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Virtualized Traffic:
Reconstructing Traffic Flows from Discrete

Spatio-Temporal Data
Jason Sewall, Jur van den Berg, Ming Lin, Dinesh Manocha

Abstract—We present a novel concept, Virtualized Traffic, to reconstruct and visualize continuous traffic flows from discrete spatio-
temporal data provided by traffic sensors or generated artificially to enhance a sense of immersion in a dynamic virtual world. Given
the positions of each car at two recorded locations on a highway and the corresponding time instances, our approach can reconstruct
the traffic flows (i.e. the dynamic motions of multiple cars over time) in between the two locations along the highway for immersive
visualization of virtual cities or other environments. Our algorithm is applicable to high-density traffic on highways with an arbitrary
number of lanes and takes into account the geometric, kinematic, and dynamic constraints on the cars. Our method reconstructs
the car motion that automatically minimizes the number of lane changes, respects safety distance to other cars, and computes the
acceleration necessary to obtain a smooth traffic flow subject to the given constraints. Furthermore, our framework can process a
continuous stream of input data in real time, enabling the users to view virtualized traffic events in a virtual world as they occur. We
demonstrate our reconstruction technique with both synthetic and real-world input.

Index Terms—Animation, Virtual Reality, Kinematics and dynamics
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1 INTRODUCTION
With better sensing and scene reconstruction technology
and more on-line software tools, such as Google Maps
and Virtual Earth, for visualizing urban scenes, there is a
growing need to introduce realistic street traffic in virtual
worlds. One natural approach is to incorporate a traffic
simulator in a virtual environment. There are numerous
techniques to simulate macro- and microscopic traffic [1],
including agent-based methods [2], [3], cellular automata
[4], [5], mathematical modeling for continuous flows [6],
[7], [8], [9], [10], [11], etc. While some simulate low-
level behaviors and some aim to capture high-level flow
appearance, the resulting simulations, however, usually
do not correlate to the real traffic on the street level.

On the other hand, the current trend in addressing
urgent problems due to traffic congestion in urban envi-
ronments encourages increasingly more traffic monitor-
ing mechanisms, ranging from various forms of traffic
sensors (cameras, road sensors, GPS) to the use of mobile
phones for car tracking. Inspired by Virtualized Reality
[12], we propose a novel concept of Virtualized Traffic
that generates a continuous traffic flow from discrete
spatio-temporal data to create a realistic visualization
of highway and street-level traffic for synthetic environ-
ments. The resulting visualization automatically reflects
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and correlates to the real-world traffic and also enables
possibly new VR applications that can benefit from
visual analysis of actual traffic events (e.g. accidents)
based on sensor data.

Main Results: Given two locations along a highway,
say A and B, we assume that the velocity and the
lane of each car is known at two corresponding time
instances. The challenge is to reconstruct the continuous
motion of multiple cars on the stretch of the highway
in between the two given locations. We formulate it as
a multi-robot planning problem, subject to spatial and
temporal constraints. There are several key differences,
however, between the traditional multi-robot planning
problem and our formulation. First of all, we need
to take into account the geometric, kinematic and the
dynamic constraints of each car (though a subset of
specialized algorithms have also considered these issues
[13]). Second, in our formulation, not only the start time,
but the arrival time of the cars is also specified. In
contrast, the objective of previous literature has been
for the robots to arrive at the goal location as soon
as possible. Third, the domain that is dealt with here
is an open system, i.e. the number of cars is not fixed.
Instead, new cars can continuously enter the stretch
of the highway to be visualized. This aspect requires
incremental update to the current solution as new cars
arrive at the given location.

In this paper, we present a prioritized approach that
assigns priorities to each car based on the relative po-
sitions of the cars on the road: cars in front have a
higher priority. Then, in order of decreasing priority,
we compute trajectories for the cars that avoid cars of
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Fig. 1: Images of highway traffic synthesized by our
method. Our method computes trajectories one by one
for a continuous stream of cars (of possibly high-
density). The trajectories fit the boundary conditions at
the sensor points, and obey the geometric, kinematic and
dynamic constraints on the cars. The number of lane
changes and the total amount of (de-)acceleration are
minimized and the distance to other cars is maximized
to obtain smooth and plausible motions.

higher priority for which a trajectory has already been
determined.

To make the search space for each car tractable, we
constrain the motions of the car to a pre-computed
roadmap, which is a reasonable assumption as each car
typically has a pre-determined location to travel to. The
roadmap provides links for changing lanes and encodes
the car’s kinematic constraints. Given such a roadmap,
and a start and final state-time on the roadmap, we com-
pute a trajectory on the roadmap that is compliant with
the car’s dynamic constraints and avoids collisions with
cars of higher priority. At each time step, the car either
accelerates maximally, maintains its current velocity, or
decelerates maximally. This approach discretizes the set
of possible velocities and the set of possible positions as
well, enabling us to compute in three-dimensional state-
time grids along the links of the roadmap. Our algorithm
searches for a trajectory that minimizes the number of
lane changes and the amount of (de-)acceleration, and
maximizes the distance to other cars to obtain smooth
and realistic motions. We show that this approach can

successfully reconstruct traffic flows for a large number
of cars efficiently, and examine the performance of our
method on a set of real-world traffic flow data. Fig. 1
shows one of the challenging scenarios synthesized and
visualized by our method.

Organization: The rest of this paper is organized as
follows. First, we discuss related work in Section 2.
In Section 3, we formally define the problem and a
car’s geometric, kinematic and dynamic constraints. In
Section 4, we discuss the details of our approach and
present experimental results in Section 5. Finally, we
conclude and discuss future work in Section 6.

