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ABSTRACT
We present a novel acoustic optimization algorithm to synthesize
dynamic sound fields in a static scene. Our approach places new ac-
tive loudspeakers or virtual sources in the scene so that the dynamic
sound field in a region satisfies optimization criteria to improve
speech and music perception. We use a frequency domain formula-
tion of sound propagation and reduce the computation of dynamic
sound field synthesis to solving a linear least squares problem, and
do not impose any constraints on the environment or loudspeakers
type, or loudspeaker placement. We highlight the performance on
complex indoor scenes in terms of speech and music improvements.
We evaluate the performance with a user study and highlight the
perceptual benefits for virtual reality and multimedia applications.
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1 INTRODUCTION
Recreating an immersive environment that combines both video
and audio rendering to simulate the experience of exploring a
three-dimensional virtual environment is important for games, vir-
tual/augmented reality (VR/AR), and multimedia applications. Over
the last few decades, most of the work has focused on improving the
visual fidelity of such environments using multimedia techniques
or high quality graphical rendering. Current 3D multimedia or VR
content creation tools can generate photo-realistic rendering and
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also provide capabilities for automatic placement of real or virtual
lights. As compared to visual rendering, the state of the art in audio
rendering or generation of 3D audio content lags behind. We need
better capabilities in terms of algorithms and tools to automatically
generate desirable sound fields in virtual environments.

The notion of generating or modifying the sound field is widely
studied in the context of sound field synthesis (SFS) for decades [28,
41]. The SFS problem can be formulated as finding the driving
signal of a given ensemble of elementary sound sources (usually
loudspeakers) such that the superposition of their emitted indi-
vidual sound fields constitutes a common sound field with given
desired properties over an extended area [1]. This problem calls
for a new reproduction technique which allows the synthesis of
physically correct wave fields of three-dimensional acoustic scenes.
Previous works include many audio rendering techniques, where
new and artificial wavefronts are synthesized by a large number of
active loudspeakers or virtual sources in the environment. The most
widely used methods are based on wave-field synthesis, which is
based on the Huygens-Fresnel principle, and deals with the use of
loudspeaker arrays to control the sound field over an extended area
of the environment. In practice, prior methods do not accurately
model sound wave propagation or generate reverberation effects.
As a result, it is hard to provide guarantees on the performance of
current sound field synthesis methods in arbitrary environments.

The sound field is governed by various factors or scene parame-
ters. These include the geometric shape and material representation
of the 3D virtual world, the location(s) of audio source(s), the lis-
tener location, and input (dry) audio signal(s). Acoustic propagation
algorithms simulate the propagation of sound waves through an
environment for given source and listener positions and compute
the impulse responses (IRs) using geometric or wave-based propa-
gation algorithms. Recent developments in sound propagation and
auralization have enabled the generation of environmental acoustic
effects and spatial sound at interactive rates for immersive envi-
ronments. These methods are also used to provide aural cues to a
user about the environment and can lead to an improved sense of
presence in VR applications [19, 39]. Although these propagation
techniques can evaluate the sound field for a given scene configu-
ration or parameters, they have not been used to actively modify
or change the sound field to generate desired acoustic effects.

One of the driving applications of our work is to develop tech-
niques that can improve the understanding or perception of speech
or music effects. SFS has been shown to be useful in recreating
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acoustic environments for communication (e.g. teleconferencing)
and in the entertainment industry based on digital signal process-
ing. With the recent advances in speech understanding and use
of voice interfaces for IOT (Internet of Things) devices, there is
considerable interest in developing robust SFS methods that can
improve the intelligibility of speech in noisy/reverberant environ-
ments. Similarly, there is some work on improving the quality of
music sound in all types of acoustic environments.
Main Results: We present a novel algorithm for dynamically syn-
thesizing the sound �eld using a combination of sound propagation
and acoustic optimization. Given a static virtual environment with
known sound sources, our approach automatically computes the
driving signals for a set of active loudspeakers to generate the
desired dynamic sound �eld. We use the frequency domain formu-
lation of the acoustic wave equation and sound propagation, and
reduce the dynamic SFS problem to solving a linear least-square
system. Our algorithm uses precomputed IRs in the virtual scene for
di�erent locations of active loudspeakers. Our approach is general
and makes no assumption about the environment, sound sources
or their locations. Furthermore, we can provide guarantees on the
resulting sound �eld based on our acoustic optimization. We demon-
strate the bene�ts of our approach in two driving applications:

