
Online Submission ID: paper1006

Navigating Virtual Agents in Online Virtual Worlds

a b

Figure 1: College campus: (a) Many areas in online virtual worlds, such as this college campus in Second Life R©, are sparsely inhabited.
(b) We present techniques to add virtual agents and perform collision-free navigation. In this scene, the virtual agents autonomously navigate
walkways, lead groups, or act as a member of a group. A snapshot from a simulation with 18 virtual agents (wearing shirts with any shade
of blue) that automatically navigate among human controlled agents (wearing orange shirts) and improve the realism in the simulation.

Abstract

We present an approach for navigating autonomous virtual agents
in online virtual worlds that are based on a centralized server net-
work topology. Each agent’s motion is controlled through local and
global navigation. Our local navigation model is based on artificial
social forces that tends to compute collision-free paths between real
and virtual agents and simulates repulsive and attractive behaviors.
We perform global navigation for each virtual agent based on cell
decomposition and compute high level paths. The overall computa-
tion is balanced by performing local navigation on client machines
and global navigation on the server. We have implemented our nav-
igation algorithm into the Second Life virtual world and highlight
our results by simulating up to 18 virtual agents over multiple dif-
ferent client computers.

Keywords: crowd simulation, virtual worlds, avatar behaviors

1 Introduction

Large, online 3D virtual worlds have been growing rapidly in pop-
ularity. Millions of users are registered and are actively participat-
ing in worlds such as Second Life R© (SLTM), World of WarcraftTM

(WoW), or OLIVETM by Forterra Systems, Inc. In addition to these
online worlds, Microsoft’s Virtual EarthTM or Google EarthTM rep-
resent large and detailed navigable environments, although they do
not currently support avatars. Many of these virtual worlds have
been used for gaming applications and recently they have been

shown useful for remote collaboration, economic planning, social
simulations, and educational activities [Bainbridge 2007]. These
online virtual worlds also provide an environment to study complex
global behaviors such as traffic flows or evacuations.

The popularity and usefulness of these online platforms stems from
their depth of immersion, generality and a large number of users.
For example, Second Life’s environment is largely programmable
and the content is created almost entirely by its users. Moreover,
users can interact with other avatars and with a large number of
objects in the virtual world. With large amounts of virtual land
available, users can create different situations or experiences, or
visit the virtual worlds which have already been created.

Given the large growth and increase of land in virtual worlds, most
areas of these online virtual worlds appear to have a low population
density. At any time, thousands of users are logged on, but they are
typically distributed over different parts of the virtual world. As a
result, most portions of these worlds are sparsely inhabited. This
low density can affect the realism or sense of immersion in these
virtual worlds. In simulations or experiences where interaction with
other avatars is essential, this poses a problem and can detract from
the overall experience. For example, crowded areas like malls or
busy streets or college campuses may not appear very realistic. One
way to overcome this problem is to add virtual avatars to populate
these worlds and improve the overall immersive experience. In this
context, we define a virtual agent or avatar to be a member of the
online world, whose motion is controlled entirely by a simulation,
whereas a real or human agent is controlled by an actual user.

There are several challenges in adding realistic virtual agents to
online virtual worlds, including;

• Autonomous Behaviors: It is desirable for virtual agents to
act and behave as a real agent or human might in response
to an situation. For navigation, this includes tendencies for
moving either towards or away from other objects or agents,
as well as standard formations.

1

Online Submission ID: paper1006

• Automatic Navigation: Navigation refers to the ability of an
agents to move in and around an environment. Plausible navi-
gation usually requires a combination of local collision avoid-
ance, path adjustments based on desired behavior, and global
path computation. It is important that the motions should be
plausible regardless of whether other agents are virtual or hu-
man controlled.

• Networking issues : The limited networking bandwidth and
client-server latency add uncertainties into navigation com-
putations and the overall behavior of the agents. Insufficient
bandwidth can result in missing or incomplete information
about an environment or the agents in that environment. The
latency between a server and clients can result in agents mak-
ing navigation decisions based on old or invalid information.
This could result in visual artifacts such as collisions between
the agents.