2 RELATED WORK

In this section, we give a brief review of prior work first
in traffic simulation, then in multi-agent planning as we
extend some of the algorithms from robotics and adapt
them here for our problem.

2.1 Traffic Simulation
The growing ubiquity of vehicle traffic in everyday life
has generated considerable interest in models of traffic
behavior, and a large body of research in the area has
appeared in the last 60 years. The problem of traffic
simulation has been very prominent in several fields
— given a road network, a behavior model, and initial
car states, how does the traffic in the system evolve?
Such methods are typically designed to explore specific
phenomena, such as jams and unstable, stop-and-go
patterns of traffic, or to evaluate network configurations
to aid in real-world traffic engineering.

Our approach does not address the classical problems
of traffic simulation but instead traffic reconstruction, in
which both the begin and end states of its cars are given.
To better contrast our work against previous work, we
give a brief overview of the commonly known methods
for traffic simulation. For a more thorough review of the
state of the art, see Helbing’s extensive survey [1].

One popular category of traffic simulation techniques
is broadly termed microscopic simulation. This classifi-
cation includes discrete agent-based methods, wherein
each car is treated as a discrete autonomous agent
with arbitrarily complex rules governing their behavior.
Most agent-based methods use some form of the “car-
following” set of rules as described in [2] and [3].
Some of the public-domain traffic simulation systems,
such as NETSIM [14], INTEGRATION [15], and MITSIM
[16], are implemented using the agent-based modeling
framework.

Nagel and Schreckenberg [4] applied cellular automata
to the problem traffic simulation. The efficiency and
simplicity of these models has led to much interest and
extensions to the Nagel-Schreckenberg model (see the
survey in Chowdhury et al. [5] for a detailed review).

Traffic may also be treated as a continuum and its
evolution in time described by partial differential equa-
tions; this class of simulation methods is often called
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macroscopic simulation. Lighthill and Whitham [6] and
Richards [7] were able to accurately capture a large num-
ber of traffic-related phenomena with a simple scalar
nonlinear conservation law, and subsequent improve-
ments by Payne [8] and Whitham [9] were able to
describe more complicated states of traffic. Recently,
the techniques described by Aw and Rascle [10] and
Zhang [11] address some of the shortcomings of the
Payne-Whitham model and provide concise description
of traffic evolution. Unfortunately, these methods can be
numerically challenging to handle due to the presence
of discontinuities in the solution.

A third class of simulation methods, called mesoscopic
methods, uses a continuum representation of traffic but
uses Boltzmann-type mesoscale equations to traffic dy-
namics. This approach was pioneered by Prigogine and
Andrews [17] and improved upon by Nelson et al. [18],
Shvetsov and Helbing [19] and others.

There is also considerable work on using virtual envi-
ronments for driving simulation [20], [21] and methods
for modeling the vehicle behavior and navigable paths
[22], [23], [24].

2.2 Multi-Robot Planning and Coordination
Existing approaches to multi-robot planning can roughly
be divided into two categories: coordinated planning and
prioritized planning. Coordinated approaches compute
a path in the composite configuration space of the
robots, which is formed by the Cartesian product of
the configuration spaces of the individual robots [25],
[26], [27]. They allow for complete planners, but their
running time is exponential in the number of robots.
The performance can be increased by constraining the
configuration space of the individual robots to a pre-
planned path or roadmap [28], but the running time
remains exponential in the number of robots.

Prioritized approaches incrementally construct a solu-
tion [29], [30]. Each of the robots is assigned a priority,
and in order of decreasing priority the robots are se-
lected. For each selected robot a trajectory is planned,
avoiding collisions with the previously selected robots,
which are considered as moving obstacles. Prioritized
approaches are not complete, but the running time is
only linear in the number of robots.

For the objective of traffic reconstruction, a coordi-
nated approach cannot be applied. Not only would it be
computationally unfeasible, but coordinated approaches
are difficult to apply in a setting where new robots
(or cars) continuously enter the scene without affecting
motions of cars in the far past. A prioritized approach
on the other hand, is well-suited for our application.
Priorities can be naturally assigned based on the relative
positions of the cars on the road, as it is reasonable to
assume that cars only react to cars in front of them.

3 PROBLEM DEFINITION
Given as input a stretch of a highway between two
points A and B of length L that has N lanes of a

Fig. 2: The kinematic model of a car; (x, y) and θ are the
position and the orientation of the car, λ is the distance
between the front and rear axle, φ is the car’s steering
angle and κ is the curvature of the traversed path.

certain width. This highway is traversed by a continuous
stream of cars. For each car i the sensors provide a tuple
(tAi , `

A
i , v

A
i , t

B
i , `

B
i , v

B
i ) as data input, where tAi ∈ R is the

time at which car i passes point A, `Ai ∈ 1 . . . N is the
lane in which car i is at point A, and vA

i ∈ R+ is the
velocity of car i at point A (and similarly for point B).

The task is to compute trajectories for the cars on the
highway starting and arriving in the given lanes, at the
given times, and at the given velocities. The trajectories
should be computed such that the cars respect geo-
metric constraints (e.g. respecting safety distance with
each other), and such that the kinematic and dynamic
constraints on the cars are enforced (see Section 3.1).
Further, we want the reconstructed trajectories to look
realistic; the cars should stay in their lane wherever
possible, maintain sufficient distance to each other, and
not unnecessarily accelerate or decelerate.

