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Abstract—We present a novel technique for synthesizing tex- Additionally, these properties tend to vary across the surface
tures over dynamically changing fluid surfaces. We use both of the fluid as well as over time. Typically, these material
image textures as well as bump maps as example inputs. Imagep,gnerties behave like a texturee., the fluid appearance
textures can enhance the rendering of the fluid by either . S s
imparting realistic appearance to it or by stylizing it, whereas consists of chal features that are statistically self_-5|m|lar over
bump maps enable the generation of complex micro-structures Space and time. Even though these features diffuse as they
on the surface of the fluid that may be very difficult to synthesize move along with the fluid, they also re-generate over time,
using simulation. To generate temporally coherent textures over ensuring that, statistically, the appearance of the fluid features
a fluid sequence, we transport texture information, i.e. color and remains the same. We exploit this property of fluid behavior

local orientation, between free surfaces of the fluid from one by obtaini le textural i f the fluid of int t
time step to the next. This is accomplished by extending the y obtaining example textural images of the fluid ot interes,

texture information from the first fluid surface to the 3D fluid and using them to render the appearance of the fluid. Fjgure 1
domain, advecting this information within the fluid domain along demonstrates an example where the appearance of lava flowing

the fluid velocity field for one time step, and interpolating it back over a mountain is made much more interesting by rendering
onto the second surface — this operation, in part, uses a novel it with texture. Our technique also provides a new way of

vector advection technique for transporting orientation vectors. . . . o
We then refine the transported texture by performing texture visualizing surface properties of the fluid like flow and shape

synthesis over the second surface using our “surface texture By €xposing them using the appearance and evolution of the
optimization” algorithm, which keeps the synthesized texture synthesized texture.
visually similar to the input texture and temporally coherent Textures have been extensively used to impart novel appear-
%‘:htézﬁjrtéagjﬁ%réi?s Oc;‘ne- d%eagiegﬁ;‘sé(/a;ﬁ/iggr f&?a’eéui'fg‘éggh?r‘] ance to static surfaces, either by synthesizing texture over a
several challenging scenarios. plang_and wrapping it over the surface, or by dlrec.tly syn-
Index Terms— Texture Synthesis, Fluid Simulation, Surfaces, thesizing the texture over surfaces. However, extending these
Vector Advection. techniques for texturing a surface that is dynamically changing
over time is a non-trivial problem. This is so because one
needs to maintain temporal coherence and spatial continuity
|. INTRODUCTION of the texture over time, while making sure that the textural
EALISTIC modeling, simulation, and rendering of fluidelements or features that compose the texture maintain their
media have applications in various domains, includingsual appearance even as the entire texture evolves. Such a
special effects, computer animation, electronic games, eyeneral technique would also aid in creation of special effects
gineering visualization, and medical simulation. Often thwith fluid phenomena, where the effect involves texturing a
computational expense involved in simulating complex fluifluid surface with arbitrary textures (as shown in Figlfe 9).
phenomena limit the spatio-temporal resolution at which thedelditionally, it has potential applications in the visualization
simulations can be performed. This limitation makes it exf vector fields and motion of deformable bodiesy., the
tremely difficult to synthesize complex fine-resolution microvelocity field of the fluid near its free surface is made apparent
structures on the free surface of the fluid, that are usuaby the continuously evolving texture.
present in many commonly occurring fluid phenomena. Ex-
amples of such micro-structures include small-scale wavesAn Main Results
a river stream, foam and bubbles in turbulent water, patterndn this paper, we present a novel texture synthesis algorithm
in lava flow, etc. Even with a highly robust and sophisticatefdr fluid flows. We assume that we have available a fluid
fluid simulation system capable of modeling such structuresmulator, which is capable of generating free surfaces of the
it is quite difficult to control the shape and appearance sfmulated fluid medium as well as providing the fluid velocity
these structures within the simulation. We explore an altdield. We develop a technique for performing texture synthesis
native approach which makes use of examples or samplesonfthe free surface of the fluid by synthesizing texture colors
fluid shape and appearance to aid and complement the flaidpointsplaced on the surface. This is motivated by previous
simulation process. methods for synthesizing texture directly on surfaces [1]-
An important aspect of synthesizing fluid animations is th&]. However, these approaches typically grow the texture
rendering and visualization of the fluid. In order to rendegoint-by-point over the surface. We extend and generalize the
the desired appearance of the fluid, one needs to accuraidba of texture optimization [4] to handle synthesis over 3D
model the material properties of the fluid. In general, it is norsurfaces. Consequently, ours is a global technigue, where the
trivial to model these properties, since they depend on multigiexture over the entire surface is evolved simultaneously across
factors like density, temperature, viscosity, turbulence, ettwltiple iterations.
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(A) (B) ©)
Fig. 1
LAVA SCENE RENDERED WITH AND WITHOUT FLUID TEXTURING (A) SHOWS A FRAME FROM A LAVA ANIMATION RENDERED WITHOUT ANY TEXTURE
SYNTHESIZED OVER IT, WHILE (B) AND (C) SHOW THE SAME FRAME RENDERED AFTER TEXTURING USING TWO DIFFERENT LAVA TEXTURES

In order to maintain temporal coherence between movirgvariety of textures on several scenes, including a broken dam,
surfaces in different time steps, we need to ensure that theiver scene, and lava flow, as shown in Figjres[9]- 14.
texture synthesized on consecutive surfaces is similar to each
other. We achieve this goal by first transporting the texture g Organization
the surface in the first time step to the next using the velocity
field of the fluid that was responsible for the transport of the

surface in the first place. The transported surface texture is t : )
n Section[Tl], we present an overview of our approach.

used as &oft constrainfor the texture optimization algorithm . . :
}%e_ describe the pre-computation required to construct the

when synthesizing texture over the second surface. The tra data struct NS IV and lized
port of texture across 3D surfaces is not as straightforward ffgcessary data structures in ecfiop and our generalize
ture optimization technique on 3D surfaces in Sedfipn V.