• Performance: A key criteria of online virtual worlds is real-
time performance and interaction. One of the issues in the
context of simulating virtual agents is the amount of compu-
tation necessary to simulate each virtual agent and how the
resulting simulation scales with the number of agents. Gen-
erally, the addition of virtual agents should not greatly impact
server performance any more than real or human users. More-
over, we will like to balance the computational load between
the server and clients.

Main results: We present an approach for adding autonomous vir-
tual agents into online virtual worlds with a centralized server net-
work topology. In order to allow the virtual agents to have complete
range of capabilities, each one is simulated as a full client in the vir-
tual world. Therefore, no changes need to be made on the server to
support the agents and the agents can be distributed among several
client computers. We make no assumptions about the geographic or
network locality of any agents, real or virtual. As is the case with
current online virtual worlds, the server is responsible for sending
and receiving updates for each of its clients.

We present techniques to control the motion of each agent based
on local and global navigation. Local navigation determines how
agents coordinate with nearby agents and obstacles, local path to
their current goal, and the kind of behaviors that effect the motion
of each virtual agent. We formulate basic repulsive and attractive
behaviors between pairs of agents or agents and the obstacles, from
which a wide variety of other behaviors can be created. We make
simple assumptions about the linearity of motion within a short time
frame to reduce the impact of latency or address the limited band-
width between clients and the server and take them into account in
the local navigation model. The global navigation algorithm deter-
mines how agents get to their goals within the environment. There-
fore, each agent can act with a specific, global goal rather than just
roaming around a predefined region. Furthermore, since the global
planning will be the same for each agent, an algorithm which runs
on the server can be used to balance the computational load between
client and server.

We have implemented our approach into the Second Life virtual
world. Clients are simulated through a motion controller based on
Libsecondlife (LibSL), an open source project to reverse engineer
the Second Life network protocol. We highlight our results by sim-
ulating up to 18 agents over two different client computers of vary-
ing computation power, in different geographic locations and us-
ing different internet bandwidths. In our experiments, each client
computer can typically support about 10 to 15 agents. On a single
client machine, the approach scales quadratically with the number
of agents. Although, in our experiments the number of agents is rel-
atively low. Otherwise, bandwidth becomes the primary bottleneck

since each agent sends and receives a great deal of information.

Organization: This paper is organized as follows. Section 2 de-
scribes prior work in agent or crowd simulation and navigation. Our
virtual agent model along with local and global navigation algo-
rithms are described in Section 3. In Section 4 we describe imple-
mentation details and demonstrate the performance of our approach
on two scenarios.

2 Related Work

In this section, we give a brief overview on prior work on motion of
multiple agents; focusing on prior work in multi-agent simulation.
For theory and applications of general motion planning for multi-
robot systems, we refer the readers to [LaValle 2006]. And, for
details on design and implementation of networked virtual worlds,
we refer the readers to [Singhal and Zyda 1999].

There has been a great deal of work on modeling the motion of
individual agents as well as those in small groups and large crowds
[Ashida et al. 2001; ?; ?; Shao and Terzopoulos 2005; Thalmann
et al. 2006; ?]. Several different approaches have been proposed
for generating motion of crowds; including agent-based methods,
cellular automata, and methods based on discretized and continuous
flows.

Agent-based methods typically include methods and rules for deter-
mining a heading based on information local to an individual agent.
One of the earliest works by Reynolds [1987] described simple lo-
cal rules for efficient and plausible flocking and herding behaviors.
This model has been extended in many ways to include other fac-
tors including psychological [Pelechano et al. 2005] and sociolog-
ical [Musse and Thalmann 1997] preferences. And, motion rules
can be adapted to included velocity obstacles for improved avoid-
ance [van den Berg et al. 2008].

Cellular automata methods model the evolution of agent locations
by solving cellular automata. Different techniques for generat-
ing rules have been proposed, based on static and dynamic fields
[Hoogendoorn et al. 2000], grid-based rules [?], and behavioral
models [Tu and Terzopoulos 1994]. While these methods have been
shown to capture a variety of globally emergent behavior, it should
be noted that they are not physically-based.