3.1 Kinematics and Dynamics of a Car
A car can be conceptualized as a rectangle moving in
the 2-D plane. Its configuration is defined by a position
(x, y), and an orientation θ (see Fig. 2). Let λ be the
distance between the rear axle and the front axle of the
car. The configuration transition equations of the car, in
terms of path length s, are given by:

x′(s) = cos θ (1)
y′(s) = sin θ (2)

θ′(s) =
tanφ
λ

= κ, |φ| ≤ φmax (3)

where φ is the car’s steering wheel angle, and κ the
curvature of the traversed path. The steering wheel angle
is bounded to reflect the car’s minimum turning radius.

The above equations are the kinematic constraints on
a car. They describe the traversal paths of a car. The
dynamic constraints describe how such paths may be
traversed over time t:

s′(t) = v, 0 < v ≤ vmax (4)
v′(t) = a, |a| ≤ amax (5)
φ′(t) = ω, |ω| ≤ ωmax (6)
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where v is the velocity of the car, a its acceleration and
ω the speed with which the steering wheel is turned.
The velocity of the car is bounded from below such
that it can only move forward (which is realistic on a
highway). The acceleration and the speed with which
the steering wheel can be turned are bounded as well.
Because of the discretization that is applied below, we
choose symmetric bounds on the acceleration.

3.2 Discretization
To implement our traffic reconstruction method, we
extend the approach presented by Van den Berg and
Overmars in [31] that plans a trajectory for a robot under
kinodynamic constraints in environments with multiple
moving obstacles. We adapt the same discretization of
the search space. We review that discretization here,
and describe it in terms of our problem definition. The
first discretization step is to construct a roadmap for
the car’s configuration space that encodes the kinematic
constraints on the car. Constraining the cars to move
along the edges of the roadmap ensure that the car’s
kinematic constraints are enforced. To comply with the
car’s dynamic constraints, we have to consider the state
space of the car. To avoid the other cars in the environ-
ment, we extend the state space to the state-time space.
In Section 4.1, we discuss how we construct a roadmap
for the case of highway traffic reconstruction. Here, we
describe how the state-space and the state-time space are
discretized.

Let us first assume that the roadmap consists of a
single path. The state space of the car then consists of
pairs 〈s, v〉, where s is the position of the car along
the path, and v the car’s velocity. The state space is
discretized into a grid by choosing a small time step
∆t. At each time step, the car is allowed to change its
velocity by choosing from a finite set of acceleration
options An. If we choose to allow just three accelerations,
we have the following state transition equations:

a ∈ {−amax, 0, amax} = A3 (7)
v(t+ ∆t) = v(t) + a∆t (8)
s(t+ ∆t) = s(t) + v(t)∆t+ 1

2a∆t2 (9)

This results in a regular two-dimensional grid of reach-
able states (see Fig. 3), where the spacing in the grid is
∆v = amax∆t along the v-axis, and ∆s = 1

2amax∆t2 along
the s-axis. From a given state 〈s, v〉, three other states
are reachable: 〈s+ (2 v

∆v + 1)∆s, v + ∆v〉, 〈s+ 2 v
∆v ∆s, v〉

and 〈s+ (2 v
∆v − 1)∆s, v−∆v〉, each one associated with

a different acceleration. This defines a directed graph in
the discretized state space which is called the state graph.

We are free to choose a from a different set of acceler-
ations than that in Eq. (7) — it is possible and sometimes
advantageous to give the search a finer-grained choice.
Our formulation assumes an acceleration of the form

A2n+1 = {−amax,−amax2−n+2,−amax2−n+1, . . . , 0,

amax2−n+1, amax2−n+2, . . . , amax} (10)

where n ∈ N1.
The branching factor of our search increases with n

and leads to longer compute and greater memory usage;
however, the wider array of acceleration options can
be useful for reconstructing some inputs. In practice,
only A3 and A5 = {−amax,−amax/2, 0, amax/2, amax}
are practical for most real-time applications due to the
exponential expense that comes with increases in n. In
general, for acceleration set A2n+1, the spacing on the
v-axis should be ∆v = amax2−n+1∆t, the spacing on the
s-axis should be ∆s = 1

2amax2−n+1∆t2, and there are
2n+ 1 states reachable from a given state 〈s, v〉.

To define the state graph for the entire roadmap rather
than a single path, state grids along each of the edges
of the roadmap are connected at the vertices of the
roadmap, such that the car can choose among all of
the outgoing edges when it encounters a vertex. As
can be seen in Fig. 3, only half of the states in the
state grid are reachable. In order to connect the state
grids smoothly at the vertices, each of the edges of the
roadmap is subdivided into an even number of steps. As
a result, there is a finite number of reachable positions
in the roadmap. For all of these positions, the velocity
is bounded by Equation (4). If the roadmap edge has
curvature, the upper bound of the velocity may be
further restricted by the dynamic constraint of Equation
(6). States outside the velocity bounds are defined not
to be part of the state graph. As a result, the total state
graph contains a finite number of states, but—in contrast
to [31]—we do not construct the state graph explicitly.

To avoid collisions with other cars while planning
on the state graph, the time dimension is added to
the discretized state space, forming a three-dimensional
state-time space along each of the edges of the roadmap
(see Fig. 3). It consists of pairs 〈q, t〉, where q = 〈s, v〉 is
a state contained in the state graph, and t a time value.
The time axis is discretized by the time step ∆t. Other
cars moving on the highway transform to static obstacles
in the state-time space. They are cylindrical along the v-
dimension, as the car’s velocity does not influence its
collision status.