advecting pixels using 2D flow fields in the planar case, sin%x th lain h intain t | coh  th
there is no obvious correspondence between points on the t €N expiain how we maintain temporal coherence of the
ulting texture sequence by transporting texture information

surfaces. We establish the correspondence by first transferrif AL :
texture information (color antbcal orientatior) from the first between successive time steps in Secfioh VI. We show the

surface onto a uniform 3D grid, followed by advection ofesults of our system in Sectign YII. Finally, we conclude

texture information on this grid using the velocity field oIW'th some possible future research directions.
the fluid. The advected texture is then interpolated back on
the second surface to complete the transport.
Our approach has the following characteristics: In this section, we briefly summarize recent advances in the
« It can work with any fluid simulator that provides the'esearch areas relevant to our work.
3D velocity fields and free surfaces of the fluid at each
iteration as output. A. Example-based Texture Synthesis

« It can take image textures, bump/displacement maps, aSgxiyre synthesis has been widely investigated in computer
well as alpha maps as input. _ _ graphics. Various approaches are known, including pixel-
« It performs texture synth.e5|s @jynamlc_ally evolving 3D | 45eq [5], [6], patch-based [7]-[9], and global synthesis [4],
surfaces as opposed to just 2D flow fields. _[10]-[12] techniques. Patch-based techniques usually obtain
« It can handle significant topological changes in the Sinkigher synthesis quality than pixel-based methods. Global
ulated fluids, including merge and separation of multiplg,cpniques provide the most control, especially when coupled
fluid volumes. ) o i with an intuitive cost metric, and are therefore most desirable
« It preserves theisual similarity}] of the synthesized tex- ¢ fid texturing. Our synthesis algorithm is based on a
ture to the input texture, even while advecting both scalgfoha texture optimization technique [4] which achieves a
(e.g. color) and vector quantities (local orientations) desce plend of quality and flexibility by working with patch
scribing the texturg, to maintain temporal coherence With,oq of varying degree from large to small.
respect to the motion of the 3D fluid. An important class of texture synthesis techniques relevant
Our technique for advection of vector quantities through®@ our work is that concerned with surface texture synthesis,
velocity field is a novel contribution which may have othefyhere texture is synthesized directly over a 3D surface. The
applications as well. It takes into account rotation undergopgimary issues that arise here include representation of the
by the vector when traveling through the velocity field ifexture and neighborhood construction and parameterization
addition to the translation. We demonstrate our algorithm usifg performing search in the input texture. Turk [1] and

Wei and Levoy [2] represent texture by storing color and local
lvisual similarity refers to the spatial continuity and the resemblance of y [ ] P y 9

visual appearance between the input and synthesized textures. See@tiorﬁlf'-gace Or.'entat'on on points un'formly distributed over the
for more details. surface. Ying et al. [3] parameterize the surface locally onto

The rest of the paper is organized as follows. In Segfipn II,
e briefly summarize the related work in relevant areas.

Il. RELATED WORK
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the plane to compute a texture atlas, which is then used@o Fluid Simulation and Flows on Arbitrary Surfaces

perform synthesis in the plane. Praun et al. [13] also performgimuylation of fluids and various related natural phenomena
local patch parameterizations for generating lapped texturggye received much recent attention. Foster and Metaxas [22]
The technique of Maillot et al. [14] is significant in thegng stam [23] were among the pioneers in using full 3D
context of surface parameterization for texture mapping. FRGvier-Stokes differential equations for generating fluid ani-
point based representations, texture neighborhoods need t¢kfions in computer graphics. Level set methods [24], [25]
constructed on the fly. While in [1], surface marching is used kave been developed for tracking and rendering the free
compute the neighborhood, in [2], the mesh vertices are locallijrface of the fluid. Specialized techniques for synthesizing
parameterized onto the plane to form each neighborhood. W&ailed fluid phenomena like drops, bubbles, and foam etc,
use both kinds of neighborhoods in our work (see Se¢tior} Viirectly through simulation, have also been researched [26]-
for more details). [28]. In the context of our work, fluid simulation is treated as
a black box, where its outputs, namely the 3D velocity field
and the free surface, are used by our algorithm to transport
B. Flow-Guided Texturing and Visualization texture information between successive frames and synthesize

Kwatra et al. [4] introduced a new technique for Zdhe texture on the fluid surface, respectively.

. : : T Recently Stam [29], Shi and Yu [30] have proposed methods
texture synthesis based on iterative optimization. They also . . )
) 0 simulate Navier-Stokes flows on 2D meshes. Stam’s method
demonstrate how the same technique can be used for flow

guided texture animation, where a planar flow field is usguwes the surface to be a regular quadrilateral mesh, while

; . : : i and Yu's techniqgue works on any triangulated mesh.
to guide the motion of texture elements in a synthesiz oth focused on the goal of generating plausible 2D flows
2D texture sequence. We solve the fluid texturing problem 9 9 gp

by adapting ideas from the texture optimization technique fcp surfaces embedded in 3D space. In contrast, we present

o . . techniques for performingexture synthesi®n dynamically
perform texture synthesis directly on a dynamically Chang'.nrﬁoving 3D surfaces. Our approach can alleviate common

triangulated surface in 3D — the motion of the surface belr}ﬁtifacts that occur in simple passive advection of texture

guided by a 3D fluid simulation as opposed to a plan%'bordinates and color as detailed in [19]

LIOW field. Rdecently, Le:;ebvrg and Hhopp? [15] hdave aISO.BargteiI et al. [31] present a semi-Lagrangian surface track-
ssmi:zsgrs;?ngtz;LuerZr;n(;/ee-ztégréeotr; xttufepszzteheasri]s on St%‘@ method for tracking surface characteristics of a fluid,
) ' such as color or texture coordinates. In a similar manner, our

Bhat et al. [16] presented a flow-based video synthesjg, 4150 relies on fluid surface transport to advect color and
technique by enforcing temporal continuity along a set of US§f e, texture properties. However, in addition to these scalar

specific flow lines. While this method focus on stationary ﬂo‘ﬁuantities, we also track the orientation vectors on the fluid

fields with focuses on video editing, our algorithm is applicas, 56 through the velocity field. These vectors are tracked to
ble to any time-varyinglynamicflow fields generated by fluid ¢\ re that the synthesized texture has consistent orientation

simulators and use image textures as input. In addition, We oss (temporally) nearby free surfaces
use the simulated flow fields as a mechanism to automaticallyln work concurrent to ours, Bargteil et al. [32], [33] have

control and guide constrained texture synthesis, while thelig, geveloped a similar technique for texturing liquid anima-
requires user input to specify the flow lines to edit the videg,ns our neighborhood construction and search techniques

sequences. as well as our orientation advection method are different from

Wiebe and Houston [17] and Rasmussen et al. [18] perfoifeir work. Our work was also presented aehnical sketch
fluid texturing by advecting texture coordinates along the floyy S|IGGRAPH 2006 [34].

