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Figure 1: The divided highway is populated with vehicle traffic using our flow reconstruction method. Individual virtual cars are animated
and correspond to real-world traffic conditions measured by road sensors. The vehicle motions are simulated on a GIS-derived domain and
overlaid on a public domain aerial image from the U.S. Geological Survey.

Abstract

‘Virtualized traffic’ reconstructs and displays continuous traffic
flows from discrete spatio-temporal traffic sensor data or proce-
durally generated control input to enhance a sense of immersion
in a dynamic virtual environment. In this paper, we introduce a
fast technique to reconstruct traffic flows from in-road sensor mea-
surements or procedurally generated data for interactive 3D visual
applications. Our algorithm estimates the full state of the traffic
flow from sparse sensor measurements (or procedural input) using
a statistical inference method and a continuum traffic model. This
estimated state then drives an agent-based traffic simulator to pro-
duce a 3D animation of vehicle traffic that statistically matches the
original traffic conditions. Unlike existing traffic simulation and
animation techniques, our method produces a full 3D rendering of
individual vehicles as part of continuous traffic flows given discrete
spatio-temporal sensor measurements. Instead of using a color map
to indicate traffic conditions, users could visualize and fly over the
reconstructed traffic in real time over a large digital cityscape.
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1 Introduction

Numerous efforts have been devoted to acquiring and visualizing
“digital urbanscapes”. Over the last decade, there has been con-
siderable progress on multiple fronts: acquisition of imagery and
3D models using improved sensing technologies, real-time render-
ing, and procedural modeling. For example, aerial imagery of most
cities is used in Google Earth and Microsoft Virtual Earth. The
problem of reconstructing 3D geometric models from videos and
scanners has been an active area of research. Similarly, many ef-
ficient techniques have been proposed to stream imagery and geo-
metric data over the Internet and display them in real time on high-
end workstations or handheld devices. However, all these efforts are
limited to capturing, displaying, or modeling predominantly static
models of urbanscapes and do not include dynamic elements, such
as traffic. The realism of a virtual urbanscape in a digital globe
system can be considerably enhanced by introducing such intrinsic
dynamic elements of an urban landscape.

As VR applications in flight and driving simulators [Cremer et al.
1997; Donikian et al. 1999; MIT 2011; Pausch et al. 1992; Thomas
and Donikian 2000; Wang et al. 2005] for training have evolved
from its earlier single-user VR system into online virtual globe
systems and distributed, networked gaming, the demand to recre-
ate large-scale traffic flows, possibly driven by traffic sensor data
from the real-world observations, has emerged. The concept of
‘virtualized traffic’ was first introduced in [van den Berg et al.
2009; Sewall et al. 2011a] to create dynamic vehicle flows based
on real-world traffic sensor data to enhance the sense of immer-
sion for a virtual urbanscape. We propose an efficient technique
for reconstructing ‘virtualized traffic’ from continuous streams of
traffic data either from in-road sensor measurements or procedu-
rally generated control/user input. This approach consists of (1)
a data analysis stage, in which the traffic state is estimated via an
ensemble Kalman smoothing process and a macroscopic model for
representing aggregate traffic flow, and (2) a visualization stage, in
which a detailed reconstruction of the traffic flow is rendered and
displayed. The final rendering is a 3D visualization of vehicle traf-
fic as it might appear to a camera, but reconstructed wholly from
sparse, discrete traffic data. This technique could be used by some-
one planning a trip [Wilkie et al. 2011], enabling them to do a fly-
over or see the traffic from a driver’s perspective; it could be used
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by city planners and traffic controllers to see an integrated visualiza-
tion of traffic over a large metropolitan area; and it could be used to
populate virtual worlds to create a more immersive experience and
make vehicle flows more realistically reflecting the real-world traf-
fic. Unlike video recordings from individual cameras, our method
uses existing infrastructure, requires very little bandwidth for com-
munication, and allows for large-scale integrated views in any VR
application.

Traffic is an aggregate of individual vehicles, each moving at a ve-
locity dependent on the surrounding vehicles and conditions too
numerous to fully list (or perhaps know), such as the time of day,
weather, signage, road work, et cetera. We consider an estimate of
traffic flow over a span of roadway to be the combination of a den-
sity field and a velocity field. These fields model the macroscopic
conditions of traffic flow at a particular instant.

Sensors come in several forms. The most widespread are called
loop detectors, which are placed on roadways and record attributes
for every vehicle that passes. Another form of sensor is within the
vehicle itself: cell phones and GPS devices can monitor the speed
of the vehicle and report it along with their position. Finally, video
cameras can also be used to monitor traffic, providing full trajec-
tories for all observed vehicles. In this paper, we focus on in-road
sensing, such as loop detectors and video cameras. These sensors
can detect when a vehicle has passed and can provide such informa-
tion as the speed the vehicle is traveling, the length of the vehicle,
whether the vehicle is a truck or car, et cetera. Typically, these
sensors batch their transmissions and send aggregate data for all
vehicles within a time span. Even if the transmissions are instan-
taneous, they are spatially and temporally discrete readings. Al-
though our method assumes the available traffic sensor data from
loop detectors and video cameras in our implementation, the over-
all computational framework can be easily generalizable and appli-
cable to other forms of sensor measurements.

Main Result. We present an efficient technique that enables the
creation of a detailed 3D traffic reconstruction from sparse traffic
data. Our method features a traffic state estimate phase, in which
an ensemble Kalman smoother and a continuum traffic simulator
are used to create an estimate of velocity and density fields over
the entire road network. Our method uses this estimate as a con-
trol for an agent-based traffic simulator to create the 3D animation
of individual vehicle motion. The agent-based system is controlled
by automatically assigned boundary conditions, the estimated ve-
locity field, and a simplified leader-follower relationship. Finally,
the output is a 3D visual display of traffic flow consistent with the
original traffic pattern measured by the sensors. It is important to
note that our method is not a traffic simulation, but a reconstruction
of vehicle flows that corresponds to measured traffic conditions as
observed in the real world. Furthermore, the resulting 3D traffic
animation can be interacted with and respond to user control and
manipulation in a virtual environment.