Like the state graph is defined on the discretized state
space, the state-time graph is defined on the discretized
state-time space. It is a directed acyclic graph, that
contains a transition from state-time 〈q, t〉 to 〈q′, t+ ∆t〉
if q′ is a successor of q in the state graph. The task
is to compute a trajectory through the state-time graph
from a given start state-time 〈qstart, tstart〉 to a given goal
state-time 〈qgoal, tgoal〉. The state-time graph is explored
implicitly during the search for a trajectory.

4 RECONSTRUCTING TRAFFIC

In this section we discuss how we reconstruct the traffic
from the acquired sensor data, given the discretization
of the search space as defined in Section 3.2.
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Fig. 3: The three-dimensional state-time grid along a
single edge of the roadmap. Obstacles (gray) are cylin-
drical along the v-dimension. A part of the state graph
(or equivalently, the projection of the state-time graph)
is shown using dashed arrows on the sv-plane. Only
the grid points marked by the dots are reachable. Each
transition takes one time step.

Fig. 4: A roadmap constructed for a highway with three
lanes. The highway was subdivided into six segments.
The thick dots are the vertices of the roadmap. Only lane
changes to the right of the length of two segments are
shown here.

4.1 Constructing the Roadmap

As explained in Section 3.2, the cars are constrained
to move over a preprocessed roadmap to make the
configuration space of a car tractable. We construct this
roadmap as follows. First, we subdivide the highway
into M segments of equal length. For each lane of the
highway, we place a roadmap vertex at the end of each
segment (see Fig. 4). This gives a M×N grid of roadmap
vertices, where N is the number of lanes. Each vertex
(i, j) is connected by an edge to the next vertex (i+ 1, j)
in the same lane. These edges allow cars to stay in their
lane and move forward. To allow for lane changes, we
also connect vertices of neighboring lanes. Each vertex
(i, j) is connected to vertices (i+a, j+1), . . . , (i+b, j+1)
and (i+a, j−1), . . . , (i+b, j−1). Here a and b denote the
minimum and maximum length (in number of segments)
of a lane change, respectively. The short lane changes
are useful at lower velocities, the longer ones at higher
velocities.

When adding the edges for lane changes, we have to
make sure that they are “realistic”. That is, they should
obey the kinematic constraints of a car and should be
traversable without abrupt steering wheel motions. Let

Fig. 5: A lane change curve (left) between two points
consists of four clothoid curves, i.e. curves with constant
curvature derivative (right).

us look more closely at the constraint on the speed with
which the steering wheel is turned given in Equation (6).
It translates into the following bound on the curvature
derivative:

|φ′(t)| ≤ ωmax ⇐ |κ′(t)| ≤
ωmax

λ
⇔ |κ′(s)| ≤ ωmax

vλ
⇔

v ≤ ωmax

|κ′(s)|λ
(11)

In other words: the smaller the curvature derivative
(with respect to path length s), the higher the velocity
with which this path can be traversed. Hence, we look
for lane-change curves with the smallest possible (abso-
lute) curvature derivative. Let us look at a lane change
to the left (see Fig. 5). Note that a lane-change curve
between two points is symmetric in its midpoint. At its
midpoint, the curvature (and the steering wheel angle)
must be zero, as it is the reversal point from steering
to the left to steering to the right. The curvature is also
zero at its starting point and end point. Hence, the curve
in-between the starting point and the midpoint consists
of two curves, one with maximal positive curvature
derivative, the other with maximal negative curvature
derivative. A curve with constant curvature derivative
is well known to be a clothoid, so one lane-change edge
consists of four clothoid curves.

The roadmap resulting from the above method is valid
for cars with any value of λ, so we need to construct a
roadmap only once, and can use it for all cars.

4.2 Trajectory for a Single Car

Given a roadmap as constructed above and the state-
time graph as defined in the previous section, we de-
scribe how we can compute a trajectory for a single car,
assuming that the other cars are moving obstacles of
which we know their trajectories. How we reconstruct
the traffic flows for multiple cars is discussed in below.

A straightforward approach for searching a trajectory
in the state-time graph is the A*-algorithm. It builds
a minimum cost tree rooted at the start state-time and
biases its growth towards the goal. To this end, A*
maintains the leaves of the tree in a priority queue Q,
and sorts them according to their f -value. The function
f(〈q, t〉) gives an estimate of the cost of the minimum
cost trajectory from the start to the goal via 〈q, t〉. It
is computed as g(〈q, t〉) + h(〈q, t〉) where g(〈q, t〉) is the
cost it takes to go from the start to 〈q, t〉, and h(〈q, t〉)
a lower-bound estimate of the cost it takes to reach the
goal from 〈q, t〉. A* is initialized with the start state-time
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in its priority queue, and in each iteration it takes the
state-time with the lowest f -value from the queue and
expands it. That is, each of the state-time’s successors in
the state-time graph is inserted into the queue if they
have not already been reached by a lower-cost trajectory
during the search. This process repeats until the goal
state-time is reached, or the priority queue is empty.
In the latter case, no valid trajectory exists. During the
search we keep track of a “backpointer” bp(〈q, t〉) that
maps each traversed state to its ancestor so as to be
able to reconstruct the trajectory if one is found. The
algorithm is given in Algorithm 1.