� Speech Improvement: We dynamically synthesize the sound
�eld for speech improvement in indoor scenes. We use the
well-known speech transmission index (STI) metric [16] as
an indicator to reduce the reverberation e�ects in an envi-
ronment using virtual sources. This can be used to improve
the quality of far-�eld speech intelligibility for automated
speech recognition (ASR).

� Music Reinforcement: We use our dynamic sound �eld
synthesis algorithm for music reinforcement to maintain
a desirable frequency transmission in an acoustic environ-
ment. Our formulation computes the appropriate frequency
component transmission compensation for sources and min-
imizes the unwanted frequency distortions due to sound
propagation in poorly treated acoustic environments.

We have evaluated our algorithm in di�erent indoor scenes. We use
ray tracing based geometric propagation algorithm to accurately
compute the IRs and combine them with optimization algorithms.
We highlight the improvements in the sound �elds based on di�er-
ent metrics for speech and music improvement. Overall, we present
�rst set of dynamic SFS algorithms that use sound simulation tech-
niques to modify the sound �eld to satisfy given metrics.

The rest of the paper is organized as follows. We give an overview
of prior work in sound �eld synthesis and acoustic optimization in
Section 2. We introduce our notation and describe the underlying
representation used to synthesize the sound �eld in Section 3. We
present our dynamic synthesis algorithm in Section 4 along with
the metrics used for speech improvement and music reinforcement.
We describe our implementation in Section 5, and highlight the
performance on di�erent benchmarks, as well as a perceptual user
study in Section 6.

2 RELATED WORK
In this section, we give a brief overview of prior work on SFS, sound
propagation, and acoustic optimization.

2.1 Sound Field Synthesis
SFS deals with generating a de�ned sound �eld in an extended
area that is surrounded by loudspeakers. The idea of SFS was �rst
introduced by Jessel [28] and based on the theoretical assumption
of a continuous layer of loudspeakers. In early work onAmbisonics
[20], several loudspeakers were placed around one location where
the sound �eld was synthesized. This early work on Ambisonics
systems evolved into Higher Order Ambisonics (HOA), which ac-
counts for higher order modes [4, 11], and Near-�eld Compensated
Higher Order Ambisonics (NFC-HOA) [11, 12], where sources are
assumed to be monopoles that emit omnidirectional waves [35].
One of the limitations of Ambisonics systems is that they can only
be used with spherical and circular loudspeaker distributions.

Wave Field Synthesis (WFS) is another popular approach for
SFS. It can be regarded as an audio rendering method where the
wavefronts originate from virtual sources. Its formulation can be
derived from the Rayleigh I integral or the Kirchho�-Helmholtz
integral [6, 41]. While WFS is equivalent to a high-frequency ap-
proximation of in�nite order HOA [2], it can be applied to any
arbitrary convex loudspeaker placement problem. However, dense
loudspeaker spacing and the loudspeaker type (monopole, dipole,
or linear array type) [14] are needed to compute a solution. Other
techniques are based on digital signal processing [26, 27]. In these
methods, sound pressure at certain frequencies is matched with the
desired sound �eld by solving for loudspeaker driving signals using
least squares techniques. However, the resulting algorithms do not
accurately model the room acoustics or reverberation e�ects in an
environment. While complimentary technique of using compensa-
tion �lters exists [9], it requires a high number of �lters (L2 �lters
for L loudspeakers) for non-stationary virtual sources as well as
tedious measurements.

Our approach for dynamic SFS is complimentary to these tech-
niques and is more general. We try to model the room acoustics
using sound propagation and precompute the IRs in preprocessing.
Furthermore, we do not impose any constraints on the environment,
loudspeaker type, or loudspeaker placement.