The rest of the paper is organized as follows. Section 2 provides
related research; state estimation methods and traffic simulation are
covered, as well as other approaches to traffic reconstruction. Sec-
tion 3 describes our approach, including both the state estimation
phase and data reconstruction phase. Section 4 provides statisti-
cal and visual results from our approach using real traffic data sets.
Section 5 concludes the paper with discussion and future work.

2 Previous Work

Research on traffic estimation has a long history, dating back to the
1970s (see an early review by Cremer [1991]). Recent projects have
similar goals and approaches: they want a high-level estimation of
macroscopic traffic quantities, and they use a filtering algorithm

to estimate the state based on incoming sensor data and a model
of traffic dynamics. Hegiy et al. [2007] discusses parallelization
of a Particle Filter approach to traffic state estimation. Jacquet et
al. [2005] present an approach to handle the challenge of shock
waves in traffic state estimation. Jacquet et al. [2006] describe an
approach that allows gradient descent to be used on traffic simu-
lation models, with applications to traffic state estimation. Sau et
al. [2007] discuss real-time state and parameter estimation using
particle filters. Wang and Papageorgiou [2005] present a detailed
investigation of real-time traffic state estimation using the extended
Kalman filter. Finally, Work et al. [2010] develop a velocity based
traffic model in order to estimate traffic using cell phone signals.

The majority of these traffic estimation approaches rely on a
Kalman filtering approach. One particular class of filters of note
is the Ensemble Kalman Filter (EnKF). This is the filter of choice
for estimation of systems involving (very) high dimensional states.
It has been used for weather prediction [Houtekamer and Mitchell
2001], ocean current estimation, as well as traffic estimation [Work
et al. 2008; Work et al. 2010]. Similar to a particle filter, the EnKF
propagates a set of samples of states that model a probability dis-
tribution. For the EnKF these samples form the ensemble for the
system. Unlike a particle filter, the EnKF is correct in the limit
(infinite number of samples) only for linear systems with Gaussian
noise. However, the fact that its running time is only linear in the
dimension of the state, rather than cubic as for other filters, makes
its use advantageous for non-linear systems as well, if it can be rea-
sonably assumed that the distribution of the state has a single mode.
While these works provide an estimation of the entire traffic flow
on a single highway, they offer little detail to visualize the actual
vehicle traffic condition.

An important component in state estimation is a model of traffic
dynamics. A common model is by Lighthill and Whitham [1955]
and Richards [1956], called the LWR model, which was a semi-
nal macroscopic traffic dynamics model. Traffic simulation is well
studied, and the amount of literature is too vast to summarize here.
A detailed survey can be found in [Helbing 2001]. Some notable
methods include the ARZ model, by Aw and Rascle [2000] and
Zhang [2002], which is what this work and earlier continuum simu-
lation [Sewall et al. 2010] are based on, and the model of Papageor-
giou et al. [1990], which was used to model the traffic dynamics in
the traffic state estimation work in [Wang and Papageorgiou 2005].

This work builds on recent advances in traffic simulation. Wilkie
et al. [2012] propose a method for extrapolating GIS road net-
works into a C1 smooth road network representation suitable for
traffic simulation and animation. We use this method to construct
the entire road network for running our traffic simulation on. We
also adapt the visualization technique by Sewall et al. [2010] on
continuum traffic simulation for a large-scale vehicle traffic visu-
alization using animated, individual vehicle representations instead
of particle tracers or vector fields commonly performed in flow vi-
sualization [Laramee et al. 2004]. However, [Sewall et al. 2010] is
only for forward simulation, not for data-driven animation or traffic
reconstruction. Our 3D traffic visualization take into account of ve-
hicle kinematics and dynamics for lane changing and visualization
of individual cars. Our method differs from [van den Berg et al.
2009] and [Sewall et al. 2011a], which reconstruct plausible trajec-
tories for individual cars based on microscopic boundary conditions
using priority-based motion planning techniques. Such techniques
can quickly become intractable as the resolution of discretization in
search space increases [Sewall et al. 2011a]. In contrast, we use an
agent-based simulation with controlled temporal and spatial con-
straints that ensure the cross flows among multiple lanes are con-
sistent with the high-level state estimation of the overall traffic flow.
We also assume realistic sensor models in our implementation.



Most recently [Sewall et al. 2011b] proposed a hybrid simula-
tion method that uses both macroscopic and microscopic simula-
tors simultaneously operating on distinct regions of a road net-
work. Although both continuum and discrete simulation meth-
ods are used in this work, our method differs by first applying the
macroscopic method for overall flow estimation and then the par-
ticle system simulation to reconstruct the detailed vehicle flow; it
then refines the global state estimation that accounts for the differ-
ence between the estimated and simulated states of the traffic sys-
tem due to cross flows among multiple lanes. Our selective, sequen-
tial use of each type of simulation methods best exploits the indi-
vidual method’s strength in our iterative estimation-reconstruction-
refinement framework and does not apply both methods at the same
time to different locations as in [Sewall et al. 2011b].

One simple and straight-forward method to visualize the current
traffic condition is direct playback of the captured video data from
the road networks. But, the collective loads on the transmission
bandwidth and the number of camera installations would make such
an obvious approach impractical; furthermore, it cannot offer other
computational benefits for driver assistance, navigational aid, and
important decision-making analysis critical to other applications.
To the best of our knowledge, this work is the first method that of-
fers real-time visualization of vehicle traffic reconstructed directly
from temporal-spatial data readily available from existing in-road
sensors on the road networks. It does not require additional identi-
fication of individual vehicles, such as [Sewall et al. 2011a; van den
Berg et al. 2009], to visualize the current vehicle traffic condition
based on sensor measurements.

