).

V. ESTIMATING TRAFFIC DYNAMICS VIA GPS DATA

One of the hallmarks of traffic dynamics is their periodicity
[9]: traffic patterns show a clear trend over the course of a day
and collectively over the course of a week. In this section, we
first demonstrate that this phenomenon can be recovered using
our technique (tested on the Cabspotting dataset); we then
analyze features revealed in the reconstructed traffic patterns.

To assist in visualization and analysis, the metric fluidity,
adapted from [9], is used for each road segment as the ratio of
the estimated travel speed to the free-flow speed. this metric
ranges from 0 to 1. In Figure 11, we show the estimated traffic
dynamics, denoted by average fluidity, across the road network
of downtown San Francisco. From the demonstration, it is
clear that our technique recovers the periodicity of the traffic
pattern using the dominant frequency, which is one cycle per
day. This characteristic resembles the one observed in loop-
detector data from the same area (see Figure 6 and 9).

The affinity between different days in a week can also be
used to illustrate the quality of our data reconstruction method.
We compute the correlation of every pair of days using
the cosine distance for both the estimated traffic conditions
and the actual conditions derived from loop-detector data. In
Figure 12, left panel, we provide all distance scores: the upper
triangular matrix is derived using the estimated values, and the
lower triangular matrix is computed using loop-detector data.
In the right panel of Figure 12, we provide the qualitative result
for a visual inspection. The symmetrical pattern across the
diagonal line indicates that the estimated traffic states largely
agree with the loop-detector data.

Based on the distance scores, a hierarchical clustering is
performed to reveal the similarity between day pairs. The
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Fig. 11: Estimated traffic dynamics of downtown San Fran-
cisco compared with spectral analysis. Our technique shows a
clear daily trend, which is consistent with the features observed
in loop-detector data from the same area.

Fig. 12: Correlation between every pair of days in a week. The
left panel lists normalized similarity scores calculated using
the cosine distance, and the right panel provides qualitative
results. For both, the upper triangular matrix is derived using
the estimated traffic conditions, and the lower triangular matrix
is computed using loop-detector data from the same area.
When data and patterns are compared across the diagonal
line, our estimated results exhibit high similarity to the loop-
detector data.

closest pair is Wednesday and Thursday, followed by Friday
and Saturday, and Monday and Tuesday. In the second level
of the hierarchy, Sunday joins Monday and Tuesday. These
three day-pairs suggest that a typical week of San Francisco
can be roughly divided into three stages: beginning of the
week (Sunday, Monday, and Tuesday), middle of the week
(Wednesday and Thursday), and end of the week (Friday and
Saturday).

VI. CONCLUSION

We have presented a novel computational scheme for esti-
mating travel times, traversed paths, and missing values over
a large-scale road network using spatially and temporally
sparse GPS traces. Specifically, an approach based on the
shortest travel time is performed to reconstruct the velocity
field of a road network. As a result, we have obtained a
novel method for joint estimation of traversed paths and travel
times on a large-scale road network. Next, an algorithm based
on the Compressed Sensing algorithm has been developed
to estimate missing travel information over an entire traffic
period so that citywide traffic dynamics can be studied. Last,
we have extensively evaluated our approach and compared

our technique with a state-of-the-art technique. Consistent
improvements are observed in multiple traffic scenarios.

There are several possible future directions. To start with,
as abundant GPS data are becoming available, the task of
processing them is computationally expensive. Besides using
the power of distributed computing, it is promising to explore
the sparse structure and periodicity of traffic patterns to
further reduce the amount of data needed in the estimation of
traffic dynamics. Similarly, correlation in traffic patterns due
to proximity/spatial coherence can also be examined. Last,
it might be beneficial to integrate data mining of historical
data, real-time traffic reconstruction from current data, and
predictive traffic simulation to achieve a more comprehensive
and accurate estimation of travel conditions over metropolitan
areas.

REFERENCES

[1] Y. Lou, C. Zhang, Y. Zheng, X. Xie, W. Wang, and Y. Huang, “Map-
matching for low-sampling-rate GPS trajectories,” in Proceedings of
the 17th ACM SIGSPATIAL International Conference on Advances in
Geographic Information Systems. ACM, 2009, pp. 352–361.

[2] D. Schrank, B. Eisele, T. Lomax, and J. Bak, “2015 urban mobility
scorecard,” Texas A&M Transportation Institute and INRIX, 2015.