field using level sets and particles, respectively. However,
they do not address the issue of regeneration of texture 1. OVERVIEW

at places of excessive stretch or compression. Neyret [19\e couple controllable texture synthesis with fluid simu-
proposed a method for applying stochastic textures to fluigtion to perform spatio-temporally coherent fluid texturing.
flows that avoids a variety of visual artifacts, and demonstratgtie main elements of our system include (i) a fluid simulator
interesting 2D and 3D animations produced by coherent &@r generating the dynamic surface with velocity information,
vection of the applied texture. This approach works in regulgf) a technique for performing texture synthesis on the fluid
domains (2D or 3D) and the textures employed are primari§urface, coherent with temporally neighboring surfaces, and
stochastic or procedural in nature to avoid blending artifacigi) a method for transporting texture information from one
Our technique, on the other hand, is concerned with synthesiiface to the other. Figufg 2 shows a flow chart of how
on thefree surfaceof the fluid, and can handle a wider varietthese three components interact with each other for fluid
of textures. texturing. The surface texture synthesis module hands the
There has been work in the scientific visualization commuextured surface over to the texture transporter, which in turn,
nity that makes use of texture for visualization and represemansports texture information along the velocity field for a
tation of vector fields [20] as well as shape [21]. We obsengingle time step, and hands this information back to the
that, in a similar spirit, our technique can also be used feynthesis module.
visualization of surface velocity fields as well as motion of The only requirements for a fluid simulator to work with
deformable bodies, usingrbitrary textures. our system are that it should be able to output the 3D fluid
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smooth vector field is computed over this mesh that defines
the local orientation (2D coordinate system) at each point
on the surfad@ The orientation field is used to map 3D
Surface points on the surface onto 2D points in a plane. This mapping
is later used for comparing a surface patch against a pixel
neighborhood in the input image. These operations are mostly
similar to previous work, but we describe them here briefly
for completeness.

Fluid
Simulator

Velocity Field

Texture
Transporter

Textured
Surface

Surface Texture
Synthesis

Initialization/
Constraint

A. Point Placement and Mesh Hierarchy

As discussed above, we store texture information (color
and local orientation) in points placed on the surface being
textured. Hence, the number of points will determine rie
olution of the synthesized texture. For example, a surface with
10,000 points will be equivalent to an image of size 20000
velocity field at each iteration, and that the surfaces generajsigels. An important thing to note is that the resolution of the
during each iteration should be a consequence of transport#igface changes from frame to frame. If the area of the surface
the surface at the previous iteration through the fluid velocityicreases, the points also increases in number proportionally
field over a single time step. In our simulator, the surfaces agiad vice-versa. The starting number of points is a user-defined
generated as the level set of an advected distance functiorparameter, but it is computed automatically for subsequent

We start by obtaining the free surface of the fluid for the firftames. We want the points to be spaced as uniformly as
time step and then texture this surface using our surface textpegssible over the surface so that the synthesized texture also
optimization algorithm (explained in Sectign| V). We themas a uniform quality throughout. A consequence of this need
transport the texture to the fluid surface for the second tinfier uniformity (and the non-constant nature of the number of
step using our texture transport technique. The transporigsints over time) is that the points for each free surface (in
quantities include the texture colors (and any other associatgfle) are generated independently. Fortunately, our grid-based
properties like surface displacement, transparency, etc.) as wekture color and orientation advection techniques obviate the
as local orientation vectors that are needed to synthesize tie@d to track the points explicitly.
texture on the 3D surface. We generate the points in a hierarchical fashion to represent

This transported texture serves two purposes. Firstly, it agt® texture at varying resolutions. We follow the procedure of
as an initialization for the texture on the surface for the secomurk [1]. At each level, we initialize the points by placing them
time step. Secondly, it is treated assaft constraintwhich randomly over the surface mesh, and then use the surface-
specifies that the synthesized texture on the second surfegstricted point repulsion procedure of Turk [35] to achieve
should stay as close as possible to this initialized texture. Quiiform spacing between these points. Once we have placed
surface texture optimization technique can naturally handige points, we connect them to generate a triangulated mesh
this constraint by plugging it into a texture cost function. Theser each level of the hierarchy. We use the mesh re-tiling
two operations of transport and synthesis are then repeatedgiscedure of [36] for re-triangulating the original surface mesh
each time step of the simulation. using the new points. We use the Triangle library [37] for
triangulation at each intermediate step.

Fig. 2
OVERVIEW OF OUR FLUID TEXTURE SYNTHESIS SYSTEM

IV. SURFACE PREPARATION
To perform texture synthesis on a 3D surface, one neegs |gcal Orientation

to take into account the fact that there is no regular grid : . . .
. . . . . The next step is the computation of a local orientation at
of pixels available as is the case in an image. Hence, we . : :
. each point placed on the surface. We want these orientations to
represent the texture on a surface by assigning color valyes : .
; . vary smoothly over each mesh in the hierarchy. We use a polar
to points placed on the surface. These points serve the same : . . :
) . . space representation of the orientation field, as proposed by
purpose on a surface as pixels do in an image. However,z

. . ! . . ang et al. [38]. Firstly, a polar map is computed for each
the case of an image, pixels lie on a uniform grid. On the . .
L . . . ; .. goint on the mesh. A polar map linearly transforms angles
other hand, it is impossible to specify a single uniform grid )
. . . efined between vectors on the surface of the mesh to angles
points on an arbitrary surface. Even so, we want the points 10 : o
between vectors in a 2D polar space. The transformation is

be as_umformly spaced as possible to ensure uniform teXt%riﬁqply 0 — 0 x 21/©, where is the angle in mesh space,
sampling on the surface.