3 Approach

Our approach estimates traffic conditions based on a stream of traf-
fic data. The estimate is created by a smoothing process involving
an Ensemble Kalman Smoother and a macroscopic traffic simulator.
We use the estimate to drive an agent-based simulation to produce a
visualization of the traffic conditions. An overview of the approach
can be seen in Fig 2.

3.1 Preliminaries

Sensors: Our model assumes that the traffic conditions are mon-
itored by sensors. We assume these sensors are discrete spatially
and provide measurements at discrete time intervals. These mea-
surements are assumed to be an estimate of the density and veloc-
ity, or flow, of the traffic over the time interval. These sensors can
come in multiple forms as long as certain assumptions are satisfied.
Specifically, we assume that we know the location of the sensor,
and that the position of the sensor is fixed. We assume that the data
the sensors provide can be transformed into a density and velocity
estimate. A prominent form of sensor of this type is the loop detec-
tor. This form of sensor provides volume and velocity information,
from which the density of traffic can be calculated. Another form
of sensor that could satisfy these requirements are cameras, from
which the density and velocity of traffic at a point on the roadway
could be estimated.

Road Networks: The domain of a traffic simulation is a road net-
work. These networks can vary in complexity from being a single
lane to being a vast network of roads with multiple lanes, inter-
sections, highway ramps, overpasses, sources, sinks, and other fea-
tures. Our method assumes a multi-lane highway as its domain. We
follow [Wilkie et al. 2012] in creating the road representation from
available GIS data. The created geometry is C1 smooth and ensures
that car movements will satisfy the simple car kinematic constraints
[van den Berg et al. 2009; Sewall et al. 2011a]. Each lane has re-
lations defined to allow merging both between neighboring lanes

as well as between the highway and ramps. The geometry of each
lane is discretized for the purposes of macroscopic simulation as
well as state representation. The lanes have associated lengths, and
cars moving along the lanes have positions in a local 1D coordinate
frame, where the beginning of the lane is at position 0 and the end
is at position length. The cell containing a particular position p will
be referred to as cell(p).

3.2 State Estimation

Our approach assumes traffic data are spatially and temporally
sparse and therefore describe only a small fraction of the over-
all traffic conditions. Under such assumptions, it is necessary to
estimate the full traffic state given the sensor measurements. We
achieve this estimation via a state estimation process, which makes
use of all available sensory information, as well as a macroscopic
model of traffic dynamics. An example of the ground truth and
resulting estimate can be seen in the Appendix.

The full traffic conditions, as we described previously in Section 1,
involve the states of all the individual vehicles. To abstract these
conditions to the form of a state of traffic, we must make an as-
sumption about the dynamics of traffic, as different dynamics mod-
els will require different state formulations in order to fully specify
how the traffic will evolve. We assume a macroscopic model de-
scribed in [Sewall et al. 2010], based on the equations of Aw and
Rascle [2000] and Zhang [2002]. Following Lebacque [2007], we
refer to this as the Aw-Rascle-Zhang (ARZ) model. This traffic
model describes the evolution of aggregate traffic statistics, density
and velocity, along lanes and makes use of a parameter for deter-
mining the speedlimit, vmax, and a parameter γ to define a relation-
ship between the velocity and the density. Following this, the state
of traffic will be a vector,

x = (ρ1,y1,ρ2,y2, ...,ρN ,yN ,γ,vmax) (1)

where ρi is the density and yi is the relative velocity, defined below,
of the ith cell of the lane; a single lane with n discrete cells will have
2n+2 degrees of freedom.

3.2.1 Flow Reconstruction

To create a state estimate, we do a smoothed reconstruction of the
traffic using sensor measurements and a macroscopic traffic simu-
lator. This reconstruction uses the Ensemble Kalman Smoothing
(EnKS) method [Evensen 2003]. The estimation process main-
tains an ensemble of states for each timestep, and each ensemble
member is updated sequentially when a new sensor measurement
is received. The update involves advancing the ensemble members
via simulation and applying corrections based on the difference be-
tween the received measurements and the current state. The esti-
mated state of the traffic at time ti, i ∈ [0,N) is the mean of the en-
semble of potential states for time ti after the sensor measurement
at tN−1 has been received.

The EnKS has two principle components, a motion model and an
observation model. The motion model,

xt = f (xt−1,mt), mt ∼N (0, I), (2)

describes the evolution of the dynamic system. It propagates the
state xt−1 to the state xt given noise mt . This particular formulation
assumes that the state depends only on the previous state and noise,
not control inputs. The observation model,

zt = h(xt ,nt), nt ∼N (0, I), (3)
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Figure 2: A schematic view of the approach.

relates the simulated dynamic states, xt to real world measurements,
given measurement noise nt .

These models are used to propagate an ensemble of states, Xt =
{x0

t , . . . ,x
M−1
t } that represents the distribution of the unknown true

state of the system. At each time interval, both models are calcu-
lated, and the result is used to update the ensemble. This is shown
in 1, where the mi

t is drawn randomly and independently from
N (0, I), ni

t is drawn randomly and independently from N (0, I),
and zt is the obtained measurement. Note that ẑt = E(zt), x̂t =
E(xt), Σt = Var(zt), and Γt = Cov(xt ,zt).