Flow-based approaches treat the motion of multiple agents like that
of physical flows. In discretized approaches, agents are treated
like particles in a 2D dynamic simulation [?; Helbing et al. 2003;
Lokoba et al. 2005]. These particles are essentially advected along
potential fields, providing the resulting motion. Our motion for-
mulation is most closely related to that of Helbing et. al [2003].
Other flow-based approaches consider the motion like a continuous
granular flow [?] or based on continuum dynamics [Treuille et al.
2006].

While most of these approaches consider the local motion of a
model, several approaches have been proposed to include global
navigation for groups of human agents. Voronoi graphs have been
efficiently used to compute and update navigation graphs [Sud
et al. 2007a]. Other statically generated navigation graphs allow
agents to navigate and also include local behavior [?; Pettre et al.
2007]. Dynamically updating graphs have also been used to com-
bine global navigation with local behavior [Sud et al. 2007b] in
dynamic environments. In the current formulation, our global navi-
gation is based on a simple cell decomposition, but any of the more
sophisticated methods would also work in this framework.

2

Online Submission ID: paper1006

Client
Human User a0

Client
Virtual Agents

{a1, a2, a3}

Virtual World

Servers

Geometry

Physics

Motion constraints

Global navigation

Local navigation

Avatar control

Events

Geometry

State Updates

Distributed

Clients Network

Connections

Figure 2: Online Virtual World Architecture: The virtual world
servers are responsible for maintaining and correcting the state of
all avatars and objects in the world. We assume that all clients
communicate with the individual servers in a centralized manner,
rather than with each other. In this way, real and virtual agents can
interact and be included, regardless of their physical location.

3 Autonomous Virtual Agents

In this section, we introduce the notation used throughout the pa-
per. The motion of each agent is governed by two levels of control:
local and global navigation. These two navigation algorithms are
combined and give the agents the ability to make decisions about
nearby, or local agents and obstacles and at the same time provide
a guiding path towards their destination. Furthermore, this separa-
tion leads to a natural way to distribute the navigation computation
between multiple clients and the server.

3.1 Notation and Definitions

We consider an agent ai ∈ A = {a0, . . . , an} and is represented
by a cylinder of finite radius ri. The state qi of ai at time t is
given by qi(t) = {xi(t),vi(t)} for position xi and velocity vi.
Note that we make no distinction between whether other agents are
controlled by human users (i.e. real agents) or are virtual agents.
This allows our virtual agent to treat all other agents in a uniform
manner.

We assume that environment E is composed of polygonal obsta-
cles O = {o0, . . . , om}. As before, the number of obstacles in O
can vary for each agent. Typically, for each agent we only consider
the obstacles that are within some fixed radius of the agent. Fur-
thermore, we make no assumptions about whether or not obstacles
are static or dynamic, or represented as rigid or articulated models.
Additionally, we assume there is a centralized network topology,
such that each agent connects to a server, or group of servers with
a shared database. These servers are responsible for sending the
agent’s state information to all other agents connected to that par-
ticular server (See Fig. 2). In this way, virtual agents and real agents
can seemlessly interact, and from any geographic location.

3.2 Collision Free Navigation

Our goal is to automatically compute a path for each virtual agent
that is collision-free with respect to other agents and the objects in
the scene. Due to uncertainties and latencies caused by the net-
work, the position of other agents and the obstacles is not precisely
known. As a result, it is difficult to compute absolutely collision-
free motion.

a1

a2

a3

qgoal

o1

Fgoal(a1)
Fobs(a1)1

Fsoc(a1)2

Fatt(a1)3

a1

a2

a3

qgoal

o1

v2

v3Fvel(a1)2 Fnet(a1)

v1

a b

Figure 3: Local Navigation: The local navigation model is based
on the concept of social forces, where artificial forces are created
to give the impression of pedestrian motion and desires. (a) Agent
a1 is acted upon by social repulsive force Fsoc

2 (a1), attractive
force Fatt

3 (a1), obstacle force Fobs
1 (a1), and goal force Fgoal(a1).