Before we begin synthesis, we prepare the surface f(gr 's the total face angle around a point, apds the polar

syntheS|s by havmg the followmg COI’?SII’UCIS n place. Flrgtly, 2The curved nature of the surface implies that a unique vector cannot be
we place the desired number of points on the surface inuged to define the 2D coordinate system at each point on the surface — unlike

way that they sample the surface uniformly. These poin‘f§ case with a plane. This is due to the fact the coordinate system needs
lie in the tangent plane of the surface which itself changes from point to

o . ¢
grg ConneCt_ed to form_ an auxiliary t”angle. mesh that a"é%int. Consequently, we need to define an orientation véietior spread over
in interpolation and neighborhood construction. Secondly,tt& entire surface.
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space angle (shown in the Figlije 3A). The orientation vectorgikels is not always available on the surface. All we have
each point can now be represented as an angle in polar sp&ea unstructured mesh of points. Therefore, we need to
This representation allows us to easily smooth the orientatiomatch unstructured point neighborhoods against gridded pixel
field by diffusion across adjacent points: for two points oneighborhoods.

the mesh connected by an edge, we want their orientations tdn earlier approaches for surface texture synthesis, this
make the same polar angle with the common edge betwa®nblem is solved by either pre-computing a mapping from the
them, as shown in Figufg 3B. Thus, each diffusion operatisurface to a plane using texture atlases [3], or by construct-
averages the current orientation angle of a point with thieg local neighborhoods over the surface on the fly throuh
angles determined through the points connected to it. Ineéher surface marching [1] or construction of local parame-
mesh hierarchy, this diffusion is performed at the coarsest levetizations [2]. Pre-computing the mapping from surface to
first and then propagated up the hierarchy. The orientatipfane gives nicer neighborhoods, but is tedious to compute,
field is initialized to be the zero polar angle everywhere, aftespecially for a sequence of surfaces. We favooarthe fly
which multiple iterations of smoothing are performed. Notapproach because of its simplicity and scalability in handling
that an orientation angle can be converted into a 3D orientatiarsequence of meshes.

vector by first applying the reverse transformation (of the We construct two types of neighborhoods on the mesh,
one described above) to obtain a mesh space angle. Thewgich we refer to agixel neighborhoodsand vertex neigh-
orientation vector at the point is then obtained by rotating l@orhoodsrespectively. These two types of neighborhoods are
pre-definedeferencevector, stored at that point, by this meshused to interpolate color information back and forth between
space angle. This reference vector sits in the tangent plane/eftice on the mesh and pixels in the (image) plane. Pixel
the point,i.e., lies perpendicular to theormal at the point, neighborhoods are used to transfer information from mesh
and is designated as havingzaropolar angle. space to image space, while vertex neighborhoods perform the
reverse operation, transferring information from image space
to mesh space.

1) Pixel Neighborhood:A pixel neighborhood is defined
as a set of points on the mesh whose 2D coordinates in the
local orientation space around a central point map to integer
locations in the plane; also, the neighborhood is bounded by a
width w, which implies that if(i, j) are the 2D coordinates of a
point in the neighborhood, theaw/2 <i, j <w/2. Given the
orientation field, we have a coordinate system in the tangent
plane of the surface mesh that we can use to march along the
surface. The orientation directioth defines one axis of the
coordinate system while the second aixi@rthonormal tod)
is obtained as the cross product between the normal at the
surface point andﬂ We use this coordinate system to march
along the surface in a fashion similar to [1], adding all surface
points corresponding to valid integer pixel locations to the
pixel neighborhood. Once a pixel neighborhood is constructed,
it can be used to interpolate colors from mesh space to image
space. For example, the color of the pixeliaf) is computed
using barycentric interpolation of colors associated with the
corners of the triangle in which the corresponding point lies.
Figure[4 shows a pixel neighborhood mapped onto the surface
of a triangle mesh.

Fig. 3
(A) MAPPING ANGLES FROM MESH SPACE TO POLAR SPACE
(B) ORIENTATIONS d1 AND d SHOULD MAKE SIMILAR polar ANGLES (o
AND f3 RESPECTIVELY) WITH THE COMMON EDGE BETWEEN THEM

2) Vertex NeighborhoodA vertex neighborhood in a mesh
V. SURFACE TEXTURE SYNTHESIS is defined as the set of vertices connected to each other and

ing within a certaingeodeisc distance distance measured

) I
Once we have constructed the mesh hierarchy and li_ﬁe[he local orientation space of the mesh — to a central vertex.
orientation field, we are ready to perform synthesis. In thi§jen the vertexc as the center, the 2D location of a vertex
section, we will describe the two essential steps in perforng; jis neighborhood is computed as its displacement from
ing surface texture synthesis: neighborhood construction a&@ng the orientation field on the mesh. For a giveirel

surface texture optimization. neighborhood widthw, we include only those vertices iis

A Neighborhood C tructi Swe use the ternvertexhere to distinguish it from the terrpoint used
- Neighborhood Construction earlier. A point can be any point on the surface, wherevasticesrefer to

Texture synthesis operations primarily require matchiﬁa%Sr‘ztp(r’;é)eori]?t;éhg;r?;‘zepa” of a triangle mesh that is being used to sample

input and output pixel neighborhoods with each other. ASsertex normals arinterpolatedirom incident faces and the normal at a
we discussed in the previous section, a uniform grid @bint is interpolated from vertex normals of the containing face.
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2D 3D

Fig. 4
PIXEL NEIGHBORHOOD CONSTRUCTIONA 2D PIXEL NEIGHBORHOOD IS MAPPED ONTO POINTS ON THE TRIANGLE MESHITHE RED ARROW IS THE
ORIENTATION VECTOR, WHILE THE BLUE ARROW IS ITS ORTHONORMAL COMPLEMENT THE POINT CORRESPONDING TO ANY GIVEN PIXEL IN THE
NEIGHBORHOOD, LIKE THE ONE SHOWN AS A GREEN CIRCLELIES ON A SINGLE TRIANGLE OF THE MESH AS SHOWN ON THE RIGHTTHIS TRIANGLE IS
USED TO DETERMINE TEXTURE INFORMATION AT THE GIVEN PIXEL THROUGH BARYCENTRIC INTERPOLATION

