
NOISE FIELD CONTROL USING ACTIVE SOUND PROPAGATION AND OPTIMIZATION

Zhenyu Tang

University of North Carolina-Chapel Hill
Department of Computer Science

Dinesh Manocha∗

University of Maryland
Department of Computer Science

Department of Electrical & Computer Engineering

ABSTRACT

We present a novel algorithm that uses active loudspeakers to
reduce the noise level in an acoustic environment. We utilize
a state-of-the-art sound propagation technique to compute a
room’s impulse responses accurately and then use it to per-
form acoustic optimization. We minimize the overall noise
level in a target region by solving the driving signals of active
loudspeakers, which interfere with and cancel out the noise
from a linear system. Our algorithm is evaluated on complex
indoor benchmarks and shows an overall noise reduction of
up to 30.0dB with noise frequency up to 8kHz.

Index Terms— Active noise control, sound propagation

1. INTRODUCTION

Excessive acoustic noise in human living environments has
long been a major concern for human health [1]. Noise can
be generated by various sources that are common in daily
life: electric fans, HVACs, engines, etc. To deal with the
noise challenge, different measures have been proposed in
material science, acoustic engineering, and computer aided
design (CAD). Active noise control (ANC) systems [2, 3, 4]
are more effective at dealing with a wide range of noise, but
they also require more sophisticated instrumentation for dig-
ital devices. With modern advances in digital signal process-
ing (DSP) software and hardware, ANC has been successfully
applied to several venues [5].

Despite their success in some scenarios, earlier ANC sys-
tems are constrained by certain factors, including the num-
ber and distance of noise sources, reverberation time, physi-
cal contact with the user, etc. However, recent developments
in modeling acoustic environment information can facilitate
even more effective noise control with fewer constraints. For
example, time difference of arrival (TDOA) based techniques
can be used to robustly determine both source and receiver
locations [6]. Acoustic classification and optimization meth-
ods can be combined to estimate real world acoustic material
properties automatically [7], along with 3D model reconstruc-
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tion using RGB-D cameras [8]. Using this environmental in-
formation, it is possible to use accurate sound simulation as
part of the ANC pipeline.
Main Results: We present a novel algorithm to control the
noise field in a target region actively using sound propaga-
tion and optimization. Given a static environment with known
non-stationary noise sources, our approach dynamically opti-
mizes the driving signals for a set of active loudspeakers to
control the noise field effectively. Our formulation is general
and makes no assumptions about the complexity of the noise
field and does not constrain loudspeaker placement.

2. RELATED WORK

2.1. Active Noise Control

ANC refers to methods that introduce new sound sources in
the environment to reduce the original noise. ANC relies on
the principle of superposition for sound waves. The basic sys-
tem for ANC requires a reference microphone to record the
noise digitally and feed the signal to a loudspeaker to gen-
erate sound that has equal amplitudes but opposite phases to
that of the recorded one [9]. However, when the noise is non-
stationary, adaptive methods [3] are used to compensate for
time-varying errors. Conventional implementation of ANC
tries to match sound pressure in the frequency domain [10],
while the recent wave domain approach [11] performs ANC
with approximate room modes. Depending on the location
of the reference microphones, ANC can be categorized into
feedforward control, where the reference noise is recorded
before the noise propagates past our active loudspeakers, and
feedback control, where the combined noise and control sig-
nal are sensed at the control region [4]. In this paper we adopt
a feedforward scheme and the frequency domain formulation.

2.2. Sound Propagation

When modeling acoustic environments, it is crucial to ac-
count for the propagation of sound and noise waves, through
which the original signal experiences attenuation and delay.
The simplest models, which only consider direct sound in
the free field, tend to ignore the reflection, reverberation,
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and diffraction of sound, which are important real-world
phenomena. Prior methods for modeling sound propaga-
tion can be classified into either wave-based or geometric
techniques. Wave-based methods solve the acoustic wave
equation directly [12] using finite element methods [13],
boundary element methods [14], finite difference time do-
main methods [15], or adaptive rectangular decomposition
methods [16]. These methods provide the most accurate
solutions to wave equations, but suffer from an expensive
computation load, becoming especially slow for large scenes
and high frequency (e.g. > 500Hz) waves. In contrast,
geometric methods regard sound waves as geometric rays,
which have much lower computational complexities than
wave-based methods. Common geometric methods include
image source methods [17], ray-tracing methods [18], and
beam/frustrum tracing methods [19]. In this paper, we utilize
the state-of-the-art geometric propagation technique, as we
are dealing with noise frequencies as high as 8kHz, beyond
which human ears become less sensitive to noise [20].