As the names imply, repulsive and attractive forces encourage the
agent to move toward or away from agents and obstacles, respec-
tively. The colors of the arrows correspond to the specific object
that is used to generate the force. (b) An additional velocity bias
force Fvel

2 (a1) is computed to account for agent a2’s velocity its
likely resulting motion. By assuming a linear trajectory over a short
period of time, we can additionally help to reduce the impact of net-
work latency. Note that no velocity vias force is computed for a3

since it is heading in the same direction as a1. The final net force
Fnet(ai) reflects the sum of all the forces and serve as the heading
in the next step.

Our approach breaks down agent’s navigation into two portions;
local and global navigation. Local navigation allows the agents to
make adjustments to their current path based on nearby agents and
obstacles. Global navigation provides a sequence of subgoals for
an agent so that it can reach its final goal or destination.

3.2.1 Local Navigation

The local motion model for each virtual agents is based on the con-
cept of social forces, i.e. non-physical forces which mimic deci-
sions and behavioral responses [Helbing et al. 2003]. These forces
are used to guide an agent along a path towards its intermediate or
final goal. The general idea is that each agent generates a force field
around itself. At each discrete time instance, the agent ai samples
the force field at its current location. The resulting force is applied
to ai, resulting in a motion trajectory (See Fig. 3).

Our formulation of social forces is based on the model proposed by
Helbing et al. [2003] and later extended by Lakoba et al. [2005]. In
practice, this model is able to capture emergent behavior of crowds
with varying agent per area densities. For agent ai, our base local
motion model is composed of several components. A social re-
pulsion and attraction force (Fsoc

j (ai) and Fatt
j (ai), respectively)

determines how much agent ai wants to avoid or move towards
agent aj . Social repulsion mimics an individual’s personal space as
well as desire to move independently while social attraction causes
a virtual agent to be in a group with certain other agents, such as
friends walking together or a tour group exploring. Similar repul-
sive and attractive forces are defined for obstacles (Fobs

j (ai) and
Fobsat

j (ai), respectively) which guide the agents toward or away
from obstacle oj . Moreover, a goal force, Fgoal(ai), encourages
an agent to move towards its current goal (See Fig. 3(a)).

In order to compute total force applied to an agent, we aggregate
these forces as follows:

Fnet(ai) = Fgoal(ai) + Fagents(ai) + Fobstacles(ai), (1)

3

Online Submission ID: paper1006

where

Fagents(ai) =
X

aj∈A,i6=j

(Fsoc
j (ai) + Fatt

j (ai)),

and
Fobstacles(ai) =

X
ok∈O

(Fobs
k (ai) + Fobsat

k (ai)).

The primary component forces are defined as:

Fgoal(ai) =
vde− vi

τ

Fsoc
j (ai) = αe(rij−dij)/βnij

Fobs
k (ai) = Ae(ri−dik)/Bnik

where vd is the agent’s desired speed, e is the direction to the
agent’s current goal, τ is its reaction time, rij = ri + rj , dij =
xi − xj , α is a social scaling constant, β is the agent’s personal
space dropoff constant, nij is the normal direction between ai and
aj , A is an obstacle scaling constant, B is the obstacle distance
dropoff constant, and nik is the vector from ai to the nearest point
on ok to ai. The attractive forces, Fatt

j (ai) and Fobsat
j (ai), take

the same form as their repulsive counterparts except that they have
different values for the constants and an opposite sign for the scal-
ing term. Since these forces are largely based on the social force
model of Helbing et al [2003], we refer the reader to this for more
details.

The motion behind a social force model requires the ability to nu-
merically integrate and explicitly set an agent’s position and veloc-
ity, much like that the simulation of multiple point masses (Cite:
Siggraph course notes). However, since virtual worlds were built to
be controlled by humans, a different type human interface is typi-
cally used which does not allow explicit setting of position and ve-
locity. Instead, agents can only proceed in its current trajectory for
a specified period of time. Therefore, our navigation model must
be able to specify a heading rather than a new state. In order to
determine a new heading, we perform numerical integration on the
agent’s velocity after applying the forces. The new velocity is used
to project the current position for a specified amount of time, tp.
Note that it is common for the trajectory to change before the agent
reaches the projected position.