[3] G. Leduc, “Road traffic data: Collection methods and applications,”
Working Papers on Energy, Transport and Climate Change, vol. 1,
no. 55, 2008.

[4] J. Yuan, Y. Zheng, C. Zhang, X. Xie, and G. Sun, “An interactive-voting
based map matching algorithm,” in Proceedings of the 11th International
Conference on Mobile Data Management, 2010, pp. 43–52.

[5] T. Miwa, D. Kiuchi, T. Yamamoto, and T. Morikawa, “Development of
map matching algorithm for low frequency probe data,” Transportation
Research Part C: Emerging Technologies, vol. 22, pp. 132–145, 2012.

[6] T. Hunter, P. Abbeel, and A. Bayen, “The path inference filter: model-
based low-latency map matching of probe vehicle data,” Intelligent
Transportation Systems, IEEE Transactions on, vol. 15, no. 2, pp. 507–
529, 2014.

[7] B. Y. Chen, H. Yuan, Q. Li, W. H. Lam, S.-L. Shaw, and K. Yan, “Map-
matching algorithm for large-scale low-frequency floating car data,”
International Journal of Geographical Information Science, vol. 28,
no. 1, pp. 22–38, 2014.

[8] M. Quddus and S. Washington, “Shortest path and vehicle trajectory
aided map-matching for low frequency GPS data,” Transportation Re-
search Part C: Emerging Technologies, vol. 55, pp. 328–339, 2015.

[9] A. Hofleitner, R. Herring, A. Bayen, Y. Han, F. Moutarde, and
A. De La Fortelle, “Large scale estimation of arterial traffic and struc-
tural analysis of traffic patterns using probe vehicles,” in Transportation
Research Board 91st Annual Meeting (TRB’2012), 2012.

[10] J. Wardrop, “Some theoretical aspects of road traffic research,” Proceed-
ings of the Institution of Civil Engineers, vol. 1, no. 3, pp. 325–362,
1952.

[11] B. Hellinga, P. Izadpanah, H. Takada, and L. Fu, “Decomposing travel
times measured by probe-based traffic monitoring systems to individual
road segments,” Transportation Research Part C: Emerging Technolo-
gies, vol. 16, no. 6, pp. 768–782, 2008.

[12] D. Donoho, “Compressed sensing,” Information Theory, IEEE Transac-
tions on, vol. 52, no. 4, pp. 1289–1306, 2006.

[13] E. Candes, J. Romberg, and T. Tao, “Robust uncertainty principles: exact
signal reconstruction from highly incomplete frequency information,”
Information Theory, IEEE Transactions on, vol. 52, no. 2, pp. 489–509,
2006.

[14] H. B. Celikoglu, “A dynamic network loading model for traffic dynamics
modeling,” IEEE Transactions on Intelligent Transportation Systems,
vol. 8, no. 4, pp. 575–583, 2007.

[15] H. B. Celikoglu, E. Gedizlioglu, and M. Dell’Orco, “A node-based mod-
eling approach for the continuous dynamic network loading problem,”
IEEE Transactions on Intelligent Transportation Systems, vol. 10, no. 1,
pp. 165–174, 2009.

[16] S. Gao, “Modeling strategic route choice and real-time information
impacts in stochastic and time-dependent networks,” IEEE Transactions
on Intelligent Transportation Systems, vol. 13, no. 3, pp. 1298–1311,
2012.



IEEE INTELLIGENT TRANSPORTATION SYSTEMS MAGAZINE, VOL. XX, NO. X, MONTH 2017 10

[17] A. Abadi, T. Rajabioun, and P. A. Ioannou, “Traffic flow prediction for
road transportation networks with limited traffic data,” IEEE Transac-
tions on Intelligent Transportation Systems, vol. 16, no. 2, pp. 653–662,
2015.

[18] P. Kachroo and S. Sastry, “Travel time dynamics for intelligent trans-
portation systems: Theory and applications,” IEEE Transactions on
Intelligent Transportation Systems, vol. 17, no. 2, pp. 385–394, 2016.

[19] S. Agarwal, P. Kachroo, and S. Contreras, “A dynamic network
modeling-based approach for traffic observability problem,” IEEE Trans-
actions on Intelligent Transportation Systems, vol. 17, no. 4, pp. 1168–
1178, 2016.