2.2 Sound Propagation
Sound propagation methods compute the re�ection and di�raction
paths from the sound sources to a listener in the virtual environ-
ment. Prior algorithms for sound propagation can be classi�ed
into two categories: geometric techniques and wave-based tech-
niques. Geometric methods work on the underlying assumption
of sound wave propagating in the form of a ray, where the wave-
length of the sound is smaller than the size of the obstacles in
the environment[19]. These methods include image source meth-
ods [3], ray tracing methods[38�40, 43], and beam or frustum
tracing methods[8, 18]. They are mostly accurate for higher fre-
quencies and can be used for interactive applications. Wave-based
sound propagation methods directly solve the wave equation for
sound propagation (see Equation 1). These methods are based on
Finite Element Methods (FEM), Boundary Element Methods (BEM),
�nite-di�erence time domain (FDTD) approaches [36] and Adaptive
Rectangular Decomposition (ARD) methods [32]. Wave-based tech-
niques are accurate, but are only practical for low frequencies and



small scenes. When combining geometric and wave-based meth-
ods, a huge amount of precomputation would be required for each
scattering object [34].

2.3 Acoustic Optimization
Acoustic optimization methods mainly deal with improving the
acoustic characteristics of a space using optimization algorithms by
changing the scene parameters. Previous work in acoustic optimiza-
tion techniques includes modi�cations to the shape, materials, or
topology of the 3D environment. Work in this area includesAudiop-
timization, a framework for optimizing the shape and materials [30],
absorbent optimization [37], continuous optimization approaches
for material design [31], shape optimization approaches [17, 33],
and topology optimization approaches [15]. In the area of SFS, di�er-
ent methods have been proposed for the placement of loudspeakers
and microphones [25]. SFS methods are also useful in the �eld of
noise control [42, 44]. Our optimization approach is more general
and is complimentary to these acoustic optimization algorithms
and uses sound propagation algorithms.

3 SOUND FIELDS

Table 1: Notation and symbols used throughout the paper.

P¹x; t º Sound pressure at pointx at timet
S¹x; ! º Sound pressure at pointx of angular frequency!
D¹x; ! º Driving signal at pointx of angular frequency!
IR¹xs; xl ; t º Impulse response at timet from point source at Loca-

tion xs to the listener at Locationxl
G¹xs; xl ; ! º Frequency response at! from point source at Location

xs to the listener at Locationxl

In this section, we give background on properties of sound �eld
and on sound propagation. These are used in our approach to per-
form dynamic SFS in an uncontrolled environment with arbitrary
loudspeaker distribution.

3.1 Sound Field as 4D Pressure Field
A sound �eld is de�ned in a spatial volumeV � R3 that has no
sources or sinks. Moreover, we assume that sound sources are
placed outside the volume, as in prior work in sound �eld synthesis.
For a listener at locationxl 2 V and a source placed atxs, the
sound pressure at timet at the listener induced by the source is
denoted byP¹xs; xl ; t º, which is a 7D pressure �eld. However, when
dealing with multiple sound sources, our goal is to compute the
combined sound �eld at the listener from all the sources. Therefore,
we �x xl and sum up the sound from all the sources, yielding
P¹xl ; t º =

Í
s P¹xs; xl ; t º, which characterizes our sound �eld as a

4D pressure �eld.

3.2 Sound Propagation in Frequency Domain
The process of sound propagation can be described using the wave
equation:

@2

@t2P¹x; t º � c2P¹x; t º = f ¹x; t º; (1)

wherec is the speed of sound in a homogeneous medium, which
we assume to be343m•s, andf ¹x; t º is the forcing term at location
x at timet .