These forces provide a foundation for computing the localized mo-
tion for each agent. Based on these forces and reasoning about
other avatars, additional agent behaviors are possible. For example,
aggressiveness or urgency can be described by increased scaling
constants for goal and repulsive forces. This would result in the
agent being more biased towards the goal and other agents to be
more likely to avoid this agent. Moreover, queuing behavior, such
as when agents want to form a line or follow each other, can be
added by attractive forces generated only by agents at the end of a
queue.

Contact Handling: While the repulsive force generally allows
agents to avoid contacts, they do not give guarantee of a collision-
free motion. Social forces with a large magnitude can cause
the agents to move directly towards each other. Moreover, net-
work communication latencies can result in incomplete information
about the location of other agents, objects or dynamic obstacles in
the scene. In these situations, contacts must be resolved. We as-
sume that the central server is ultimately in charge of resolving in-
tersections between both agents and obstacles. Since latency is a
factor even in the absence of virtual agents, it enforces hard con-
straints on agent positions to prevent intersection and returns that
information to the client.

In order to reduce the impact of future collisions with the currently
colliding obstacle or agent, additional forces are applied to each
agent in collision. A pushing force, Fpush

j (ai), acts to force a sep-
aration between agents and a frictional force, Ffric

j (ai) simulates
the act of slowing down due to a collision. Unlike the associated
repulsive force, these forces are only applied when an intersection
has taken place.

For agent ai and an intersecting agent aj , the following forces are
added to Eq 1:

Fpush
j (ai) = κ(rij − dij)nij

Ffric
j (ai) = λ|Fpush

j (ai)|tij

where κ is a pushing spring constant, λ is a sliding friction constant,
and tij is the tangent vector to nij . Contacts with obstacles are
treated in a similar fashion.

Network Modeling: Our virtual agent model is computed based
on the information on a client database. This introduces certain
amount of uncertainty in the position and velocity of other agents
and also in other moving obstacles in two ways. First, some agents
or obstacles may not have yet been sensed, i.e. their base informa-
tion has not yet been received by the client from the server. Second,
due to low network bandwidth or high network latency, the updated
positions and velocities not received in time by both the server and
client.

In order to account for these issues, we augment Eq. 1 with a veloc-
ity bias force, Fvel

j (ai), to help reduce the impact of these events.
Let Vj = SSV (aj ,vj , tbias) by the spherical swept volume as
agent aj travels along heading vj/||vj || for time tbias. Then,

Fvel
j (ai) = γe(ri−d(Vj ,xi)/ε)n(i,Vj),

where γ is a velocity bias scaling factor, ε is a bias dropoff dis-
tance, and d(., .) and n(., .) are the distance and normal direction
between the ai and volume Vj . Intuitively, the force naively as-
sumes that agent aj will proceed in its current direction for a fixed
period of time and generates a force field around the volume swept
of aj along that heading (See Fig. 3(b)). As a result, other agents
will tend to move away from their current direction of motion.
Combined with Fsoc

j (ai), the resulting force is strongest closest
to aj and reduces further from the swept volume. The net effect
of this force is that it gives virtual agents a way to estimate where
other agents will go based on whatever information is available, and
thereby reduces the impact of latency or bandwidth limitations. Be-
haviorally, this force has additional benefits in that the agents will
tend to slow down and avoid each other as they move toward their
goals.

Goal Selection: The last portion of our model for local motion
involves selecting intermediate goals. The selection of goals can
result in a variety of behaviors (HOW?). In our formulation, we use
two different methods for selecting the goals. First, the goals are
randomly selected within some radius of the agent. This gives the
appearance of wandering or exploring within that radius. Second,
scripted goals can be provided for other effects. For instance, in
a panic situation the agents would be given goals away from the
cause or location of the panic. Or, a tour group could be simulated
by having a goal attached to a tour guide avatar.