Algorithm 1: EnKS for Traffic State Estimation
Input: Traffic sensor measurements z1...ztn , ARZ simulator in f ,

observation model in h, initialized ensemble x0
0...x

m−1
0 ,

noise vectors m0
t ...m

m−1
t and n0

t ...n
m−1
t ,∀t ∈ 1...tn

Output: Traffic state estimates x̂t ,∀t ∈ 1...tn
for t ∈ 1...tn do

for i ∈ 0...M−1 do
// Motion model

xi
t ← f (xi

t−1,m
i
t);

// Observation model

zi
t ← h(xi

t ,ni
t);

// Analysis

ẑt ← 1
M ∑

M−1
i=0 zi

t ;
Σt ← 1

M−1 ∑
M−1
i=0 (zi

t − ẑt)(zi
t − ẑt)T ;

for j ∈ 1...t do
x̂ j← 1

M ∑
M−1
i=0 xi

j;

Γ j← 1
M−1 ∑

M−1
i=0 (xi

j− x̂ j)(zi
t − ẑt)T ;

K j← Γ jΣ
−1
t ;

for i ∈ 0...M−1 do
xi

j← xi
j +K j(zt − zi

t),;

// Final output
for t ∈ 1...tn do

x̂t ← 1
M ∑

M−1
i=0 xi

t ;

In the sequel, we discuss the details of this process, including en-
semble initialization, the motion and observation model formula-
tions, and issues concerning noise and tuning.

3.2.2 Ensemble Initialization

We initialize each ensemble member, xi
0, with random values for

density, ρ , relative velocity, y, speedlimit, vmax, and the fundamen-
tal diagram parameter, γ . vmax is drawn uniformly from [10,60]
meters per second; γ is drawn uniformly from [0.05,0.9]. The den-
sity for the first cell is drawn uniformly from [0,0.9], as we consider
the maximum density, 1, to be unachievable in real world scenarios.
The velocity, v, for the first cell is drawn uniformly from [0,vmax],
from which a relative velocity is calculated.

The density and velocity for subsequent cells is the result of a dy-
namic random walk with bounded ρ̇ , ρ̈ , v̇, and v̈. The created den-
sity and velocity fields are C2 when they are within the imposed
bounds on ρ and v. While we discuss the creation of the state in
terms of the velocity, it is the subsequent relative velocity that is
stored in the state.

3.2.3 Motion Model

As discussed in the previous section, the motion model propagates
each ensemble member forward to time t given the state at time
t− 1. The state, as described above, is defined to fully specify the
evolution of traffic using the ARZ simulation formulation. For each
iteration, each ensemble state xi

t−1 is evolved forward using the mo-
tion model. Each lane is simulated independently, with the density
and velocity values for the 0th and Nth cells being held constant to
implement the boundary conditions. The duration of the simula-
tion is defined by ∆t f ilter, i.e. the frequency with which traffic data
are received. After each simulation run, Gaussian noise is added to
each member of the state, as described below.

ARZ system of equations The macroscopic simulation compo-
nent of our method is based on the nonlinear hyperbolic system of
partial differential equations proposed by Aw and Rascle [2000] and
Zhang [2002]; this system describes the motion of vehicles along
a lane in terms of vehicle density ρ , velocity v, and the derived
quantity y, the so-called relative velocity. The system is:

qt + f(q)x = 0, q =
[

ρ

y

]
, f(q) =

[
ρv
yv

]
(4)

In the parlance of hyperbolic PDEs, Eq. (4) is in conservation form;
the column vector q = [ρ,y]T describes quantities whose totals in
the whole system change only due to what flows in and out of
boundaries. Conservation forms are convenient for discovering im-



portant properties of and finding solutions to hyperbolic systems,
and this motivates the introduction of the relative velocity y.

Relative velocity It makes intuitive sense that the density of ve-
hicles ρ must be conserved (its sum over the system reflects the
total quantity of vehicles therein), but we should not expect that the
velocity v should directly be conserved — were this so, whenever a
vehicle slowed down, another would have to accelerate!

Thus, the concept of relative velocity y is introduced, which roughly
describes how fast vehicles are traveling compared to the ‘optimal
velocity’ for a given density. Specifically, y is related to ρ and v as
follows:

y(ρ,v) = ρ
(
v− veq (ρ)

)
(5)

The quantity veq (ρ) is the equilibrium velocity for ρ — the largest
velocity that may be achieved at a given ρ . This is closely related
to an important concept in traffic flow, the fundamental diagram,
which is a curve that plots the flux of traffic (i.e. the throughput
of vehicles ρv) as a function of increasing density [Zhang 2002].
Fundamental diagrams differ from flow to flow, but invariably the-
oretical models and empirical observations show that they are con-
vex functions of ρ with a single, unique maximum; this fits intu-
ition — where ρ = 0, there is clearly no flux, and as ρ approaches
1 (bumper-to-bumper traffic), velocity approaches 0 and flux falls
back to zero.

In the ARZ model, veq (ρ) is defined as follows:

veq (ρ) = vmax (1−ρ
γ ) (6)

where the vmax is the speedlimit of the lane and γ ∈ (0,1) is a pa-
rameter that characterizes the fundamental diagram.

Numerical macroscopic solutions To obtain numerical solu-
tions to Eq. (4), we use the Finite Volume Method with Riemann
solver specific to the equations.

A lanes is partitioned into N discrete cells of length ∆x. The discrete
quantity Qi = [ρi,vi]

T , i ∈ Z[0,N) represents the average value of
q over cell i.

To advance the solution from time tn to tn+1, we use forward Euler
integration:

Qn+1
i = Qn

i −
∆t
∆x

(
Fn

i−+Fn
i+

)
(7)

where Qn
i is the average value of q in cell i at time n, ∆t = tn+1− tn

and the fluxes Fn
i− and Fn

i+ are the average value of f(q) from tn to
tn+1 at the interface between i and the neighboring cells i− 1 and
i+1, respectively (i.e. Fn

i− = Fn
i−1+ and Fn

i+ = Fn
i+1− ).