Algorithm 1 A*(qstart, tstart, qgoal, tgoal)
1: g(〈qstart, tstart〉)← 0
2: Insert 〈qstart, tstart〉 into Q
3: while Q is not empty do
4: Pop the element 〈q, t〉 with lowest f -value from Q
5: if q = qgoal and t = tgoal then return success!
6: for all successors q′ of q in the state graph do
7: c← cost of edge between 〈q, t〉 and 〈q′, t+ ∆t〉
8: if g(〈q′, t+ ∆t〉) > g(〈q, t〉) + c then
9: bp(〈q′, t+ ∆t〉)← 〈q, t〉

10: g(〈q′, t+ ∆t〉)← g(〈q, t〉) + c
11: Insert or update 〈q′, t+ ∆t〉 in Q
12: Trajectory does not exist; return failure

In [31] the A*-algorithm was used to find a minimal-
time trajectory. That is, only a goal state is specified, and
the task is to arrive there as soon as possible. This makes
it easy to focus the search towards the goal; the cost of
a trajectory is simply defined as its length (in terms of
time). However, in our case the arrival time is specified
as well, so we know in advance how long our trajectory
will be. Therefore, we cannot use time as a measure in
our cost function. Instead, we let the cost of a trajectory
T depend on the following criteria, in order to obtain
smooth and realistic trajectories:
• The number of lane changes X(T ) in the trajectory.
• The total amount A(T ) of acceleration and deceler-

ation in the trajectory.
• The accumulated cost D(T ) of driving in closer

proximity than a preferred minimum dlimit > 0 to
other cars.

More precisely, the total cost of the trajectory T is defined
as follows:

cost(T ) = cXX(T ) + cAA(T ) + cDD(T ) (12)

where cX , cA and cD are weights specifying the relative
importance of each of the criteria. A(T ) and D(T ) are
defined as follows:

A(T ) =
∫

T

|v′(t)| dt (13)

D(T ) =
∫

T

max(
dlimit

d(t)
− 1, 0) dt (14)

where v(t) is the velocity along the trajectory as a
function of time, and d(t) is the distance (measured in
terms of time) to the nearest other car on the highway
as a function of time.

The distance d(t) to other cars on the highway given
a position s in the roadmap and a time t is computed as
follows. Let t′ be the time closest to t at which a car con-
figured at s would be in collision with another car, given
the trajectories of the other cars. Then, d(t) = |t− t′|. We
obtain this distance efficiently by – prior to determining a
trajectory for the car – computing for all positions in the
roadmap during what time intervals it is in collision with
any of the other cars. Now, d(t) is simply the distance
between t and the nearest collision interval at s. If t
falls within an interval, the car is in collision and the
distance is zero. As a result, the above cost function
would assume infinite value.

In the A*-algorithm, we evaluate the cost function per
edge of the state-time graph that is encountered during
the search. The edge is considered to contain a lane
change if a lane-change edge of the roadmap is entered.
The total cost g(〈q, t〉) of a trajectory from the start state-
time to 〈q, t〉 is maintained by accumulating the costs
of the edges the trajectory consists of. The lower bound
estimate h(〈q, t〉) of the cost from 〈q, t〉 to the goal state-
time 〈qgoal, tgoal〉 is computed as follows:

vavg =
x(q)− x(qgoal)

tgoal − t
(15)

h(〈q, t〉) = cX |lane(q)− lane(qgoal)|+ (16)
cA(|v(q)− vavg|+ |v(qgoal)− vavg|)

where vavg is the average velocity of the trajectory from
〈q, t〉 to 〈qgoal, tgoal〉, and x(q), lane(q) and v(q) are re-
spectively the the position along the highway, the lane
and the velocity at state q. If vavg > vmax, we define
h(〈q, t〉) =∞.

An advantage of the goal time being specified is that
we can apply a bidirectional A*, in which a tree is grown
from both the start state-time and the goal state-time in
the reverse direction until a state-time has been reached
by both searches. This greatly reduces the number of
states explored and hence the running time.

Streaming: Let us assume that we acquire data from
each of the sensors A and B whenever a car passes by.
Obviously, for each car, we first acquire data from A and
then from B. We order the cars in a planning queue sorted
by the time at which the cars pass sensor A. The queue
continuously grows when new sensor data arrives from
sensor A. Now, continually, we compute a trajectory for
the car at the front of the queue when its data from
sensor B has arrived. To this end, we use the algorithm
of the previous section, such that the car avoids other
cars for which a trajectory has previously been computed
(which is initially none). The start state-time and the goal
state-time are directly derived from the data acquired at
sensor A and B respectively. They are rounded to the
nearest point in the discretized state-time space. This
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procedure repeats indefinitely.
Streaming Property: The reconstructed trajectories

can be regarded as a “movie” of the past, or as a function
R(t) of time. As new trajectories are continually com-
puted, the function R(t) changes continuously. However,
the above scheme guarantees that R(t) is final for time t
if (∀i : tAi < t : tBi < tcur), where tcur is the current “real
world” time. “Final” means that R(t) will not change
anymore for time t when trajectories are determined for
new cars. In other words, we are able to “play back”
the reconstruction up till time t as soon as all cars that
passed sensor A before time t have passed sensor B. We
call this the streaming property; it allows us to stream the
reconstructed traffic at a small delay.

Real Time Requirements: In order for our system to
run in real time, that is, so that the computation does not
lag behind new data arriving (and the planning queue
grows bigger and bigger), we need to make sure that
reconstruction takes on average no more time than the
time in between arriving cars. For instance, if a new car
arrives every second, we need to be able to compute
trajectories within a second (on average) in order to have
real-time performance.