3.2.2 Global Navigation

The local navigation model described above is used respond to var-
ious situations or perform local collision avoidance computations.
However, the local model cannot be used to navigate through a

4

Online Submission ID: paper1006

a1

qgoal

o1

o2
Free
cells

Non-empty
cells

Path
a1

qgoal

o1

o2

New
path

v1

v1

a b

Figure 4: Global Navigation: (a) Our cell decomposition ap-
proach first uniformly samples a grid to determine whether cells
are free, mixed, or full, and a path is extracted from the grid for
each agent. (b) As o1 moves, the path may become invalid. When
possible, a new path is extracted and the agents are notified to verify
and update their path.

complex environment. This is largely because there may be no
straight-line route to the current goal everal static obstacles in the
way. Moreover, in the presence of various agents and obstacles, lo-
cal navigation could result in a local minima and the virtual agents
may get stuck.

In these situations, a global planner is necessary. The global planner
provides agents with a sequence of subgoals which will eventually
lead to the final goal. There are a wide variety of options available
for route planning or roadmap computation [LaValle 2006]. For
simplicity we use a cell decomposition based approach, extended
for use with unknown and changing environments, as well as partial
or incomplete information.

Our approach initially samples all navigable surfaces, such as floors
in the buildings or walkways and streets in open areas. A variety of
sampling schemes could be used, such as a one based on a quadtree
for each surface primitive. Instead, our current formulation uses
a uniform sampling of the surfaces. The sampling resolution can
be computed based on the size and some information about the en-
vironment. For each sample, we classify it as either free sample,
enclosed by an obstacle, or mixed. Then, we connect neighbor-
ing free samples in order to generate a connectivity graph. When
an agent requests a path from the global planner, an A* search is
performed on this graph at runtime, and a sequence of subgoals is
computed and stored. The free or colliding state of cells are updated
as changes occur in the environment. These changes in turn notify
the virtual agents that they probably need to recompute a path (See
Fig. 4).

Server-side planning: Within a localized region, there is little need
to duplicate the global navigation system since it will be essentially
the same for each virtual agent. One simple optimization would
be to make a single module which would handle planning for each
agent. By placing this module on the server, the cost of planning
and replanning is reduced. Furthermore, it acts as a means to bal-
ance some of the overall computation by placing some work on the
server while the client does the rest.

4 Discussion and Results

In this section we describe our implementation, show results of our
virtual agent model, and discuss possible issues with the approach.

4.1 Implementation

A preliminary implementation of his approach has been developed
for Second Life, based on the LibSecondlife (LibSL) framework.
LibSL is a project to reverse engineer the SL network protocol.
With this, it is possible to create a SL client session without us-
ing the official SL viewer resulting in avatars that appear as full
clients to the server. Furthermore, it includes data structures for
avatars and objects as well as events for when data has been up-
dated. Support for simultaneously controlling multiple avatars also
exists. While the number of avatars per computer is limited, addi-
tional computers can be used to host additional clients. In this way,
the algorithm can scale easily to multiple computers as long as there
exists a single host server.

The avatar motion control model along with the local agent dynam-
ics have been implemented on top of this framework. A forward
Euler integrator is used to estimate a heading and the velocity is
locally computed. For increased interactivity, the ALICE chatter-
bot engine has also been integrated into virtual agents. This allows
them to have small conversations with users and to define goals
based on the location of agents which a virtual agent is chatting
with.

For testing, one PC ran only virtual agents while a second PC ran
both virtual agents and a viewer. These computers were placed on
different networks, a university department connection and an at
home cable modem respectively. Furthermore, the computers were
physically located in different states.

4.2 Results

We have tested our approach in a two scenarios:

• Populating a city block: When exploring the numerous cities
in Second Life, it does not take long to realize that many of
these cities see very few avatars at any given time. In con-
trast, the equivalent city block may be teaming with individu-
als. This city block includes 2 streets, a fountain which agents
cannot directly cross, and a patio of a building which the
agents can walk through. Our virtual agents are added to the
city block to improve realism (Fig. 5). Each agent randomly
selects a goal and travels to that location, after which it selects
another goal. All agent and obstacle interactions are with re-
pulsive forces. Basic avoidance as well as a little bit of lane
formation is apparent. The server managed 18 virtual agents
and 3 real agents. The 17 virtual agents were distributed be-
tween two PCs.