In practice, for nontrivial f such as that found in Eq. (4), exact com-
putation of Fn

i− and Fn
i+ is not possible and we must settle for an

approximation; the most robust such approximations are found by
solving the so-called Riemann problem at each interface between
adjacent cells to determine how the solution is evolving there. The
computation of these Riemann problems is the most computation-
ally expensive portion of the macroscopic solution procedure, but is
critical to obtain correct, stable solutions in the presence of nonlin-
ear phenomena such as shocks, rarefaction, and “vacuum” states.

A detailed description of the Riemann problem for the ARZ system
of equations and the appropriate accompanying Riemann solver can
be found in Appendix B of [Sewall 2011].

3.2.4 Observation Model

The observation model creates a measurement zi
t of the simulation

state xi
t in order to compare the simulation with the sensor measure-

ments. We create a vector containing density and velocity measure-
ments of the simulation. For each real-world sensor location p, we
return the ρ , v pair for cell(p). These measurements are perturbed
with Gaussian noise, as described below.

3.2.5 Tuning and Noise

After each ensemble member has been propagated by the motion
model, zero-mean Gaussian noise is added to each cell. For each
cell, the noise is scaled to account for the differences between dif-
ferent parts of the states. Specifically, the γ and vmax elements of
the state receive more noise than the density and relative velocity
elements, and the boundary elements receive more noise than the
interior elements. Additionally, as we have topological informa-
tion about the simulation domain, we can enhance the model by
transforming the noise at points according to the road network. For
example, we allow a wider range of noise at on ramps and off ramps
(respectively additive noise and subtractive noise) to allow the sys-
tem to account for cars entering or leaving the lane. Values for these
noise weights can be found in 4.4.

3.3 Detailed Reconstruction

In the state estimation phase, we generate estimates for the average
state of traffic over a time interval, defined as the time between
two subsequent sensor measurements. These state estimates are
created with a macroscopic simulation, implying no individual cars
exist to be visualized. Additionally, the state estimation is done
independently for each lane of the road network.

In this section, we present our approach to creating an agent-based
simulation that matches the given macroscopic state estimate. This
stage simulates traffic on all the lanes of the roadway simultane-
ously and uses controlled merging between them. The end result of
this process is an animation that provides real-time visualization of
the traffic flow, where the output is a collection of states for indi-
vidual cars. The simulation is controlled via boundary conditions,
parameter fitting, and merging.

3.3.1 Vehicle Instantiation

We must provide an initial population of vehicles along each lane.
To do this, we use a straight-forward approach of creating cars as
evenly spaced as possible to satisfy the density specified in the state
estimate. The result of this step may appear too uniform to be mis-
taken for real traffic, but our primary concern here is to show that
the statistical properties of the original traffic flow are captured. As
such, we wish to introduce as little additional noise as possible.

To achieve this for lane j, we take its state estimate at the first con-
sidered timestep, x0. Let ρ0 be the vector of densities in x0, and
v0 be the velocities derived from the relative velocities, vmax, and γ

of x0. Let p be a position in the local 1D coordinate frame of the
lane, as described in Section 3.1. We initialize p to 0, the beginning
of the lane. Then, iteratively, we calculate the separation distance
that is implied by the cell(p)th member of ρ0, i.e. the density es-
timate for that part of the lane. The separation distance is defined
as 1

ρp
car length−car length. The separation distance is added to p,

and a car is added to the roadway at p. The cars initial velocity is
set to the cell(p)th member of v0.



3.3.2 Particle Advection

We use an agent-based simulation to visualize the individual cars
that make up the traffic flow. Each car is advected using the ve-
locity field estimated previously. The velocity field estimates are
lane-specific and constant during a filter interval. The field is dis-
cretized into cells, each corresponding to a cell of the macroscopic
simulation (as discussed in 3.1). To increase the heterogeneity of
the simulation, each car can optionally be given a velocity scaling
factor, drawn from a bounded normal distribution, to bias its pre-
ferred speed.

To allow for accurate integration over large timesteps, we calculate
a velocity for each car that is the weighted combination of the cell
velocities through which the car will pass during the timestep. Each
velocity is weighted by the amount of time the car will spend within
the corresponding cell.

As the velocity field is constant over a time interval, it is possible
for cars to come into collision. To prevent this, we can restrict
the velocity applied to a car in cell(p) as v = min(vp,∆x− s1 + vl),
where v is the velocity applied to the car, vp is the velocity of the
estimated velocity field, ∆x is the distance between the two cars, s1
is a minimum separation distance (including the car length), and vl
is the velocity of the leader car. Thus a car cannot take a velocity
that would result in it being a distance less than s1 from the leading
car.

3.3.3 Boundary Conditions

As the agent-based simulation advances, cars will leave the network
and new cars need to be added to visualize the traffic flow. The
inflow requirement is defined a flow rate for each lane as rl = ρs

l vs
l ,

where ρs
l and vs

l are the density and velocity of the first cell in the
state estimate for the lane. We create cars uniformly to satisfy this
rate as follows. From the density component, ρs

l , we can derive the
separation distance sl , as described in 3.3.1. During each timestep,
the last car in a lane will be at position p. We create cars such that
the ith created car is at position p− sl ∗ i. The cars are created until
there is no longer any space in the lane. The velocity component of
the flow rate is satisfied implicitly: the time required for sufficient
free space to be created is dependent on the velocity that the created
cars are moving.