3. NOISE FIELD CONTROL

Table 1: Notation and symbols used throughout the paper.

P (x, t) Sound pressure at point x at time t
S(x, ω) Sound pressure at point x of frequency ω
D(x, ω) Driving signal at point x of frequency ω
IR(xs,xr, t) Impulse response at time t from point source

at location xs to the listener at location xr

G(xs,xr, ω) Frequency response at ω from point source
at location xs to the listener at location xr

In this section, we present the noise field control problem
in its specific form and as a linear system. As in conventional
active noise cancellation methods [9], we use loudspeakers
to emit destructive sound signals to cancel out the existing
noise field in a target region. The notation used in the paper
is summarized in Table 1.

3.1. Modeling Sound Pressure Field

Consider a sound receiver at location xr ∈ V and a sound
source placed at xs ∈ V , where V represents the 3D space.
The sound pressure from xs will undergo both phase and
strength changes when propagating to xr. Suppose the
temporal sound pressure sequence at source location xs is
P (xs, t); we need to study what the induced sound pressure
P (xr, t) at each receiver location xr will be. A conven-
tional way to model the transfer of acoustic waves is using
homogeneous and in-homogeneous Helmholtz equations. In
free-field conditions, the transfer function can be described
analytically with the free-field Green’s function. However,
the free-field condition does not hold when significant rever-
berations occur in the environment. A proposed sound field

decomposition method based on the assumption of sparse
and low-rank source signals has been proven to work better
than traditional models [21]. In our work, however, we make
no assumptions about the structure or characteristics of the
unknown sound field.

We use impulse responses (IRs) to model the sound prop-
agation. Let IR(xs,xr, t) denote the time-varying IR between
a source-receiver pair xs and xr, then it follows that

P (xr, t) = P (xs, t) ∗ IR(xs,xr, t), (1)

where (∗) means convolution between two sequences. By tak-
ing fast Fourier transform (FFT) of Equation (1) we obtain its
complex frequency domain representation:

S(xr, ω) = D(xs, ω)G(xs,xr, ω), (2)

which applies to all angular frequencies ω = 2πf . We also
use the notation ofD(xs, ω), which is the driving signal of the
sound source at xs, to differentiate between signals of sources
and receivers. When dealing with multiple sound sources, the
resulting sound pressure at xr is the superposition of propa-
gated sound from all sources:

S(xr, ω) =
∑
s

D(xs, ω)G(xs,xr, ω). (3)

3.2. Our Optimization Algorithm

Our goal is to control the noise field in a local target region
V ⊂ R3. Assume that there are NS known noise sources
at xs /∈ V, s ∈ {1, ..., NS} in the environment. To negate
the noise, we add NL active loudspeakers at yl /∈ V, l ∈
{1, ..., NL}. Then we need to sample NM monitor points
pm ∈ V,m ∈ {1, ..., NM} from the target region for opti-
mization. As in Equation (3), the corresponding noise field
consists of the two types of sources:

S(pm) =

NS∑
s=1

D(xs)G(xs,pm) +

NL∑
l=1

D(yl)G(yl,pm).

(4)
We omit ω for brevity. We also assume that the signal D(xs)
at each noise source is known by close measurement.

Since we want to eliminate noise as much as possible, the
desired noise field would be S(pm) = 0 for all monitor points
in Equation (4). To formulate our linear system, we define

gS(pm) = [G(x1,pm), ..., G(xNS
,pm)]T,

D(x) = [D(x1), ..., D(xNS
)]T;

(5)

for noise sources. Similarly, for active loudspeakers the sys-
tem is:

gL(pm) = [G(y1,pm), ..., G(yNL
,pm)]T,

D(y) = [D(y1), ..., D(yNL
)]T.

(6)
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Fig. 1: The stages and flow of our algorithm. The noise is measured by noise level (see Equation (14)). The driving functions
for the loudspeakers are solved from linear systems using complex regularized least-squares (LS).