• Campus tour guide: To show a wider variety of behaviors,
we added agents to a university campus; an area which would
see a great deal of activity in the real world. The environment
is composed of a walking path between a building and a cam-
pus landmark. This scene included three classes of virtual
agents; wandering students, a tour group, and a tour guide.
The students were modeled with only repulsive forces and se-
lected goals at random. The tour guide also selected goals at
random, but had a small attractive force with its tour group.
And, the tour group had a higher attractive with each other
and the tour guide, but a repulsive force with any other agent.
Grouping along with following is easily observable in this
scene (See Fig. 1 and Fig. 6). There are a total of 20 agents, 2
real and 18 virtual agents, in the scene. As before the virtual
agents were simulated on two client PCs, at different loca-
tions.

The overall run-time performance in both scenarios was about the
same. Virtual agents were distributed over 2 client computers, in

5

Online Submission ID: paper1006

Real agents

(a) (b)

(c) (d)

a1
a2

a1

a2

a2

a2

a1 a1

Figure 5: City block: A sequence of still images following the evolution of virtual agents in a small city block. Several virtual citizens
(circled in red and wearing shirts in various shades of blue) move around the streets and occasionally stop by the fountain. Virtual agent
behaviors include exploration, attraction to the fountain for a period of time, and avoidance. Agents a1 and a2 are identified to demonstrate
their avoidance of each other as they cross near the fountain. A human controlled agent (orange) acts as an obstacle and must be avoided.
The scene has 18 virtual agents distributed over 2 PCs.

two different states. The load on each computer had to be tailored
based on the PC’s processing power, graphics hardware, and in-
ternet connection. After tuning the computers, interactive perfor-
mance was not a problem. So, it is likely that this approach will
scale with additional client computers.

While the simulation was relatively cheap, the biggest limiting fac-
tor was the available bandwidth. Each agent, even if they’re hosted
on the same client computer, sends and receives a extensive amount
of information. In our experiments, each PC could support about
8 to 15 agents without noticeable decay in performance. In most
cases, the servers seemed capable of handling well over 20 agents,
even with the large amount of traffic generated by moving agents.

It should be noted that our limit of 18 agents is unrelated to the
performance. Instead, it was the number of accounts on Second
Life we were able to borrow.

5 Conclusion and Future Work

We have proposed a virtual agent navigation model for online
worlds. In our implementation, each agent is viewed as a full client
to the server allowing for a wide range of capabilities. Agents nav-
igate through a local motion model which determines coordination
between agents as well as agent behaviors. Global navigation is
used to help an agent reach goals beyond the scope of the local
motion model. Our preliminary results are promising and the al-
gorithm can control several virtual agents from a single computer.
This work works as a first step for more complete autonomy for
virtual agents.

While the approach works well, there are a couple of limitations.
First, the approach generally requires more bandwidth that server-
based solutions. Virtual agents whose locomotion is computed en-
tirely on the server only need to send data to the clients as opposed
to the virtual agent needing to both send and receive information.
However, server-based solutions will probably require modifica-
tions on the server and is not as easily deployable as the approach
described here.

6

Online Submission ID: paper1006

Real agent

Virtual agents Virtual tour group

Virtual tour
guide

(a) (b)

(c) (d)

Figure 6: Campus tour guide: A sequence of still images following the evolution of virtual agents in a campus scene; at the University
of North Carolina’s Second Life campus. To better simulate the real world, several virtual agents (wearing shirts with various shades of
blue) have been added to the scene. Agent behaviors include leading a group, following, being part of a group, selecting random goals for
exploration, and avoidance. This models a virtual tour guide leading a small tour group while also avoiding the human controlled agents.
There are 18 virtual and 2 real agents in this scene.

Since we only plan for the position of agents, motions beyond stan-
dard walking and running are not currently supported. For instance,
the virtual agents would not be able to crawl, jump over items, or
climb; they can only walk or run around or toward agents or obsta-
cles.

Also, while the local navigation model effectively moves agents
through the environment, there is no guarantee that they will actu-
ally reach their current goal. However, this has not be a problem in
our experiments thus far. Furthermore, since the navigation model
is subject to network latencies, some of the resulting motion does
not always very natural in appearance.