Creating cars in this manner can match the flow rate as well as allow
large time steps if desired, however the traffic created can appear
too uniform to be realistic. To prevent this, we can add bounded
zero-mean Gaussian noise, ns, to the separation distances used for
car creation. The noise is bounded such that ns > sm +smT vs

l , where
sm is a minimum distance including the car length and some sep-
aration distance, smT is a minimal stopping time that determines,
with vs

l , a dynamic minimal distance. This constraint is derived
from the Intelligent Driver Model [Treiber et al. 2000], which is a
microscopic traffic model based on a leader-follower equation.

3.4 Merging

Modeling traffic merging is an area of ongoing research that in-
volves driver decision making as well as a complicated interplay of
dynamics, kinematics, and multi-agent reactions. For visually real-
istic and detailed animations, a merge must be considered as having
a time duration larger than a simulation timestep. This implies cars
must be capable of being in the state of merging, and other cars need
to react appropriately to merging cars. Further, for controlled traffic
animation, we need to constrain and direct merging to bring the an-
imation in line with the target state, while allowing users to specify
a level of merging activity to achieve their desired animation goal.

Our approach to controlled merging takes into account the accu-
mulated error in each lane’s density field. Starting from the most
downstream point of the highway, density error is aggregated for
each lane. If the absolute error is greater than one car, the corre-
sponding cell of the road is marked as a merge point. Cars at these
merge points can switch between lanes to account for the density er-
rors, as long as the agent-based kinematic and dynamic conditions
are satisfied.

We use additional decision criteria to determine if a car should
merge based on the local dynamics of the system. A car will not
merge if there is not enough space for it, if it would cause too great
a deceleration in its target lane, if, by merging, it would deceler-
ate itself, or if there is already a car merging into the lane in the
neighborhood upstream. These rules ensure that merging does not
detract from the natural flow of traffic or create unrealistic looking
situations.

It is important to note that while lane changing and merging are
departures from the ARZ system of equations, the dynamics that
result can be formally accounted for in the underlying equations as
source terms on the right-hand side; indeed, one such source term
for relaxation of relative velocity has traditionally used to promote
vehicle acceleration in the presence of headway. In particular, the
boundary integral of the multi-lane road still obeys conservation in
the first family; vehicles (density) is not lost or gained.

We implement these criteria using rules defined in terms of leader,
follower, target lane, and the dynamic and geometric characteristics
of the cars.

Definition 1. target lane. For a car a, an adjacent lane is one
reachable by a right or left merge. A target lane is an adjacent lane
that is a is considering merging into.
Definition 2. leader. For a car a and a lane l that either contains a
or is adjacent to a lane that contains a, we define the leading cars as
LC = {c|c.p > a.pL}, and the leader to be b ∈ LC, s.t. b.p <= c.p
forall c ∈ LC.
Definition 3. follower. For a car a and a lane l that either contains
a or is adjacent to a lane that contains a, we define the following
cars as FC = {c|c.p < a.pL}, and the follower to be b ∈ FC, s.t.
b.p >= c.p forall c ∈ LC.
Definition 4. fLF . A leader-follower function that returns an accel-
eration value given the positions and velocities of a leader car and
a follower car.

The four criteria based on these terms are defined as follows.

Criterion 1. For a car a, let b and c be the leader and follower in
the target lane respectively. A merge is forbidden if ((b.p−a.p) <
dcarspace)or((a.p− c.p) < dcarspace)or(b.p− c.p < dclear), where
dcarspace is the length of a car and a small buffer and dclear is the
gap clearance required for a safe merge.
Criterion 2. For a car a, let b be the leader in the target lane. A
merge is forbidden in fLF (a.p,b.p,a.v,b.v) < 0.
Criterion 3. For a car a, let b be the follower in the target lane.
A merge is forbidden if fLF (a.p,b.p,a.v,b.v) < adisrupt , where
adisrupt is an acceleration limit.
Criterion 4. For a car a, let b be the follower in the target lane. A
merge is forbidden if b is in the state of merging to the target lane.

Once a car a decides to merge, the actual merge operation must take
place over a simulation time interval. This involves moving the car
a from its current lane to its target lane in a manner that respects
both kinematic and dynamic constraints. In regard to the kinematic
constraints, merges are often geometrically modeled as a trajectory
resulting from a constant rate of change in the steering angle, i.e.
turning the steering wheel at a constant rate into the turn and then at
a constant rate out of the turn. The resulting path is a Clothoid (or



Euler or Cornu) curve, for which no analytical expression exists.
As a substitute, we use a polynomial approximation of the curve.
In regard to the dynamic context, once a begins a merge, it can be
said to belong to both its current lane and its target lane. However,
a conservative approach to reconciling these two control influences
leads to unrealistic traffic flow and congestion. We therefore al-
low a merging car to safely ignore its leader once it has passed the
midway point of its merging curve.

4 Results

We have implemented our techniques presented here and tested
them on traffic data from publicly available online sources.

To demonstrate our method, we reconstruct virtualized traffic on a
segment of highway. The sensor data used for these experiments
is from the Next Generation Simulation (NGSIM) program [NGS
2013]. The roadway on which the data are measured is a stretch of
I-80 in Northern California, with an on-ramp and an off-ramp. The
highway has six lanes, one of which is a ‘car-pool lane’. The data
are broken up into three segments, each covering a fifteen minute
period.

The data consists of detailed trajectory data for every car on the
highway during the periods of observation. The trajectories are ul-
timately from multiple cameras installed along the highway. The
advantage of this data set is that it provides a detailed ‘ground truth’
for the traffic, which is normally unknown.

From these trajectories, we extract data to use as the sensor mea-
surements in our system, to represent loop detector measurements.
These measurements are a subset of the information in the full tra-
jectory data set. To create the measurements, we calculate density
and velocity fields over each lane at each time step. The sensors
measure these fields in the neighborhood around their fixed posi-
tions. For our experiments, we use only two sensors, each only
viewing one cell-length (See Section 3.1.) of the flow field. The ap-
proximate locations of the sensors can be seen in Fig. 2. Ultimately
the sensors each provide an average density and velocity reading for
a time span, which corresponds to the kind of measurements actual
loop detectors provide [Jia et al. 2001].