Impulse Response (IR) is the most widely used representation
to model sound propagation in the time domain. In practice, an IR
sequence is convolved with the source signal sequence to compute
the propagated signal and auralization. In this work, we mainly
work with the complex frequency domain. LetIR¹xs; xl ; t º denote
the IR for source-listener pairxs andxl , the frequency response is
the Fourier transform of the IR:

G¹xs; xl ; ! º = F f IR¹xs; xl ; t ºg=
¹ 1

�1
IR¹xs; xl ; t ºe

� i ! t dt ; (2)

where! is evenly discretized in a frequency range. Similarly, we
transform the sound �eld to the frequency domain as:S¹x; ! º =
F f P¹x; t ºg. Let the source signal at locationxs be given asD¹xs; ! º,
then the propagated sound from all known sources toxl can be
represented as:

S¹xl ; ! º =
Õ

s
D¹xs; ! ºG¹xs; xl ; ! º; (3)

for all ! in our interested frequency range. This is converted using
! = 2� f , with f normally taken from a subset of the human
hearing range20Hz � 20000Hz.

3.3 Dynamic Sound Fields
There are many factors that a�ect the steady state of a sound �eld,
and therefore making the �eld change continuously. These include:
source movement - a change in source location results in changes in
sound propagation paths; 3D environment change - when dynamic
objects are present in the scene (e.g. a door that might be open or
closed) or a change in the environment material, the sound �eld can
also change; source signal change - fast changing source signals
will make the sound �eld more dynamic. In addition, when a source
signal becomes zero, it contributes nothing to the sound �eld and
is equivalent to being removed from the system. In this paper, we
limit ourselves to static scenes with �xed source locations. We
mostly account for changes in the sound �eld due to the source
signal change. Speci�cally, we place active loudspeaker or virtual
sources outsideV, which can change the sound �eld insideV based
on certain metrics or criteria. Our two main metrics are based on
speech intelligibility and music reinforcement requirements.

4 DYNAMIC SOUND FIELD SYNTHESIS
In this section, we present our dynamic sound �eld synthesis al-
gorithm in its generalized form and reduce it to an optimization
problem. Moreover, we demonstrate the applications of our formu-
lation to two driving applications: speech improvement and music
reinforcement. Given an acoustic scene that has some existing static
sound sources, we add new loudspeakers that emit constructive
or destructive sound signals at multiple locations to change the
existing or original sound �eldto a new sound �eldwe desire. In the
following context, we call these newly added loudspeakers asactive
loudspeakersbecause they are actively driven by our algorithm.

4.1 Problem Formulation
Given a sound zoneV � R3, some known sound sources, and a set of
active loudspeakers with known positions, we compute the driving
signal for each individual loudspeaker so that the superposition of



Figure 1: Given a scene with two static sources, S1 and S2. Our
algorithm manipulates the sound �eld within V by control-
ling the source signals at 4 active loudspeakers, Li .

all propagated signals constitutes a desired sound �eldSd overV.
Such a setup is also illustrated in Figure 1.

Essentially, without the active loudspeakers, there is only the
sound �eld produced by original sources in the scene. Assume we
haveNS known original sources atxs < V;s 2 f1; :::;NSg, with
D¹xs; ! º being the emitted signal atxs which can be a dynamic
function, the resulting sound pressure at any positionx 2 V can be
expressed as:

So¹x; ! º =
NSÕ

s=1

D¹xs; ! ºG¹xs; x; ! º: (4)

We useSo to denote theoriginal sound �eld. Equation 4 can be
compactly written as:

So¹x; ! º = gT¹! ; xºD¹! º; (5)

whereg¹! ; xº = »G¹x1; x; ! º; :::;G¹xNS ; x; ! º¼T and
D¹! º = »D¹x1; ! º; :::;D¹xNS ; ! º¼T, which are bothNS � 1 complex
column vectors.

Next, assume we haveNL active loudspeakers (or virtual sources)
at yl < V;l 2 f 1; :::;NLg, with D¹yl ; ! º being the emitted signal at
yl which is driven by our algorithm, the sound �eld constructed
by all active loudspeakers denoted bySa can be expressed as:

Sa¹x; ! º =
NLÕ

l =1

D¹yl ; ! ºG¹yl ; x; ! º; (6)

at x 2 V. As in Equation 5, we rewrite Equation 6 as:

Sa¹x; ! º = ~gT¹! ; xº ~D¹! º; (7)

where ~g¹! ; xº = »G¹y1; x; ! º; :::;G¹yNL
; x; ! º¼T and

~D¹! º = »D¹y1; ! º; :::;D¹yNL
; ! º¼T. Finally, we can directly sum

up (5) and (7) to get the combined sound �eld. If our desired or
new sound �eld isSd ¹x; ! º, we want to compute~D¹! º such that
So¹x; ! º + Sa¹x; ! º = Sd ¹x; ! º.