neighborhood whose displacement vector,l»), measured transported texture from previous surface. We first consider
starting atc, is such that—w/2 < I1,12 < w/2. To compute the energy with respect to just the input example. This energy
displacements of vertices in the neighborhood,offe employ is defined in terms of the similarity between locatrtex
a local mesh flattening procedure similar to the one useeighborhoods of the textured surface amge-space pixel
in [2], [13]. We first consider all vertices in the 1-ring of neighborhoods of the input texture example. To compare these
i.e., vertices that are directly connectedctolf d represents two incongruous neighborhoods, we first interpolate colors
the orientation vector at andt represent its orthonormal from the image-space pixel neighborhood onto real-valued
complement, then the displacement vector of a vestér 2D locations corresponding to the vertex neighborhood, as
the 1-ring ofcis (v-d,v-t), wherev= (v—c)/o. Here,c is described in Sectioh V-Al2 . We then define the texture
the scaling factor between mesh space and image space.aNergy for a single vertex neighborhood to be the sum of
then keep moving outwards to the 2-ring and so on until eduared differences between the colors of mesh vertices and
neighborhood vertices are exhausted. Generally, on a curtbd interpolated input colors at the vertex locations. The total
surface, the displacement vector computed for a vertex wihergy of the textured surface is equal to the sum of energies
depend on the path one takes to reach that vertex. Hence,deer individual neighborhoods of the surfaceSlflenotes the
each vertex, we compute its displacement as the averageswifface being textured antidenotes the input texture sample,
those predicted by its neighbors, and also run a relaxatitiven the texture energy ov&is defined as
procedure to ensure an even better fit for the displacements.

Once a point neighborhood is constructed, it can be used to Ei(si{zp}) = z Isp — zp]%- 1)
interpolate colors from image space to mesh space. Since the pes!

displacement of each vertex in the neighborhood corresponglge s is the vectorized set of color values for all vertices of
to real-valued 2D coordinates, we use bilinear interpolatigRe meshys, is the set of colors associated with vertices in a
of colors at nearby integer locations in the image space ey neighborhood around the vertpxz, contains colors
determine the color of the vertex. Figurg 5 shows a vertggy 4 pixel neighborhood i, interpolated at 2D locations
neighborhood where a set of connected points on the Megfresponding to the vertex neighborhood aropndihe input

are mapped onto the 2D plane. texture neighborhood from whicty, is interpolated is the one
S that appears most similar to thgxel neighborhood around
B. Surface Texture Optimization p — which is constructed as explained in Sectjon VJA.1 —

Our approach for synthesizing texture on a 3D surfagder the sum of squared differences. It should be noted that
is motivated by the texture optimization algorithm proposegven though our energy formulation is described completely
by Kwatra et al. [4]. Their formulation is valid only on ain terms of vertex neighborhoods, we need to resort to pixel
2D plane. We extend that formulation to handle synthegigighborhoods during search for efficiency.
on a arbitrary 3D surface. The reason for using such anThe set of verticesS!, around which neighborhoods are
optimization algorithm for synthesis is that we want it te€onstructed is a subset of the set of all verticesSinS'
naturally handle synthesis on a dynamic surface, maintainiigg chosen such that there is a significant overlap between
temporal coherence between consecutive surfaces and spatlaheighborhoodsi.e., a single point occurs within multiple
coherence with the texture for each individual surface. We carighborhoods. See Figuré 6 for a schematic explanation of
incorporate the transported texture from the previous surfdoew the texture energy is computed.
as a soft constraint with the optimization approach. The energy function defined above measures the spatial

The optimization proceeds by minimizing an energy funconsistency of the synthesized surface texture with respect
tion that determines the quality of the synthesized textute the input texture example. To ensure that the synthesized
with respect to the input texture example as well as thexture is temporally coherent as well, we add another term
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3D 2D

Fig. 5
VERTEX NEIGHBORHOOD CONSTRUCTIONA SET OF CONNECTED POINTS ON THE MESH ARE MAPPED ONTO THED PLANE. THE ORIENTATION
VECTOR AT THE CENTRAL VERTEX ALIGNS ITSELF WITH THE PRIMARY AXIS OF THE PLANE EACH VERTEX MAPS TO A REAL-VALUED 2D LOCATION, AS
SHOWN EXPLICITLY FOR THE YELLOW CIRCLED VERTEX GIVEN A PLANAR PIXEL NEIGHBORHOOD, THE COLOR AT A MESH VERTEX IS DETERMINED
THROUGH BILINEAR INTERPOLATION OF THE FOUR PIXELS THAT ITS2D MAPPED LOCATION LIES BETWEEN

which measures the similarity of the textured surface to the point, as well as the colors obtained from the transported
texture transported from the previous time step. The trans- texture.

ported texture already specifies a color value vector, denoted\ote that when performing synthesis in a multi-resolution

asc, corresponding to each vertex locationSnWe treatc as  fashion, the optimization first proceeds at the coarsest level of
a soft constraint os, i.e., we want the color of the transportedhe mesh hierarchy. This is followed by an up-sampling step, in
texture and synthesized texture to be close to each other. Tifich the finer level mesh vertices copy the color values from

corresponding energy function is their coarser level counterparts, followed by diffusion of these
N B 2 color values at the finer level. This acts as the initialization for
Be(si0) = kgfk(s(k) c(k))”, (2) the finer mesh, after which optimization proceeds as earlier.

Also, we typically use more than one neighborhood size at
where k iterates over all vertices in the mesh aiadis a each level. In our experiments, we run three optimization
weighting factor that controls the influence of transported tejasses that use neighborhoods of size<33, 17x 17, and
ture color at a vertex over its synthesized value. We typicaltyx 9 pixels respectively, in that order.
use a gradient based weighting scheme, where a larger weight
is given to the transported texture color at a vertex that has VI. TEXTURE TRANSPORT
greater color gradient in its vicinity. Note that we also use
as an initialization fors. The total energy of the textured fluid
surface is

We now describe the texture transport procedure which
transports texture information from the currently synthesized
surface to the next surface in the time sequence. The texture
E(x) = E(x{zp}) +Ec(xiC). information being transported includes two quantities: (i) the

The algorithm proceeds by optimizing this total energy dﬁxture color (or any other properties peing synthes_ized, like
the surface being textured, in an iterative fashion. Given %@placement, transparepcy, etc.) and (i) the.orlentatlon vector
initialization of the texture — random for the first frame, anfi€ld on the surface. While the texture color is what we really

transported from the previous surface for the remaining — tH@Nt 10 transport, it is necessary to transport the orientation
following steps are repeated until convergence: field also because that determines how the texture neighbor-