There are several directions for future work, including addressing
the issues above. For more realistic motion, a better route planner
could be used along with a more sophisticated motion controller.
For instance, it would be better if it took the virtual agent motion
constraints into account. There are a huge number of applications
which could benefit from these agents. More sophisticated agents
could help to realize a wide variety of situations. And, we also
hope to better address limitations on computational and network

resources. For instance, in many cases, virtual agents far away from
human agents likely do not need to be actively moving. This can
help to reduce traffic and computational overhead of a large number
of agents. And finally, we hope to scale the work to much larger
crowds for virtual worlds.

References
ASHIDA, K., LEE, S. J., ALLBECK, J., SUN, H., BADLER, N., AND METAXAS,

D. 2001. Pedestrians: Creating agent behaviors through statistical analysis of
observation data. Proc. Computer Animation.

BAINBRIDGE, W. S. 2007. The scientific research potential of virtual worlds. Science.

HELBING, D., BUZNA, L., AND WERNER, T. 2003. Self-organized pedestrian crowd
dynamics and design solutions. Traffic Forum 12.

HOOGENDOORN, S. P., LUDING, S., BOVY, P., SCHRECKENBERG, M., AND WOLF,
D. 2000. Traffic and Granular Flow. Springer.

LAVALLE, S. M. 2006. Planning Algorithms. Cambridge University Press.

LOKOBA, T. I., KAUP, D. J., AND FINKELSTEIN, N. M. 2005. Modifications of the
helbing-molnr-farkas-vicsek social force model for pedestrian evolution. Simula-
tion.

7

Online Submission ID: paper1006

MUSSE, S. R., AND THALMANN, D. 1997. A model of human crowd behavior:
Group inter-relationship and collision detection analysis. Computer Animation and
Simulation, 39–51.

PELECHANO, N., O’BRIEN, K., SILVERMAN, B., AND BADLER, N. 2005. Crowd
simulation incorporating agent psychological models, roles and communication.
First International Workshop on Crowd Simulation.

PETTRE, J., GRILLON, H., AND THALMANN, D. 2007. Crowds of moving objects:
Navigation planning and simulation. In ICRA, 3062–3067.

REYNOLDS, C. W. 1987. Flocks, herds, and schools: A distributed behavioral model.
Comput. Graph. 21, 4, 25–34. Proc. SIGGRAPH ’87.

SHAO, W., AND TERZOPOULOS, D. 2005. Autonomous pedestrians. In SCA ’05:
Proceedings of the 2005 ACM SIGGRAPH/Eurographics symposium on Computer
animation, ACM Press, New York, NY, USA, 19–28.

SINGHAL, S., AND ZYDA, M. 1999. Networked Virtual Environments: Design and
Implementation. Addison-Wesley Professional.

SUD, A., ANDERSEN, E., CURTIS, S., LIN, M., AND MANOCHA, D. 2007. Real-
time path planning for virtual agents in dynamic environments. Proc. of IEEE VR,
91–98.

SUD, A., GAYLE, R., ANDERSEN, E., GUY, S., LIN, M., AND MANOCHA, D.
2007. Real-time navigation of independent agents using adaptive roadmaps. Proc.
of ACM VRST . to appear.

THALMANN, D., O’SULLIVAN, C., CIECHOMSKI, P., AND DOBBYN, S. 2006. Pop-
ulating Virtual Environments with Crowds. Eurographics 2006 Tutorial Notes.

TREUILLE, A., COOPER, S., AND POPOVIC, Z. 2006. Continuum crowds. Proc. of
ACM SIGGRAPH, 1160 – 1168.

TU, X., AND TERZOPOULOS, D. 1994. Artificial fishes: Physics, locomotion, per-
ception, behavior. In Proceedings of SIGGRAPH ’94, A. Glassner, Ed., 43–50.

VAN DEN BERG, J., PATIL, S., SEWALL, J., MANOCHA, D., AND LIN, M. C. 2008.
Interactive navigation of individual agents in crowded environments. Proc. of ACM
Symposium on Interactive 3D Graphics and Games.

8