4.2 Sound Field Synthesis: Objective
Our goal is to manipulate the continuous sound �eld. However,
the stated problem cannot be solved analytically. Therefore, we

instead selectNM uniformly distributed internal monitor points
pm 2 V;m 2 f1; :::;NM g, and make the sound �eld match the
desired one at these monitor points, indirectly constraining the
continuous sound �eld. The selection of these monitor points can
be based on other principles. To simplify our formulation, we de�ne

Cm ¹! º = Sd ¹pm ; ! º � gT¹! ;pm ºD¹! º;

f ¹Xm ; ~D¹! ºº = ~gT¹! ;pm º ~D¹! º:
(8)

This boils down to solving the optimization problem that minimizes
the error between our constructed and desired sound �elds by
choosing the appropriate driving signals. The resulting objective
function can be given as:

arg min
~D¹! º

NMÕ

m=1

�
Cm ¹! º � f ¹Xm ; ~D¹! ºº

� 2
: (9)

4.3 General Solution
Equation (9) can be solved using linear least squares. Since~D¹! º
is an unknown complex vector of lengthNL , and we haveNM
observations, depending on the relative values ofNL andNM . Given
the linear dependency between active loudspeaker responses, the
resulting linear system could be determined, over-determined or
under-determined. To deal with the numeric instability of sound
propagation algorithms, we tend to choose more loudspeakers than
the monitor points. Thus, we turn our linear system into an over-
determined system by settingNL > NM . Moreover, we use ridge
regression to enforce a meaningful solution. Let us de�ne theNM �
NL frequency response matrix for all loudspeakers

Q¹! º =

2
6
6
6
6
6
4

G¹y1; p1; ! º : : : G¹yNL
; p1; ! º

:::
: : :

:::
G¹y1; pNM

; ! º : : : G¹yNL
; pNM

; ! º

3
7
7
7
7
7
5

; (10)

andC¹! º = »C1¹! º; :::;CNM ¹! º¼T. For brevity we omit! and derive
the optimal solution in the least-squares sense as:

~D = ¹Q
T
Q + � Iº� 1Q

T
C; (11)

where¹�º denotes the complex conjugate of matrices andI is an
identity matrix in the complex domain. The regularization weight
� is typically decided from the experiments or the 3D environment.
The regularization term is helpful in constraining the absolute
loudspeaker power and making the solution more robust. Note that

the right side of Equation (11) can be decoupled so that¹Q
T
Q +

� Iº� 1Q
T

should only be solved once for the system, and only the
observation partC needs to be updated for speci�c applications.

4.4 Dynamic SFS for Speech Improvement
One of the driving applications of our work is to improve the speech
understandability in an indoor scene. Human speech understanding
has been an important task for some smart devices that use Auto-
mated Speech Recognition (ASR) [5, 23]. In an indoor environment,
even without the presence of mechanical noise, reverberation of
the speech signal itself can negatively a�ect the understanding of
spoken phrases [21].

Our formulation is based on the observation that reducing rever-
beration in the environment can improve the speech intelligibility.



Figure 2: We highlight di�erent stages of our algorithm. The acoustic metric is given by the underlying application. The driving
function for loudspeakers are solved from linear systems using complex regularized least-squares (LS).