[20] D. Work, S. Blandin, O.-P. Tossavainen, B. Piccoli, and A. Bayen,
“A traffic model for velocity data assimilation,” Applied Mathematics
Research Express, vol. 2010, no. 1, pp. 1–35, 2010.

[21] Y. Sun and D. Work, “A distributed local kalman consensus filter for
traffic estimation,” in Decision and Control (CDC), 53rd IEEE Annual
Conference on, 2014, pp. 6484–6491.

[22] A. Gning, L. Mihaylova, and R. K. Boel, “Interval macroscopic models
for traffic networks,” IEEE Transactions on Intelligent Transportation
Systems, vol. 12, no. 2, pp. 523–536, 2011.

[23] L. Li, X. Chen, and L. Zhang, “Multimodel ensemble for freeway traffic
state estimations,” IEEE Transactions on Intelligent Transportation
Systems, vol. 15, no. 3, pp. 1323–1336, 2014.

[24] H. B. Celikoglu and M. A. Silgu, “Extension of traffic flow pattern
dynamic classification by a macroscopic model using multivariate clus-
tering,” Transportation Science, 2016.

[25] M. Hajiahmadi, G. S. van de Weg, C. M. Tampère, R. Corthout,
A. Hegyi, B. De Schutter, and H. Hellendoorn, “Integrated predic-
tive control of freeway networks using the extended link transmis-
sion model,” IEEE Transactions on Intelligent Transportation Systems,
vol. 17, no. 1, pp. 65–78, 2016.

[26] A. Phan and F. P. Ferrie, “Interpolating sparse GPS measurements
via relaxation labeling and belief propagation for the redeployment of
ambulances,” IEEE Transactions on Intelligent Transportation Systems,
vol. 12, no. 4, pp. 1587–1598, 2011.

[27] Q.-J. Kong, Q. Zhao, C. Wei, and Y. Liu, “Efficient traffic state
estimation for large-scale urban road networks,” IEEE Transactions on
Intelligent Transportation Systems, vol. 14, no. 1, pp. 398–407, 2013.

[28] J.-D. Zhang, J. Xu, and S. S. Liao, “Aggregating and sampling methods
for processing GPS data streams for traffic state estimation,” IEEE
Transactions on Intelligent Transportation Systems, vol. 14, no. 4, pp.
1629–1641, 2013.

[29] J. Tang, Y. Song, H. Miller, and X. Zhou, “Estimating the most likely
space–time paths, dwell times and path uncertainties from vehicle
trajectory data: A time geographic method,” Transportation Research
Part C: Emerging Technologies, vol. 66, pp. 176–194, 2016.

[30] M. Rahmani and H. Koutsopoulos, “Path inference from sparse floating
car data for urban networks,” Transportation Research Part C: Emerging
Technologies, vol. 30, pp. 41–54, 2013.

[31] M. Rahmani, E. Jenelius, and H. Koutsopoulos, “Non-parametric esti-
mation of route travel time distributions from low-frequency floating car
data,” Transportation Research Part C: Emerging Technologies, vol. 58,
pp. 343–362, 2015.

[32] A. Khosravi, E. Mazloumi, S. Nahavandi, D. Creighton, and J. Van Lint,
“Prediction intervals to account for uncertainties in travel time predic-
tion,” IEEE Transactions on Intelligent Transportation Systems, vol. 12,
no. 2, pp. 537–547, 2011.

[33] B. Westgate, D. Woodard, D. Matteson, and S. Henderson, “Travel
time estimation for ambulances using bayesian data augmentation,” The
Annals of Applied Statistics, vol. 7, no. 2, pp. 1139–1161, 2013.

[34] R. Herring, A. Hofleitner, P. Abbeel, and A. Bayen, “Estimating arterial
traffic conditions using sparse probe data,” in Intelligent Transportation
Systems (ITSC), 13th International IEEE Conference on, 2010, pp. 929–
936.

[35] A. Hofleitner, R. Herring, P. Abbeel, and A. Bayen, “Learning the
dynamics of arterial traffic from probe data using a dynamic bayesian
network,” IEEE Transactions on Intelligent Transportation Systems,
vol. 13, no. 4, pp. 1679–1693, 2012.