1) For each vertexp € S, construct a vertex nei hborhoodhoods are oriented on the surface when synthesis is performed.
repe s, ; neig If the orientation fields on two consecutive surfaces are not
sp and a pixel neighborhood in the vicinity of p : . e X . .
. consistent, it would be very difficult to find neighborhoods in
from the current surface textuee Assign colors to the

. . o . the input texture that match the transported texture.
pixels in x, through barycentric interpolation on the P P

mesh (Sectiofi V-R). _
2) Find the closest input texture neighborhood, sdy A. Color Advection

for each pixel neighborhoosy, constructed above, and Our approach for transporting the texture color is based
interpolatex, at real-valued 2D locations correspondingn standard advection techniques that have been well studied
to the vertices ins, to obtain the interpolated inputin the level set literature. The basic idea is to perform the
neighborhoodzp,. transfer on a volumetric grid as opposed to directly between
3) Re-compute the surface texture colarby minimizing surfaces. This volumetric grid is the same as that used by
the total energ¥e(s; {zp}) with respect tcs, keeping the the fluid simulation to represent the velocity field. One might
set of interpolated input neighborhoodi®, } fixed. For be tempted to simply advect the texture colors from the first
the squared energy function used here, this corresporsisface to the next. However, since the resolution of the grid
to simply taking a weighted average of the colors typically much smaller than the number of points used in
predicted by the different neighborhoods affecting synthesis, this will result in loss of texture resolution. Hence,
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TEXTURE ENERGY: (A) SHOWS THE TEXTURE ENERGY FOR A SINGLE VERTEX NEIGHBORHOQDT IS THE SQUARED COLORSPACE DISTANCE BETWEEN
THE GIVEN VERTEX NEIGHBORHOOD AND ITS CLOSEST MATCH IN THE INPUT IMAGE TEXTURE(B) SHOWS THE TOTAL TEXTURE ENERGY FOR THE
SURFACE TEXTURE IT IS SIMPLY THE SUM OF ENERGIES OF INDIVIDUAL NEIGHBORHOODS

we advect 3D vertex coordinates instead of texture color
because vertex coordinates can usually be safely interpolated
without loss of resolution. Advection of 3D coordinates is
conceptually equivalent to back-tracking each point in the 3)
volumetric grid to its source location in the previous time-step.
For a given vertex in the new mesh, one can obtain its back-
tracked location by interpolating from nearby grid points. Its
texture color is then obtained through barycentric interpolation
over the triangle closest to this back-tracked location. The
various steps are enumerated in order below:

1) The first step is to determine the 3D coordinates at grid
locations. This is quite simple: the coordinates are the
location of the grid point itself, since the surface and
the grid sit in the same space.
Next, we treat each component of the coordinate field
as a scalar field. Each scalar field is advected along the
velocity field for a single time step. This step is done
by solving the following advection update equation:

¢

4)

2)

W - _U'D(pv (3)

steps while performing the advection update as well.
The update is performed using a first order upwind
scheme [39].

After the advection is complete, we have the advected
coordinates at each grid point. These coordinates are
interpolated onto the vertices of the new surface corre-
sponding to the next time step. Each new surface vertex
now knows which location it came from in the previous
time step, through these back-tracked coordinates.
Finally, we assign a color (or other property) value
to each new vertex as the color of the back-tracked
location. Letx be the back-tracked location. The color of

x is obtained by first finding the poirp, on the previous
surface that is nearest ta We compute the color of

p through barycentric interpolation of the colors at the
corners of the triangle on whicp lies. This color is
then also used as the color for the back-tracked location
X. To speed up the search for the nearest surface points,
we use a hash table to store the triangles of the mesh.

It should be noted that the backtracked coordinates may not al-
where ¢ is the scalar being advected,is the velocity ways be close to the surface, in which case the projection onto
field obtained from the fluid simulation, ardg is the the surface may return undesirable texture color values. How-
spatial gradient of the scalar field. We save the fluidver, our texture synthesis algorithm automatically handles this
velocity field at all intermediate time steps that théy pastingover the bad regions with new input patches that
simulation may have stepped through, and use thoaee visually consistent with the surrounding regions.
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B. Orientation Advection the distortion so that it reduces to a rotation. This is achieved
through the tern{l —dd"), which is a projection operator that
Scalar Advection projectsd - Ou to the plane perpendicular tb This projection
Vector Advection essentially ensures that, in differential terrdsalways stays a
A unit vector.
Original ‘\ To perform_advec_tion otl, we fpllow similar steps as for
Orientation \\ Velocity scalar advection, with the following changes. In step 1, we
. Field extendthe orientation field from the surface onto the grid using
the technique of [40]. The orientation vectors are propagated
outwards from the surface along the surface normal onto the
grid. The advection update step 2 solvg$ (4), again using
upwind differencing, this time alternating between the two
(A) terms in the equation. For step 3, we directly interpolate the
advected orientations on new surface points and normalize
them. These vectors are then converted into the polar angle
representation described in Secfion IV. We typically, re-run the
diffusion algorithm to smoothen the orientation field. Note that
unlike texture color, the orientation field is smooth to begin
with, hence loss of resolution is not a concern. Therefore, we
d.Vu interpolate it directly without any need to go through step 4.

d + (u,- u )At
| g

VIl. RESULTS

(B) We have implemented the techniques presented here in C++
Fig. 7 and rendered the results using 3DelightWe use a grid-
(A) TRANSPORTING AN ORIENTATION VECTOR BY ONLY ADvecTInG iTs ~ Dased method for fluid simulation [23], [41], [42]. However,
SCALAR COMPONENTS WILL(INCORRECTLY) ONLY TRANSLATE THE our technique is general enough to work with other types
VECTOR. OUR VECTOR ADVECTION TECHNIQUE CORRECTLY TRANsPorTs Of simulators like finite volume based techniques [43]. We
THE VECTOR BY TRANSLATING AS WELL AS ROTATING IT. (B) THE applied our implementation on several challenging scenarios

ORIENTATION VECTORA BETWEEN POINTSL AND 2 GETS DIsTORTED As o With several different textures (shown in Fig@e 8).
FUNCTION OF THE GRADIENT OF THE VELOCITY FIELD ALONGU.