4.1 Metric

We present the results of our experiments using lane-mean values,
defined for density as

ρl =
∑

N−1
j=0 ρ j

N
. (8)

This measure can be defined for the ground truth data (the hidden,
full car trajectory data), the macroscopic state estimation, and the
agent-based simulation. The velocity version of this calculation
follows directly. This measure was used so as to demonstrate the
global tracking ability of the system.

4.2 Highway Reconstruction Experiment

The results presented in Fig. 3 are for the time interval of 5:15 pm to
5:30 pm, when the highway traffic experiences congestion and traf-
fic jams. In Figure 4, we see the lane-mean densities over time for
a lane of reconstructed highway traffic. (Please see the Appendix
in the supplementary document for other lanes). This scenario is
fairly challenging as the traffic enters a congested state.

In these plots (shown in Fig. 4), we can see the state estimates
of density and velocity for traffic along a highway lane (red) and

the agent-based detailed reconstruction (blue) closely tracking the
ground truth (green). The maximum error is on the order of 0.1
cars per 4.5 m (the car length) for the density tracking and 3 m/s for
velocity tracking.

The root mean square (RMS) of the error for all lanes of the data
set can be found in the Appendix. The density error ranges from
0.03 to 0.1 cars per car length (or proportion filled with cars), and
the velocity error ranges from 1 to 2.5 meters per second.

4.3 Loop Detector Experiment

We have also reconstructed traffic flow from raw loop detector data
from the PeMS system [Jia et al. 2001]. The state estimate and
detailed reconstruction initially fail to track the sensors, but later
converge. In Fig. 5, we can see that our method can track the mean
of the loop detector measurements well once converged.1

For this experiment, we used two loop detector stations, with IDs
402615 and 403404, on one mile of I-880 northbound. We used the
measurements from the second lane and reconstructed 3000 sec-
onds of traffic flow, starting at 4:30 pm of 3/14/13. The interval
between sensor measurements was 30 seconds.

4.4 Implementation Details

For our clover leaf scenario, seen in the suplimentary video, we
used an ensemble size of 100. For our highway reconstruction, we
increased the ensemble size to 250 to create a high quality recon-
struction. The cell length, ∆x, in each case was 9.4 meters. The
timestep used for the ARZ simulator during the reconstruction was
∆t1 = 0.3. The timestep used for the detailed reconstruction was
∆t2 = 0.05 seconds. Sensor measurements occur at ∆t3 = 15 sec-
ond intervals.

The motion model’s m and observation model’s n noise vectors
were weighted with hand-tuned parameters. The parameter values
were as follows. For the observation model, 0.15 was used for the
density measurement, and 4.5 was used for the velocity measure-
ment. For the motion model, 0.005 was used for the state density
and relative velocity; 6 was used for the speed limit, 0.1 was used
for γ , 0.2 was used for ramp density and relative velocity, and 0.3
was used for density and relative velocity at the lane boundaries.

4.5 Performance Analysis

Assuming the number of ensemble members dominates the dimen-
sion of the observation vector, the complexity of estimating the traf-
fic state for one lane for one time interval is the cost of advancing
the traffic states, O(tim|x|), plus the cost of the analysis operation,
O(tim|x||z|), where ti is the number of sensor measurments, m is the
number of ensemble members, |x| is the state size, |z| is the size of
the observation vector, f (x,m) is the cost of the motion model. The
complexity of reconstruction for one lane for a timestep is O(|x|c),
where c is the number of cars.

Our functional implementation serves more as a proof-of-concept
than a benchmark; nonetheless, the efficiency of this technique
is promising. We have tested a prototype implementation (single
threaded, unvectorized code) on an Intel c© Core

TM
i7-2820QM

processor at 2.3 GHz. Our performance results are for a test sce-
nario of a 1km road with 2 sensors. The ensemble size is set at 250,
and the filter interval is set to 15 seconds. In total, 3000 seconds of
traffic are reconstructed.

1Note that the loop-detector data has no values for the regions between
sensors, so there is no true ground state with which to compare.



Figure 3: In this figure, there are three comparisons between the reconstruction and video footage from 5:17, 5:21, 5:25 (Minutes two, six,
and ten for the 5:15 data set). In the first image, we see our method over estimates the density in at least two of the lanes in this area. In
the next two images, congested traffic is both reconstructed and found in the source data. We can see lane-specific features of the traffic are
reconstructed: in all cases, the HOV lane shows a much lower density (and has a higher velocity) than the other lanes. (It should be noted
that the camera placement for the reconstruction images is only approximate.)

The run time is dominated by the state estimation, which takes 2.7
seconds per step, and 547.6 seconds total. This computation is al-
most completely dominated by a large ensemble of macroscopic
traffic simulation runs, wherein each of the motion ensemble is
simulated forward in time. The detailed reconstruction took 0.2
seconds per interval, and 42.1 seconds total.

The performance of this technique can be substantially acceler-
ated through an architecturally-aware (such as GPU-based or many-
core) implementation. In particular, there are multiple opportunities
to exploit thread-level and data-level parallelism in the ensemble of
many macroscopic simulations for state estimation. Using the in-
creasing computational power will allow our method to effectively
handle even larger road networks more efficiently.

While this work has focused on a single (multi-lane) stretch of road,
our technique is easily made to scale to larger networks; multiple
roads are loosely coupled at their endpoints, which ensures a high
availability of thread-level parallelism. Furthermore, the algorithm
is linear in each of the ensemble size and the number of cells –
either of these can be refined and performance will vary linearly.