By using sound �eld synthesis (equivalently adding virtual sources),
we can signi�cantly reduce the reverberation of speech. We are
given a 3D environment along with the location of the sound speech
sources. Therefore, for a monitor pointpm in our target sound zone
in the 3D environment and a speech signal fromxs, our goal is
to model only the direct response and denote it asGD ¹xs; pm ; ! º,
which only contains the �rst impulse ofG¹xs; pm ; ! º. And this im-
pulse can be easily located in the temporal domain. In this case, the
desired sound �eld becomes:

Sd ¹pm ; ! º =
NSÕ

s=1

D¹xs; ! ºGD ¹xs; pm ; ! º: (12)

Typically we expect only one of theNS sources to emit a non-zero
signal because it is di�cult for someone to listen to two di�erent
speech signals at the same time, even if both are very clear. There-
fore, we can substitute Equation (12) into Equation (8) and solve
for the resulting system.

4.5 Dynamic SFS for Music Reinforcement
A music sound reinforcement system often uses loudspeakers, sig-
nal processors, equalizers and ampli�ers to distribute live or pre-
recorded music to the audience. These systems are more sophisti-
cated than modern stereo sound systems at home, and require the
user to have a higher level understanding of acoustical signal char-
acteristics to operate [13]. In live music performance, even though
the soundtracks are mixed by an expert, as the sound propagates
in the environment, the resulting soundtrack tends to experience
distortion in its frequencies [10]. In many cases, high frequency
signals are attenuated more than low frequency signals. With our
dynamic sound �eld synthesis, we can simulate the propagation
e�ect the environment has on the resulting music soundtrack and
negate the distortion. By using sound �eld synthesis in music re-
inforcement systems, we can control the transmission of spatial
music sound with higher precision.

We use a stage setting to demonstrate the bene�ts of our ap-
proach. During a music performance, input sound streams are cap-
tured with one microphone per performer/instrument. Our loud-
speakers are located around the ceiling. We want the sound per-
ceived by the audience to have no undesired distortions due to
propagation. Therefore, we set the �ltered sound �eld as our de-
sired sound �eld at each monitor positionpm :

Sd ¹pm ; ! º =
NSÕ

s=1

D¹xs; ! ºF¹xs; ! º; (13)

wherexs represents the location of one performer on stage, and
F is the frequency dependent �lter as tuned by a sound expert for

each audio stream. Equation (13) is substituted back into Equation
(8) to compute the solution.

4.6 Performance Metrics
We introduce two commonly used metrics we will use in following
sections as our metrics for speech and music tasks.

4.6.1 Speech Metric.To measure speech intelligibility quantita-
tively, we use the STI metric [16] to evaluate the performance. STI
is computed from a weighted average of the Modulation Transfer
Function (MTF) of an impulse response. MTF can be derived as:

mk ¹fm º =
j
¯ 1
0 rk ¹t º2e� j 2� fm t dt j

¯ 1
0 rk ¹t º2dt

; (14)

whererk ¹t º is our impulse response �ltered to octave bandk. The
left hand sidemk ¹fm º is the modulation transfer ratio atfm . For
evaluating the STI in full range, we use14modulation frequencies
(0.63Hz to 12.5Hz, 1/3 octave spaced) per band, which gives us 98
samples ofmk ¹fm º. The STI value is bounded within»0;1¼. Larger
STI values indicate better speech intelligibility.

4.6.2 Music Metric.To measure the e�ectiveness of music rein-
forcement at each listening position, we evaluate the normalized
cross-correlation between the actual and desired sound �eld to
evaluate the e�ect of distortion compensation. Assuming we have
obtained the propagated sound �eldSp from Sp¹x; ! º = So¹x; ! º +
Sa¹x; ! º, the correlation can be computed as

corr¹Sp;Sd º =
Í

! S
p
¹x; ! ºSd ¹x; ! º

q Í
! jSp j2

Í
! jSd j2

: (15)

The correlation value will be in the range»� 1; 1¼and the larger the
absolute correlation is, the better our propagated music frequencies
match with the desired one.

5 IMPLEMENTATION
In this section, we give details of our implementation. Figure 2
shows our algorithm pipeline, which is explained in detail below.