The transport of orientations is not as straightforward as
the transport of color. This is because orientations are vectors
which may rotate as they move along the velocity field. If
we simply advect each scalar components of the orientation
vector independently, then it would only translate the vector.
Figure [TA shows the difference in the result obtained by
scalar vs. vector advection. Conceptually, to preform vector
advection, we can advect the tail and head of the orientation
vector separately through the field, and use the normalized
vector from the advected tail to the advected head as the new
orientation vector. This operation needs to be performed in
the limit that the orientation is of infinitesimal lengthe., the
head tends to the tail. This results in a modified analytical

| = - ".
e R
s oh i VI
e " =SS )

advection equation of the form Fig. 8
2d TEXTURE EXEMPLARS USED IN OUR RESULTSLAST TWO ARE BUMP-MAP
5= —u-0d+ (1 —dd")d- Ou. 4 TEXTURES USED WITH THE RIVER

Here, the first term—u-[d, is the scalar advection term as The first scene is a broken-dam simulation as shown in
applied to each component of the orientation veatoThe Figure[9 and Figuré 10, where a large volume of water is
term d - Ou computes the derivative of velocity along the dropped into a tank of water causing the invisible wall to break
orientationd. As shown in Figurg[7Bd gets distorted by and the simulated water to splash. The water surface is stylized
the velocity field, because its head and tail undergo differemsing various different textures in the shown examples. In the
displacements. This difference in displacements is governactompanied video, note that the texture on the surface is split
by the difference in the velocity values at the head and tlamd merged seamlessly, as the surface undergoes substantial
tail, which is simply the velocity field gradienflu along topological changes. Figufe|11A shows a comparison of our
the orientationd. Finally, since we are only interested in theesult for this simulation with the result obtained through
direction of thed and not its magnitude, we need to normalizpure advectioni(e., no texture synthesis after the first frame).
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Fig. 9
BROKEN-DAM: A LARGE VOLUME OF WATER IS DROPPED INTO A BROKEN DAM CAUSING THE WATER TO SPLASH THE WATER SURFACE IS STYLIZED
USING A GREEN SCALES TEXTURE THE TEXTURE FEATURES ON THE SURFACE SPLIT AND MERGE NICELY AS THE SURFACE UNDULATESHE
VIEWPOINT IS ROTATING AROUND THE SCENE

Even though advecting the texture ensures perfect tempaghthesis and texture transport. We accelerate the nearest
coherence, the visual quality of the texture is lost due twighbor search by using a hierarchical clustering of the image
diffusion. neighborhoods. The synthesis times depend on the simulation,

The second simulation is a river scene shown in Figufe b2cause the number of points on the mesh change linearly with
and Figure 1B, where the water flows down the stream atite area of the mesh as it evolves. Our average synthesis times
carries the surface texture with it. In Figirg 12A, we show there approximately 60 seconds per frame for the broken dam,
river with a bump mapped texture which creates the impressi8fi seconds per frame for the river scene, and 200 seconds
of small scale waves on the surface of the river. Figure 13&r frame for the lava flow. The number of points used for
shows the same scene with a different bump texture that givwering texture pixels varied in the range of 1000 points
the impression of rocks floating in the river. Figiird 12C usesd 500000 points over the course of the simulation.
the same texture as Figyre]12B but treats it as a transparencyhe supplementary videos include the results for river,
texture coupled with color to give the impression of floatintava and broken dam examples. We also show a comparison
leaves on the river surface. Figlirg 11B compares the renderirggween the results of our technique and the results obtained
of a frame of the bump mapped river with the renderingy using pure advection, as well as comparisons with results
of the original fluid surface generated by the simulation. ibtained without using any texture synthesis at all. All our
should be easy to see that the texture adds a lot of detail apdults are also available online attp://gamma.cs.
micro-structure to the river, which is missing from the originalinc.edu/TexturingFluids/
surface.

The third simulation is that of lava flow, shown in Figlirg 14 VIII. DISCUSSION& FUTURE WORK
in which lava flows from the top of the mountain downwards
onto the walls. Results are shown for four different textures.

The first two examples are more realistic while the last
are stylistic. ur quk successfglly demonstrates transport of _textu res along
The computational complexity of our algorithm is dom-?’D fluid flows, Wh'Ch undergo cpmplex topologlcal char?ge's
gtween successive frames, while preserving visual similarity

inated by nearest neighbor search during texture syntheg ) the inout and th tout text We defi sual
and mesh hierarchy construction during surface preparati tween the input an € oulput textures. Ve define visua
ﬁ[nllanty through a cost function that then drives a surface

Depending upon the number of points used for the mesh, AL timizati Wi hi fluid texturing b
erarchy construction takes between 85 minutes per franfie ex ut:_e P |trk1]1.|za '0? protc e?s. N tgc. |e;/_e uid tex urlr)tg;]] y
However, the mesh hierarchy is computed offline for eadf™ |?|ng ;]S sur %ce SX ure olp mrzatlon [t);oge?s V;" ke}n
simulation, so that runtime costs include only surface textu?(gvec lon scheme based on a Jevel-sel Method Tor tracking
the surface characteristics. We also explicitly model and solve
50nly one level of hierarchy is constructed for all frames of the animatiofP" the advection .Of YeCtor quantities like surface orientation
subsequent to the first one, which uses three levels. through the velocity field.

We have presented a novel synthesis algorithm for advecting
xtures on dynamically changing fluid surfaces over time.


http://gamma-web.iacs.umd.edu/TexturingFluids/
http://gamma-web.iacs.umd.edu/TexturingFluids/
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Fig. 10
BROKEN-DAM RENDERED USING DIFFERENT TEXTURE EXEMPLARS

One can envision using our technique as a rendering] L.-Y. Wei and M. Levoy, “Texture synthesis over arbitrary manifold

mechanism in conjunction with fluid simulation techniques. surfaces,” iNSIGGRAPH '01: Proceedings of the 28th annual conference
It b dt h th lexi f th thesized on Computer graphics and interactive techniqué¢ew York, NY, USA:
can be used to enhance the complexity of the synthesized pcy Press, 2001, pp. 355-360.