4.3 Qualitative Analysis

Prioritization: The above scheme implies a static pri-
oritization on the cars within a given pair of sensor
locations. Cars are assigned priorities based on the time
they passed sensor A, and in order of decreasing prior-
ity trajectories are calculated that avoid cars of higher
priority (for which trajectories have previously been
determined). This is justified as follows: in real traffic
drivers mainly react to other cars in front of them, hardly
to cars behind. This is initially the case: a newly arrived
car i has to give priority to all cars in front of it. On
the other hand, car i may overtake another car j, after
which it still has to give priority to j. However, it is
not likely that once car i has overtaken car j that both
cars will ‘interact’ again, and that car j influences the
the remainder of the trajectory of car i. This can be seen
as follows. If we assume that cars travel on a trajectory
with a constant velocity (this is what we try to achieve
by the optimization criteria of Equation (13)), each pair
of cars only interact (i.e. one car overtakes the other) at
most once.

In fact, in a real-world application it is to be expected
that multiple consecutive stretches of a highway are
being reconstructed, each bounded by a pair of a series
of sensors A,B,C, . . . placed along the highway. If car i
overtakes car j in stretch AB, then for reconstructing
the stretch BC, car i has gained priority over car j.
So, when regarded from the perspective of multiple
consecutive stretches being reconstructed, there is an
implicit dynamic prioritization at the resolution of the
length of the stretches.

Traffic Phenomena: This viewpoint of multiple con-
nected stretches is very important when analyzing the

traffic behavior seen in the reconstructions and stream-
ing real-time data. For each stretch individually, our
algorithm attempts to reconstruct as smooth a motion as
possible. So, it is unlikely to see traffic jam phenomena
emerge at resolutions lower than the stretch length in the
reconstructions. However, in the more global scale over
multiple stretches, these phenomena are observable, as
the algorithm tries to fit the data. This can be viewed
analogous to the Nyquist-Shannon sampling theorem,
stating that frequencies higher than the sampling res-
olution cannot be captured.

Noise Sensitivity: Our method is hardly sensitive to
noise in the data. This can be understood by the fact
that sensed passing times and velocities at the sensors
are rounded to the nearest point on the discretized
time-axis and velocity-axis respectively to initialize the
reconstruction algorithm.

5 EXPERIMENTAL RESULTS

We have implemented our method and experimented on
various challenging scenarios.

5.1 Quantitative Results

In our first experiments we use a highway with N = 4
lanes of L = 1000 meters length. Lane change curves
are 50 meters long. For the cars, we set amax = 3m/s2,
vmax = 35m/s (close to 80 MPH), dlimit = 1s and
ωmax = 1rad/s. We set the time step ∆t at 0.5s, which,
for A3, gives ∆v = 1.5m/s and ∆s = 0.375m for the
discretization of the state space. As a result, when using
A3, the roadmap consists of 41570 discrete positions. For
several of these scenarios, we have repeated the exper-
iments with the five- and seven-cardinality acceleration
sets A5 and A7. These result in smaller ∆s and ∆v and
therefore result in more detailed roadmaps and larger
search spaces, in addition to the larger branching factor
during the search. Where appropriate, we have run the
experiments with these accelerations for a subset of the
independent parameters due to their long running times.

To stress test our work on various scenarios, the data
were randomly generated. For each car i we pick a ran-
dom start time tAi from the interval [tAi−1, t

A
i−1 + 2/(ρN)],

where ρ is the traffic density (i.e. the number of cars
per second per lane). The end time tBi is selected as
tAi + L/V , where V is the average velocity randomly
picked between 20 and 30m/s. The start and end lane are
randomly chosen as well, and the start and end velocities
are fixed at 22.5m/s.

Dense Traffic: In our first experiment, we set ρ = 1/2,
which gives fairly dense traffic (a new car enters the
four-lane highway every 1/(ρN) = 1/2 seconds on
average). Given the fact that the average velocities are
relatively high and far between (between 20 and 30m/s)
and the start and end lanes are randomly chosen, this is
a challenging example. Such data is not likely to occur
in practice. We compute trajectories for 50 cars. In the
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Fig. 6: (a) The average compute time of the first x cars in our experiment (L = 1000m,N = 4, ρ = 1/2). (b) The
average compute time as a function of the highway length (N = 4, ρ = 1/2). (c) The average compute time as a
function of the number of lanes (L = 1000m, ρ = 1/2). (d) The average compute time as a function of the density
(L = 1000m,N = 4).

supplementary video, the reconstructed traffic can be
viewed. Because of the relatively large differences in
average velocities of the cars, it is interesting to see that
some fast cars aggressively race through the traffic to
reach the “goal” (i.e. the end of the highway) in time.

Performance: In Fig. 6(a) we plot the average running
time of the first x cars for this experiment. What can
be seen from the chart is that the compute time does
not increase much when more cars have previously been
considered. Only the running times for the very first cars
are faster, because they do not have to avoid any other
cars. For the rest of the cars, the traffic density is more
or less equal. In this worst case scenario, the average
running time over all 500 cars was 4.6 seconds. For real-
time data streaming, the reconstruction is faster and can
be done at interactive rates. However, the search space
(the state-time space) is big, and focusing the A*-search
to the goal can be hard as we are not searching for a
time-minimal trajectory. In general, a low-cost trajectory
is found quickly, whereas a high-cost trajectory can take

more time before it is found. This is because the A*-
search first exhausts all the possible low-cost trajectories
before it expands leaves of the search tree with a high
cost.