We can compactly rewrite Equation (4) in terms of the desired
field for all monitor points as

0 = gT
S (pm)D(x) + gT

L(pm)D(y). (7)

The underlying optimization problem can be formulated as:

Cm = −gT
S (pm)D(x),

f(Xm,D(y)) = gT
L(pm)D(y);

(8)

with our objective function being

argmin
D(y)

NM∑
m=1

[Cm − f(Xm,D(y))]
2
. (9)

To solve the above linear system, we further define the acous-
tic transfer matrix Q = [gL(p1), ...,gL(pNL

)]T, which has
a dimension NM ×NL and the vector C = [C1, ..., CNM

]T.
Then we can obtain the solution in the least-square sense:

D(y) = (QHQ+ λINL
)−1QHC, (10)

where (·)H denotes the Hermitian transpose of a complex ma-
trix, INL

is the identity matrix of order NL, and λ is the reg-
ularization term, which is set through experiments to 0.01 to
prevent unreasonably high loudspeaker efforts.

3.3. Feedback Removal

Frequency domain noise processing requires segmenting the
input signal in the time domain and performing a short time
Fourier transform. Consequently, Equation (10) is evaluated
for each segment to obtain the loudspeaker driving function.
Our derivation in Section 3.2 assumes reliable sensing of
D(xs, ω) for all noise sources. However, the loudspeaker
signal at one time segment can affect the sensing in the next
segment, a common issue in many ANC systems.

We address this issue by identifying active signals gener-
ated from previous segments. In the time domain view, the
signal propagating to the source at xs from segment i is

P (i)(xs, t) =

NL∑
l=1

P (i)(yl, t) ∗ IR(yl,xs, t). (11)

Then, for a following segment j, the interfering signal from
segment i is

P (j,i)(xs, t) = P (i)(xs, t)W ((j − i)T, (j − i+ 1)T ), (12)

where W (t1, t2) is a window function truncating signals
outside [t1, t2] and T is the segment time length. Let the
raw noise sensor signal affected by interference at xs be
P

(j)
c (xs, t), we recover the true noise signal P (j)(xs, t) as

P (j)(xs, t) = P (j)
c (xs, t)−

∑
i<j

P (j,i)(xs, t). (13)

Then the noise signal can be transformed to D(xs, ω) as the
input to our algorithm pipeline, as shown in Fig. 1.

Fig. 2: Distribution of sound sources and receivers for scenes
in Table 2. The sphere mesh denotes the target control re-
gion, which has a radius of 0.4 meters; the blue dots are dense
monitor points, but only a subset of them is used in our opti-
mization scheme; and the red dots are active loudspeakers we
added to the scene, which are all outside of the control region.

4. EXPERIMENTS

4.1. Computing Noise Metric

When we have computed the driving signals from Equation
(10), we can substitute D(y) into Equation (4) to obtain the
combined noise field S(pm, ω). With Parseval’s theorem, the
noise level can be calculated as

L(ω) = 20log10
|S(pm, ω)|

p0
+A(

ω

2π
), (14)

where p0 = 2× 10−5Pa is the reference pressure for the hu-
man hearing threshold, and A(f) is the most commonly used

3
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Fig. 3: Noise field and noise reduction (NR) values by varying the number of loudspeakers (NL) in the Trinity (top row) and
Berlin (bottom row) scenes. In each field plot, the circle with a radius of 0.4m encloses the target control region. NM = 45
monitor points are uniformly sampled in the circle. The rendering in the leftmost column shows two possible noise source and
loudspeaker configurations, while the actual number of sources and loudspeakers varies in the experiment. Note that with more
loudspeakers, the noise field is better controlled with max NR values of 30.0dB for Trinity and 24.1dB for Berlin. Reductions
are achieved for overall target areas with noise frequency up to 8kHz due to accurate sound propagation and optimization.

A-weighting noise level adjustment for human hearing [20].
The resulting noise level will have a corrected decibel unit
dBA. Based on this metric, we calculate the average noise
reduction (NR) value in dB with respect to the original noise
field for each synthesized field to indicate ANC performance.

Table 2: Specifications of our experiments on the CAD mod-
els of two large real-world scenes. We highlight the noise
reduction value before and after ANC .

Scene Size NS NM
Noise Level

Before
Noise Level

After

Trinity 450m3 9 45 88.37dBA 58.40dBA
Berlin 370m3 5 45 96.46dBA 72.36dBA

4.2. Setup and Results

We use the Trinity and Berlin 3D models shown in Fig. 3,
which are captured from real-world buildings, as our bench-
marks. We highlight various details of the models in Table 2,
and the sample point distribution of the two scenes with dif-
ferent centers is shown in Fig. 2. Although our formulation
is general for 3D space, in this paper we visualize noise fields
for a representative 2D plane. IRs are precomputed using ge-
ometric propagation that traces specular and diffuse rays and
performs up to 200 bounces for accurate reverberation.