5.1 Acoustic Scene Con�guration
The input to our algorithm is an acoustic scene con�guration. A
complete scene con�guration includes: the acoustic materials of
each object in the scene, the geometry of the scene as a 3-D mesh,
the locations of loudspeakers as 3D coordinates, and the desired
sound �eld. The �rst two components are treated as �xed proper-
ties of the environment. As indicated in Section 4.3, the locations
of loudspeakers have some freedom over the space, so they can



simply be placed at convenient locations near the target region.
The computation of the desired sound �eld depends on the speci�c
application, and we highlight di�erent scenarios in Section 6. For
example, we use di�erent metrics for speech improvement and
music reinforcement detailed in Section 4.6.

5.2 Monitor Point Sampling & Precomputation
We generate a set of monitor points by uniformly sampling the
target sound zone in 3D according to any weighted or probabilistic
distribution. This yields monitor pointsp1; :::;pNM

described in
Section 4.2. Then the impulse responses between all pairs of moni-
tor and loudspeaker locations (i.e.NM � NL pairs) are computed
using a sound propagation algorithm and subsequently converted
to frequency responses. In our current implementation, we use a ray
tracing based geometric propagation algorithm. It traces specular
and di�use rays [43] and performs up to200bounces to accurately
compute the reverberation e�ects. To approximate low frequency
di�raction e�ects, we model �rst order di�raction based on the
Uniform Theory of Di�raction [39]. Since these computations are
performed as a preprocess, we use a su�cient number of ray sam-
ples (e.g.,10K) to compute accurate IRs. We use these IRs to compute
the solution using our optimization algorithm described in Section
4. We parallelize these computations on a cluster and it can take
a few hours for each scene to compute these large number of IRs,
depending on the size and complexity of the scene.

5.3 Real-time Computation of Sound Fields
Since our algorithm deals with dynamic sound �elds generated
using active loudspeakers, we need to monitor and handle existing
sources in the scene in real-time. Temporal signals are treated as
discrete temporal sound pressure sequencesP¹x; t º. Because the
monitored signal sequences might be very long, we need to segment
these signals based on the sampling rate and allowed delay time
before processing. For convenience of implementation, we segment
any sequence according to our �xed sampling rate44:1kHz, which is
beyond the Nyquist frequency regarding the human hearing range
of 20Hz � 20kHz. And we perform short-time Fourier transform
(STFT) for each segment of length65536. Note that the segment
length can be arbitrary, depending on the allowable processing
delay. At each processing step, the optimization problem is formu-
lated, shown as Equation (9), and we solve for a segment. Moreover,
we set the active loudspeakers or virtual sources as their driving
functions, while the next segment is being prepared. The complex
regularized least squares problem in Equation (11) is e�ciently
solved using theEigenlibrary [22]. In this way we can achieve
real-time processing rate for any scene under stable sensing.

6 RESULTS AND ANALYSIS
In this section, we evaluate the performance of our dynamic sound
�eld manipulation algorithm for the two applications described
in Section 4. We also demonstrate how the desired sound �eld is
computed based on these scenarios and the metrics. Given the input
scene, we do not make any changes to the environment in terms of
object positions or the underlying materials. Our goal is to add more
virtual sound sources to the environment so that we can change
the sound �eld in a given region.

Table 2: Improvements on the STI metric (Sec 4.6.1) ranging
from »0;1¼, and a larger value indicates better quality. We
observe considerable improvements in the resulting sound
�elds corresponding to speech sources.

Scene Number of
Loudspeakers (NL )

Number of
Monitors (NM )

Average STI

Before After

Trinity 14 12 0.525 0.734
Berlin 11 10 0.602 0.724

Table 3: Improvements on the correlation metric (Sec 4.6.2)
ranging from »� 1;1¼, and a larger absolute value indicates
better quality. We observe considerable improvements in
the resulting sound �elds corresponding to music sources.

Scene Number of
Loudspeakers (NL )

Number of
Monitors (NM )

Average Correlation

Before After

Elmia 14 12 0.039 0.786
Sibenik 12 12 0.040 0.786

6.1 Benchmarks
We used four di�erent 3D environments to evaluate our algorithm.
Detailed parameters and results are shown in Table 2 and 3.