Effect of Road Length: In our subsequent experiments,
we varied the major parameters, while keeping the oth-
ers equal. In Figs. 6(b), (c) and (d) we see how the com-
pute time varies with the highway length, the number of
lanes, and the traffic density, respectively. We see that the
reconstruction time clearly increases as the length of the
highway increases. In fact, the curves shown are nearly
perfect cubic functions (i.e. polynomials of degree 3).
This can be explained as follows. As we keep the average
velocity constant, the length (in terms of time) of the
trajectories increases with the length of the highway. As
the A* algorithm searches in a three-dimensional state-
time space (see Fig. 3), the volume of the search tree is
expected to grow cubically with the depth of the tree
(i.e. the number of time steps). This cubic growth trend
is observed for A5 and A7, although the scale grows with
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Fig. 7: Total running time and approximate peak memory usage for the acceleration choices A3, A5, A7. The
experiment ran for each is a straight four-lane, 1000-meter highway with 50 cars.

the number of acceleration options.

The Number of Lanes: We see that the reconstruction
time increases little as the number of lanes increases. In
principle, twice the number of lanes gives twice as large
a search space. However, the lengths of trajectories in
terms of time remain constant regardless of the number
of lanes. Also, an increase in lanes gives more space
to find a low-cost trajectory, which are found quicker
than high-cost trajectories. The larger branching factors
of A5 and A7 result in slightly worse scaling in the larger
search space afforded by the increase in lanes.

Traffic Density: The density of the traffic seems to
have a more or less linear relationship with the compute
time: the lower the density, the lower the compute time.
When there is hardly any traffic, each car can find a low-
cost trajectory quickly. However, for very high density
the compute time seems to decrease. This is due to the
fact that the quantity of traffic introduces many collision
constraints, which in turn limits the branching factor of
the search.

Impact of Time Steps: We note that over all experi-
ments, we have kept the time step ∆t constant at a low
0.5s, but we note that the running time decreases quarti-
cally (i.e. ∼ 1/∆t4) when the time step increases. This is
because that the search space is three-dimensional, and
the spacing in the discretized grid is ∆t for the time axis,
O(∆t) for the v-axis, and O(∆t2) for the s-axis (see Fig.
3). So, for instance, for a time step of ∆t = 1s, which
is fine for most practical situations, the compute times
are ∼ 16 times less than the ones reported for these
experiments.

Impact of Ai: With the minimum number of three accel-
eration options (A3), reasonable results can be achieved
while keeping the branching factor of the search low.
However, it is sometimes desirable to expand the num-
ber of acceleration choices available to vehicles to suit
a particular problem. The qualitative cost of increasing

the number of search options in the A∗ algorithm is
clear — increasing the branching factor of a search at
all nodes generally incurs an exponential increase in
memory usage and running time. We quantitatively have
observed these effects for A3, A5, and A7; see Fig. 7.
Accelerations sets A9 and larger did not fit in core
memory for these experiments and were omitted.

Real-time Data Streaming: Given a density of ρ, the
real-time requirement (see Section 4.2) states we need
to calculate within 1/(ρN) time on average per car. The
time step ∆t can be tuned to achieve this requirement.
We note that for ∆t = 1s, the experiments with L =
1000m, ρ = 1/2 and N = 4 can be run in real time. The
time step should obey ∆t < 1/ρ to capture high density
traffic. Otherwise the time value of multiple cars entering
the same lane of the highway will be rounded to the
same point on the time-axis.

5.2 Scenarios

We further applied our method to two specific scenarios.
One is a cloverleaf highway interchange (see Fig. 8). In
this case, we have a sensor at each of the four arms of
the intersection. Cars can enter and leave the intersection
at any sensor point and our algorithm computes their
trajectories accordingly. In our example, we used high-
ways of 1000m length with four lanes and a density of
ρ = 1/2. As can be seen in Fig. 8 and the supplementary
video, the reconstruction gives plausible and smooth
traffic even in the case of a cloverleaf intersection.

The next scenario actually consists of multiple consec-
utive stretches, as we discussed in Section 4.3. In our
example, we place four sensors A, B, C and D along
a linear highway with four lanes such that the stretch
AB is 400m, BC is 200m and CD is 400m long. We
generated the data such that the average velocity of the
cars in the first and the last section was 20m/s and in
the middle 5m/s to simulate a traffic jam scenario. The
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Fig. 8: Images from our cloverleaf scenario (L = 4 ×
1000m,N = 4, ρ = 1/2). There are sensors at each of the
arms of the cloverleaf intersection. Cars can enter and
leave the intersection at any sensor and our algorithm
computes their trajectories accordingly.

traffic was reconstructed independently for each section
of the road, and afterwards concatenated together in
a single visualization. As can be seen in Fig. 9 and
the supplementary video, the traffic jam can be clearly
reconstructed by our method.

5.3 Validation

The aforementioned scenarios consist of synthetic
but representative road segments with procedurally-
generated input. It is important to consider how our
technique performs on input from real traffic. To test the
applicability of our method to real-world problems, we
have extracted the relevant start/end pairs from a set of
vehicle trajectory data and given them as input to our
system.

Fig. 9: Images from our traffic jam scenario (L =
{400m, 200m, 400m}, N = 4, ρ = 1/2). The traffic of three
consecutive stretches of a highway are reconstructed
independently, and afterwards concatenated in a single
visualization. In order to simulate a traffic jam, we
generated the data such that the average velocity in the
middle section was much less than in the other two.

5.3.1 Data

The vehicle trajectory data were obtained through the
U.S. Federal Highway Administration’s Next-Generation
Simulation (NGSIM) project [32] and contains trajectory
data for every vehicle traveling along a segment of I-
80 passing through Emeryville, CA for a fifteen-minute
interval. The segment of road in consideration is six lanes
of northbound highway approximately 370 meters long.
An on-ramp adjoins and feeds traffic to the rightmost
lane near the beginning of the segment in consideration,
tapering off over the first 250 meters of road segment.