4.6 Comparison with Related Work

This is a similar problem to [van den Berg et al. 2009; Sewall et al.
2011a], however our approach is radically different and has mul-
tiple advantages. Unlike VT, which required individual car data
and identification, we make realistic assumptions about sensor data.
Furthermore, our method is real-time and scalable, whereas VT
uses an exponentially complex per-car motion planning algorithm
in a discretized acceleration space. Our method creates data-driven
traffic animation from reconstructed flows and traffic models, al-
lowing user-interaction and flexibility. Our work features a novel
estimation approach using a state of the art simulation formula-
tion, novel extensions to microscopic simulation, and efficient lane
changing formulations, in addition to the generality of the overall
approach. Our approach can lead to future work in user-controlled
animation, traffic analysis and diagnosis, and numerous other ex-
tensions. Further details on specific differences follow.

• Sensors: Our work assumes a form of traffic sensor measure-
ment that exists currently and is publicly available. We as-
sume measurements of volume and velocity, which are avail-
able for in-road loop detectors [Rice and Van Zwet 2004] and
can be derived from camera data. The earlier works [van den
Berg et al. 2009; Sewall et al. 2011a] assumes readings for
individual cars at road boundaries, which is not readily avail-
able. Furthermore, our work allows for sensors to be located
arbitrarily along a lane.

• Macroscopic: The related work reconstruct trajectories for
individual cars. Our approach focuses on a macroscopic re-

construction first, and then a visualization consisting of indi-
vidual cars. This has two benefits. First, it protects the pri-
vacy of drivers by making it impossible to trace individual
cars. Second, it drastically decreases the amount of informa-
tion needed to perform a reconstruction. In our work, the size
of the sensor data is constant, while in the previous work the
size scales with the number of cars.

• Simulation: Our work creates a simulation-based recon-
struction with which a user could interact. A user could re-
construct and visualize traffic, then drive a virtual car in that
traffic. The reconstructed cars would react to the user, for ex-
ample allowing the user to create a traffic jam when one did
not occur in the observed data. This capability is not possible
with the earlier approach.

In terms of quantitative accuracy, it is difficult to make a compar-
ison between the two approaches due to their differing formula-
tions. However, in [Sewall et al. 2011a], the authors found that
their method was able to find trajectories for 82% of the vehicles.
This statistic may be viewed roughly as a measure of density accu-
racy. However, this metric is simplistic for a few reasons. First, it
ignores the variation between lanes. Some lanes may be congested
while others are free flowing. Second, it ignores inner lane density
variations, i.e. a traffic jam on the first part of the highway and free
flowing traffic farther downstream. However, ignoring these com-
plications, we can state that our method can reconstruct the motion
of all vehicles and it should have at least comparable density ac-
curacy, if not higher at several places(see Appendix for details). It
is not possible to compare the accuracy in the velocity field recon-
structions with earlier methods, as such information was not avail-
able.

Our work compares favorably with the prior work in terms of com-
putational cost, where [Sewall et al. 2011a] reconstructed 15 min-
utes of real-world traffic in 6.64 minutes of computation. Using
the same dataset, our method can reconstruct 15 minutes of traffic
in a matter of seconds, as discussed above in Sec. 4.5. This per-
formance improvement can be easily explained by the fact that our
method does not require an expensive, priority-based, multi-agent
route-planning algorithm.

5 Conclusion

We have presented a real-time traffic reconstruction and visualiza-
tion algorithm using traffic sensor data obtained from in-road loop
detectors. Our approach seamlessly integrates an efficient state esti-
mation method using Ensemble Kalman Filter and continuum traf-
fic simulation with a fast traffic reconstruction using an agent-based
traffic simulation system that produces realistic motion for individ-
ual vehicles whose global states (e.g. density and velocity fields)
are consistent with the estimated traffic flow in the real world and
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Figure 4: The lane-mean density and velocity for a lane of highway
traffic. The green line is the ground truth, the red line is the state
estimate, and the blue line is the agent-based simulation.

individual vehicle’s kinematic and dynamic constraints. The com-
putational framework presented here has been implemented, tested,
and validated on real-world traffic data.

5.1 Limitations

Complex traffic phenomena happen primarily on highways, there-
fore we focus on this aspect. Intersections are a difficult issue in
regard to data-driven animation as they have their own states. How-
ever, this work could be easily combined with a microscopic simu-
lation of an urban area with intersections.

The accuracy of our method is limited by the available data. High
frequency traffic phenomena can be missed if the data is too tempo-
rally sparse. Our estimation method is fundamentally macroscopic,
so one should not expect individual cars to match.

In certain scenarios, the macroscopic estimate and the microscopic
detailed reconstruction could diverge as our method does not guar-
antee vehicles are conserved in the macroscopic estimate. In some
cases, this could be handled by animators. The excess or deficit
microscopic flow can be corrected by adding or removing cars
at acceptable points, such as ramps, off screen, etc. However,
these boundary points may not always be present. Further, if the
boundary points themselves have sensors and estimates, the ad-
dition/removal of flow could cause the microscopic state of the
boundary points (e.g. highway ramps) to diverge. This could create
an incorrect visualization of cars entering or leaving the network at
locations inconsistent with the real world.
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Figure 5: The lane-mean density and velocity for a lane of highway
traffic reconstructed from loop detectors.

5.2 Future Work

We would like to extend this work to handle large, complete net-
works of highways and the road networks surrounding them. An-
other interesting extension of this work would be to add visual-
ization of traffic predictions along with the current state estimate.
We can also use both historical data, as well as driver specific data
and cell-phone sensing to improve the filtering performance. Fi-
nally, our system could be combined with routing algorithms to
provide both efficient plans and visualizations of those routes on
virtual globe systems.
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