� The Trinity scene comes from direct measurement of a real
architecture. This environment (Figure 3(a)) has a long re-
verberation time, which can considerably a�ect the speech
intelligibility especially when the listener is far from the
source. In this scene, a speech sound source in placed on the
stage, corresponding to a talking human voice. The listener
is assumed to be10meters away from that source.

� The Berlin scene (Figure 3(b)) corresponds to a small apart-
ment complex. In this scene, a noise source is placed in the
room and a listener is set above the bed in the same room.

� The Elmia scene (Figure 3(c)) is a concert hall with measured
acoustic material properties that matches to a real-world
scene. In this benchmark, we assume that a live music show
is played on the stage, and loudspeakers installed across the
hall are used to amplify the music played at stage.

� The Sibenik scene (Figure 3(d)) is modeled from the real-
world Sibenik Cathedral. Material properties are mannually
assigned to the model. In this scene, a piano is played on
the stage in the cathedral and the sound undergo certain
distortion in its frequency. Loudspeakers are installed on
pillars in the cathedral.

6.2 Speech Improvement
Figure 4 shows the distribution of STI values before and after our
optimization algorithm on the Trinity benchmark. Before our op-
timization, the reverberation e�ect is signi�cant and the average
STI value is0:525. After we reduce the reverberation using active
loudspeakers, the average STI becomes0:734, whereas human's just
noticeable di�erence (JND) for STI is0:03[7]. A higher value of STI
indicates higher quality of speech understanding or intelligibility.

6.3 Music Reinforcement
In the Elmia benchmark, the desired sound �eld corresponds to the
�eld generated by propagating the music signal from the performer



(a) Trinity (b) Berlin (c) Elmia (d) Sibenik

Figure 3: Di�erent benchmarks used to evaluate our dynamic SFS algorithm. We highlight the 3D CAD models with colored
sound source and loudspeaker placement: the green spheres represent active loudspeakers; the red spheres represents original
sound source(s) in the scene. We drive the signals from active loudspeakers to manipulate the sound �eld along with original
sound sources using the acoustic metrics corresponding to music and speech improvement.

(a) Fields in Trinity scene (b) Fields in Berlin scene

Figure 4: We highlight the STI distribution corresponding to the speech sources in the Trinity and Berlin models. Our opti-
mization algorithm signi�cantly improves the speech understanding as shown by high values (right) as compared to the low
values (left) of STI metric. This highlight the bene�ts of our dynamic SFS algorithm in terms of speech intelligibility, and it
makes no assumption about the model or the sound source.

(a) Sound �elds in Elmia scene (b) Sound �elds in Sibenik scene

Figure 5: We highlight the frequency compensation e�ects of music sound �elds using our dynamic SFS algorithm in two
benchmark scenes. The left �gure in each scene shows the cross-correlation between the original distorted sound �eld and
the desired sound �eld, while the right one shows the cross-correlation between our synthesized sound �eld and the desired
sound �eld. We observe that our optimization algorithm results in sound �elds that have the desired sound characteristics in
terms of high correlation values (right) over low correlation values (left).

location on the stage with a �at frequency response. Note that in
actual performances, users tend to emphasize some components of
the frequency, while attenuate the other parts. Our approach can
also account for these e�ects. We show the desired and synthesized
sound signal at the listener location in Figure 5.

6.4 User Evaluation
In addition to the numeric results (of sound �elds) shown in Section
6.2, we also conducted a user study to evaluate the perceptual
bene�ts of our algorithm for speech improvement.

6.4.1 Study Goal.We aim to demonstrate the e�ectiveness of
our dynamic SFS method to improve speech intelligibility. Moreover,
we also compare the perceptual bene�ts on results generated from
the commercial software Era-R developed byAccusonus Inc,[24].
Our hypothesis is that our method performs no worse than Era-R.

6.4.2 Study Design.Our study was based on pairwise compar-
isons. We prepared three reverberant speech clips that were11
seconds long. By using reverberant clips as the reference, we per-
formed dereverberation on these clips separately using Era-R and
our method. Next, we obtained audio clips corresponding to the
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