fluid phenomena by adding surface micro-structures such @§ L. Ying, A. Hertzmann, H. Biermann, and D. Zorin, “Texture and

waves, and eliminating the need to manually model photomet- \Sl\f/‘apkehsy"thess on Syﬁa%esv;mceegingds of tSE 1§th_Eur°€\J/’aFl’hi°5
. . . . . Orksnop on Rendering lechniquesLonadon, . Springer-Verlag,
ric properties of materials such as lava. Another interesting 555, bp. 301-312.

application is flow visualization. Our technique synthesize§] v. kwatra, I. Essa, A. Bobick, and N. Kwatra, “Texture optimization
texture sequences that animate the input texture as controlled for example-based synthesisACM SIGGRAPH vol. 24, no. 3,

- - : : ; pp. 795-802, August 2005, appears in ACM Transactions on
by the fluid flows obtained from a fluid simulator. Hence, it Graphics (TOG). [Online]. Available! http://www.cc.gatech.edulcpl/

can facilitate flow visualization using a rich variety of textures.  [projects/textureoptimization/
A limitation of our technique, which is relevant to surface[5] A. Efros and T. Leung, “Texture synthesis by non-parametric sampling,”
texture synthesis in general, is that it is often impOSSib|i in International Conference on Computer Visjdr999, pp. 1033-1038.
1 6]

. . . . . L.-Y. Wei and M. Levoy, “Fast texture synthesis using tree-structured
to define an orientation vector field on the surface that iS” \ecior quantization,Proceedings of ACM SIGGRAPH 2008p. 479—

smooth everywhere. Overlapping neighborhoods near singu- 488, July 2000, iSBN 1-58113-208-5.

larity points like sources, sinks and vortices of the field, may’l A- dA- Effc;s and W. J- F’ee][”gg(;'mage glai(')t‘i]gg 3f°f t%therOSg”thGSiS
. - . and transfer,Proceedings of SIGGRAPH . 341-346, 1.
not align well with each other, because computation of thfrﬂ8 L. Liang, C. Liu, Y-Q. Xu, B. Guo, and H.-Y. Shum, “Real-time texture

2D mapping of vertices becomes unstable in these regions. synthesis by patch-based samplingCM Transactions on Graphics
This can sometimes cause excessive blurring near singularitgl vol. Vol. 20, No. 3, pp. 127-150, July 2001. _
points [9] V. Kwatra, A. Sclidl, I. I_Essa, G. Turk_, and_A. Bobick, “Graphcut
’ . . . textures: Image and video synthesis using graph cusCM

Currently, the texture synthesis process is agnostic of any siGGRAPH vol. 22, no. 3, pp. 277-286, July 2003, appears
properties of the fluid surface that may affect its appearance. in ACM Transactions on Graphics (TOG). [Online]. Available:
For example, one might want the appearance of the texture[f& http:/fwww.cc.gatech.edu/cpl/projects/graphcuttextires/

e

. . . . R. Paget and I. D. Longstaff, “Texture synthesis via a noncausal
be affected in a certain way by vortices and high curvatu nonparametric multiscale markov random fiellEEE Transactions on

regions on the fluid surface. As part of future research, we Image Processingvol. 7, no. 6, pp. 925-931, June 1998.
would like to add to our technique, the ability to incorporatgll W. T. Freeman, T. R. Jones, and E. C. Pasztor, "Example-based super-

h lati hi into th thesi A t resolution,”IEEE Comput. Graph. Applvol. 22, no. 2, pp. 56-65, 2002.
such relationships Into the synthesis process. Among o ] Y. Wexler, E. Shechtman, and M. Irani, “Space-time video completion,”

future directions, we would like to extend our approach to = in CVPR 20042004, pp. 120-127.
handle 3D volume textures as well as video textures. [13] E. Praun, A. Finkelstein, and H. Hoppe, “Lapped texturésgc. of
ACM SIGGRAPH pp. 465-470, 2000.
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[35] G. Turk, “Generating textures on arbitrary surfaces using reaction-
diffusion,” in SIGGRAPH '91: Proceedings of the 18th annual con-
ference on Computer graphics and interactive techniquééew York,

NY, USA: ACM Press, 1991, pp. 289-298.

[36] ——, “Re-tiling polygonal surfaces,” il8lIGGRAPH '92: Proceedings
of the 19th annual conference on Computer graphics and interactive
techniques New York, NY, USA: ACM Press, 1992, pp. 55-64.

[37] J. R. Shewchuk, “Triangle: Engineering a 2d quality mesh generator and
delaunay triangulator,” iFCRC '96/WACG ’'96: Selected papers from
the Workshop on Applied Computational Geormetry, Towards Geometric
Engineering London, UK: Springer-Verlag, 1996, pp. 203-222.

[38] E. Zhang, K. Mischaikow, and G. Turk, “Vector field design
on surfaces,” Georgia Institute of Technology, Tech. Rep. 04-16,
2004. [Online]. Available:| http://www.cc.gatech.edu/grads/z/Eugene.
Zhang/vecflddesign.htnil

[39] J. Sethian, “Level set methods and fast marching methods: Evolving
interfaces in computational geometry,” 1998. [Online]. Available:
citeseer.ist.psu.edu/sethian99level.html

[40] D. Adalsteinsson and J. Sethian, “The fast construction of extension
velocities in level set methodsJournal of Computational Physicsol.

148, pp. 2-22, 1999.

[41] M. Griebel, T. Dornseifer, and T. Neunhoeffétumerical Simulation in
Fluid Dynamics: A Practical Introductionser. SIAM Monographcs on
Mathematical Modeling and Computation. SIAM, 1990.

[42] M. Carlson, P. Mucha, and G. Turk, “Rigid fluid: Animating the interplay
between rigid bodies and fluid,” iroc. of the ACM SIGGRAPHACM
Press, 2004.

[43] R. J. LeVeque and D. G. Crightorkinite Volume Methods for Hy-
perbolic Problems ser. Cambridge Texts in Applied Mathematics.
Cambridge University Press, 2002.


http: //www.cc.gatech.edu/grads/z/Eugene.Zhang/vecfld_design.html
http: //www.cc.gatech.edu/grads/z/Eugene.Zhang/vecfld_design.html
citeseer.ist.psu.edu/sethian99level.html

RIVER SCENE RENDERED WITH VARIOUS IMAGE TEXTURES
LAVA SCENE: LAVA FLOWING ALONG A MOUNTAIN , SHOWN WITH DIFFERENT TEXTURES
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