The vehicle trajectory data contains samples for the
position, velocity, and acceleration of each vehicle at
regular intervals each separated by 1/10th of a second.
The dataset also contains information about the length,
width, and ‘type’ of each vehicle — motorcycles, freight
trucks, and consumer-type automobiles all appear in the
dataset under consideration.

5.3.2 Approach

Our approach uses a discrete roadmap to determine
the path each vehicle travels in space; this includes
where vehicles may change lanes and the behavior of
merging traffic. While the I-80 vehicle trajectory data is
very detailed, there is no explicit information about the
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geometry of the road nor the connectivity of the lanes.
Clearly, the configuration of the underlying road has a
significant impact on any traffic flow. For our technique
to operate, we require a detailed roadmap.

To compute a roadmap for this validation test, we
took advantage of the quantity and detail of the ve-
hicle trajectory data. While real-world vehicles have a
tendency to drift slightly as they travel along a lane
(and this was reflected in the input data), there was a
suitable quantity of data to determine that the stretch
of I-80 under consideration was very nearly linear. With
further analysis of the trajectories of vehicles entering the
highway via the on-ramp, we were able to determine its
shape and relationship with the neighboring lanes of the
main highway.

The trajectory data required some processing to be
suitable for our technique; for each vehicle, the time-
series of position/velocity needed to be examined to
find the starting and ending time/lane/velocity. Fur-
thermore, the entrance and exit points were not con-
sistent across all vehicles; some appear/leave lanes a
few meters closer/further along the road than others. To
fit our roadmap model, the starting and ending values
were ‘clipped’ to accommodate all of these paths. This
clipping simply has the effect of narrowing the region we
are considering by a few meters but owing to the high-
resolution nature of the trajectory data, we were able to
accurately interpolate the clipped starting information.

5.3.3 Performance
Recall that our technique makes a best-effort search for
paths rather than search the entire space of all possible
vehicle paths. Input vehicles treat already-planned ve-
hicles (ahead of them) as obstacles, and there are cases
where no path can be found for a vehicle given the prior
planning. Ideally, given real-world data, we would like
our method to produce a path for every input vehicle.
However, there are certain vehicle behaviors present in
real-world data that our technique does not model, and
that are likely to cause difficulties in achieving a 100%
success rate in planning. For example,
• Our model assumes that vehicles travel only along

lanes or on certain lane-change path. In California,
the practice of “lane-splitting” is legal — motorcy-
cles are free to travel in between cars in adjacent
lanes. This occurs in the I-80 dataset, and presents
a challenge for our method, which must try to find
a path around such obstacles and force each vehicle
to precisely follow a single lane.

• We assume discrete, symmetric options for accel-
eration — e.g. for a 3-acceleration version of our
technique, a vehicle may decelerate maximally, not
accelerate, or accelerate maximally at any given
moment. Trajectories in the I-80 dataset exhibit a
continuous range of accelerations. While our tech-
nique is capable of representing the same range of
accelerations, expanding the search space to more
than 7 discrete acceleration options quickly becomes

impractical in both running time and memory us-
age.

In addition, due to sensor noise and uncertainties,
we have observed the trajectories of some cars recorded
from the real-world traffic to be spatially and temporally
incoherent, i.e. the sampled positions of some vehicles
seem to “jump around” over time. Of the 2052 vehicles
present in the I-80 vehicle set, the three-acceleration
variant A3 of our method successfully reconstructed
1686 of the vehicles (82.2%). Our method was able to
reconstruct the 15 minutes of real-world traffic from
the data in 6.64 minutes; representative frames from
the original validation data and reconstruction data are
shown in Fig. 10.

6 DISCUSSION AND FUTURE WORK

In this paper, we have presented a novel concept of
Virtualized Traffic, in which traffic is reconstructed from
discrete data obtained by sensors placed alongside a
highway or street. We have presented an algorithm to
determine the trajectories for multiple cars that also
allows streaming real-world traffic data in real time to
visualize traffic as data is recorded. We have adapted
a prioritized search method to compute trajectories and
examined how our technique operates on real-world
traffic data.

Our current approach strikes a trade-off between the
quality of the reconstructed traffic and the overall perfor-
mance of the approach for interactive applications. Fur-
ther investigations can be made to improve the quality
of traffic reconstruction and visualization for other non-
real-time applications. For example, while we support
several discrete acceleration options for vehicles, we are
constrained to symmetric velocities; in reality, a vehicle
is generally more able to break (decrease velocity) than
accelerate (increase velocity). To model this aspect would
significantly increase the cost of reconstruction in both
runtime performance and storage requirements.

In our current discretization of the state-time space,
we choose a fixed time step, which gives a discrete set
of reachable positions and velocities. However, traffic
usually involves high-speed motion, so to increase the
resolution of the discretization at large velocities, we
may instead consider a fixed amount of traversed dis-
tance, and derive the velocities and times accordingly.

Our validation experiments with real-world data have
been promising, but refinements to the structure of our
roadmaps are necessary for our technique to be able to
best describe all of the features present in real-life vehicle
motion — for example, to properly be able to describe
the motion of motorcycles traveling between lanes.

We have shown in this paper that our framework
is applicable to complex highway scenarios, including
cloverleaf intersections and traffic jams. An interesting
extension would be to allow for intersections with traffic
lights or stop signs, and entire roadmaps of streets in
urban/suburban environments.
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Fig. 10: a) Original I-80 vehicle trajectory data. b) Reconstructed I-80 vehicles c) Original I-80 vehicle trajectory data
d) Reconstructed I-80 vehicles
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