To evaluate the impact of the number of active loudspeak-
ers in use, we vary parameter NL and visualize the noise field
before and after our optimization algorithm in Fig. 3. In both
scenes, with an insufficient number of active loudspeakers

(e.g. NL = 30 or NL = 40), we only have weak control over
the target regions because we are solving an under-determined
system. However, as we increase the number of loudspeak-
ers, we gain more control over the target region. The noise
power can be significantly reduced with NL = 45 loudspeak-
ers, achieving NR = 30.0dB and NR = 24.1dB for Trinity
and Berlin, respectively, for the whole region. Further in-
creasing NL does not give significantly more noise reduction.

In addition, our results show consistency with the multiple-
input multiple-output inverse theorem (MINT) [22]. Because
our IRs are not derived from simple principle approxima-
tions, given the acoustic complexity of common rooms, our
system will not suffer from the sensitivity problem at some
seemingly symmetrical positions of sources and receivers.

5. CONCLUSION AND FUTURE WORK

In this paper, we proposed a novel method to dynamically
compute the optimal driving signals for a set of active loud-
speakers based on accurate IRs to minimize the overall noise
level over a target region. We evaluated the performance on
two complex scenes and observed considerable reduction in
noise levels. Despite our flexibility in loudspeaker placement,
our method requires more loudspeakers to achieve similar
levels of noise reduction compared to mode-matching based
methods [11]. Future integration of mode analysis into our
algorithm may relax this requirement. Moreover, our imple-
mentation can be extended to use hybrid sound propagation
to handle low-frequency noise more accurately.

4



6. REFERENCES

[1] Mathias Basner, Wolfgang Babisch, Adrian Davis, Mark
Brink, Charlotte Clark, Sabine Janssen, and Stephen
Stansfeld, “Auditory and non-auditory effects of noise
on health,” The Lancet, vol. 383, no. 9925, pp. 1325–
1332, 2014.

[2] Michael L Honig and David G Messerschmitt, “Adap-
tive filters: structures, algorithms and applications,”
1984.

[3] Peter M Clarkson, Optimal and adaptive signal process-
ing, Routledge, 2017.

[4] Stephen J Elliott and Trevor J Sutton, “Performance of
feedforward and feedback systems for active control,”
IEEE Transactions on Speech and Audio Processing,
vol. 4, no. 3, pp. 214–223, 1996.

[5] LJ Eriksson, “Computer-aided silencingan emerging
technology,” Sound Vib, vol. 24, no. 7, pp. 42–45, 1990.

[6] Trung-Kien Le and Nobutaka Ono, “Robust tdoa-based
joint source and microphone localization in a reverber-
ant environment using medians of acceptable recovered
toas,” in Acoustic Signal Enhancement (IWAENC), 2016
IEEE International Workshop on. IEEE, 2016, pp. 1–5.

[7] Carl Schissler, Christian Loftin, and Dinesh Manocha,
“Acoustic classification and optimization for multi-
modal rendering of real-world scenes,” IEEE transac-
tions on visualization and computer graphics, vol. 24,
no. 3, pp. 1246–1259, 2018.

[8] Mingsong Dou, Li Guan, Jan-Michael Frahm, and
Henry Fuchs, “Exploring high-level plane primitives for
indoor 3d reconstruction with a hand-held rgb-d cam-
era,” in Asian Conference on Computer Vision. Springer,
2012, pp. 94–108.

[9] Lueg Paul, “Process of silencing sound oscillations,”
June 9 1936, US Patent 2,043,416.

[10] Jacob Benesty and Dennis R Morgan, “Frequency-
domain adaptive filtering revisited, generalization to the
multi-channel case, and application to acoustic echo
cancellation,” in Acoustics, Speech, and Signal Process-
ing, 2000. ICASSP’00. Proceedings. 2000 IEEE Inter-
national Conference on. IEEE, 2000, vol. 2, pp. II789–
II792.

[11] Jihui Zhang, Thushara D Abhayapala, Wen Zhang,
Prasanga N Samarasinghe, and Shouda Jiang, “Active
noise control over space: A wave domain approach,”
IEEE/ACM Transactions on Audio, Speech and Lan-
guage Processing (TASLP), vol. 26, no. 4, pp. 774–786,
2018.

[12] David T Blackstock, “Fundamentals of physical acous-
tics,” 2001.

[13] Philippe Langlet, Anne-Christine Hladky-Hennion, and
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