[36] K. Kuhi, K. K. Kaare, and O. Koppel, “Using probabilistic models for
missing data prediction in network industries performance measurement
systems,” Procedia Engineering, vol. 100, pp. 1348–1353, 2015.

[37] Y. Wang, Y. Zheng, and Y. Xue, “Travel time estimation of a path
using sparse trajectories,” in Proceedings of the 20th ACM SIGKDD
international conference on Knowledge discovery and data mining,
2014, pp. 25–34.

[38] M. T. Asif, N. Mitrovic, J. Dauwels, and P. Jaillet, “Matrix and tensor
based methods for missing data estimation in large traffic networks,”

IEEE Transactions on Intelligent Transportation Systems, vol. 17, no. 7,
pp. 1816–1825, 2016.

[39] Y. Zhu, Z. Li, H. Zhu, M. Li, and Q. Zhang, “A compressive sensing
approach to urban traffic estimation with probe vehicles,” Mobile Com-
puting, IEEE Transactions on, vol. 12, no. 11, pp. 2289–2302, 2013.

[40] N. Mitrovic, M. T. Asif, J. Dauwels, and P. Jaillet, “Low-dimensional
models for compressed sensing and prediction of large-scale traffic data,”
IEEE Transactions on Intelligent Transportation Systems, vol. 16, no. 5,
pp. 2949–2954, 2015.

[41] O. Anava, E. Hazan, and A. Zeevi, “Online time series prediction with
missing data,” in Proceedings of the 32nd International Conference on
Machine Learning (ICML-15), 2015, pp. 2191–2199.

[42] B. Greenshields, J. Bibbins, W. Channing, and H. Miller, “A study of
traffic capacity,” Highway Research Board Proceedings, vol. 14, no. 1,
pp. 448–477, 1935.

[43] D. Krajzewicz, J. Erdmann, M. Behrisch, and L. Bieker, “Recent
development and applications of SUMO–simulation of urban mobility,”
International Journal On Advances in Systems and Measurements,
vol. 5, no. 3&4, pp. 128–138, 2012.

[44] E. Candès and M. Wakin, “An introduction to compressive sampling,”
IEEE signal processing magazine, vol. 25, no. 2, pp. 21–30, 2008.

[45] R. Herring, “Real-time traffic modeling and estimation with streaming
probe data using machine learning,” Ph.D. dissertation, University of
California, Berkeley, 138 pages, 2010.

Weizi Li received his B.E. degree in Computer
Science and Technology from Xiangtan University,
China and M.S. degree in Computer Science from
George Mason University. He is currently in the
doctoral program at the University of North Carolina
at Chapel Hill, Department of Computer Science.
His research interests include agent-based simula-
tion, intelligent transportation systems, and statisti-
cal machine learning.

Dong Nie received his B.Eng. degree in Soft-
ware Engineering from Northeastern University,
Shenyang, China and M.Sc. degree in Computer
Science from the University of Chinese Academy
of Sciences, Beijing, China. He is pursuing a Ph.D.
degree in Computer Science from the University of
North Carolina at Chapel Hill. His research interests
include image processing and medical image analy-
sis.

David Wilkie received a BS in computer science
from Drexel University and his PhD from the Uni-
versity of North Carolina at Chapel Hill, Department
of Computer Science. He is now a software engineer
for Google Maps. David’s research interests include
traffic simulation, GIS and road network modeling,
and intelligent transportation systems.

Ming C. Lin received her B.S., M.S., Ph.D. degrees
in Electrical Engineering and Computer Science
from the University of California, Berkeley. She is
currently John R. & Louise S. Parker Distinguished
Professor of Computer Science at the University
of North Carolina (UNC), Chapel Hill. She has
received several honors and awards, including the
NSF Young Faculty Career Award, UNC Hettle-
man Award for Scholarly Achievements, 2010 IEEE
VGTC Technical Achievement Award, and 10 best
paper awards at premium international conferences.

She is a Fellow of ACM and IEEE. She has served as a member of the
Board of Directors of Computing Research Association Women, a member of
IEEE CS Board of Governors, Chair of 2015 IEEE Computer Society (CS)
Transactions Operation Committee, and a former Editor-in-Chief of IEEE
Transactions on Visualization and Computer Graphics (2011-2014). She is
also a member of several Editorial Boards, steering committees, and advisory
boards of international conferences, government agencies, and industry.


