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Abstract: We present a new parallel occlusion culling algo-
rithm for interactive display of large environments. It uses a
cluster of three graphics processing units (GPUs) to compute
an occlusion representation, cull away occluded objects and
render the visible primitives. Moreover, our parallel archi-
tecture reverses the role of two of the GPUs between succes-
sive frames to lower the communication overhead. We have
combined the occlusion culling algorithm with pre-computed
levels-of-detail and use it for interactive display of geomet-
ric datasets. The resulting system has been implemented and
applied to large environments composed of tens of millions
of primitives. In practice, it is able to render such models
at interactive rates with little loss in image fidelity. The per-
formance of the overall occlusion culling algorithm is based
on the graphics hardware computational power growth curve
which has recently outperformed the Moore’s Law for general
CPU power growth.
Keywords: Interactive display, parallel rendering, occlusion
culling, cluster computing

1 Introduction
Many applications of CAD, virtual reality and simulation-
based design generate large datasets composed of millions of
primitives. While graphics processing units (GPUs) have been
progressing at a fast rate, the complexity of these models ap-
pears to be growing even faster due to the advances in mod-
eling systems and acquisition technologies. As a result, it is
a major challenge to render these datasets at interactive rates,
i.e. 20 frames a second or more, on current high-end graphics
systems.

Given the complexity of these models, different ap-
proaches have been proposed for faster display. At a broad
level they can be classified into:

• Parallel Rendering: These algorithms utilize multi-
ple processors and graphics pipelines. Different algo-
rithms based on shared memory multi-processor systems
or clusters of PCs have been proposed.

• Polygon Flow Minimization: They attempt to minimize
the number of primitives sent to the graphics processor
during each frame. They are based on view frustum
culling, model simplification, occlusion culling etc.

Most of the parallel rendering algorithms are based on sort-
first or sort-last based approaches [MCEF94] or some hybrid
combinations. They allocate the primitives among multiple
graphics pipelines. However, their performance varies based
on the distribution of primitives in the model, the underlying
hardware as well as the communication bandwidth.

The polygon flow minimization methods attempt to avoid
rendering the primitives that are not ultimately visible. These

include primitives that are either not in the field of view or
back-facing or are occluded by other objects or their projection
is less than a few pixels on the screen. In practice, view frus-
tum culling is used routinely and level-of-detail (LOD) based
techniques are being increasingly used to discard primitives
whose projection is smaller than a few pixels on the screen.
However, no simple and general solutions are known for oc-
clusion culling. Most of the earlier algorithms for occlusion
culling fall into two categories. Some of them are specific
to architectural or urban environments and not applicable to
general environments. The more general approaches either
require specialized hardware, extensive pre-processing or the
presence of large, easily identifiable occluders in the scene. In
fact, performing exact visibility computations on large, gen-
eral datasets is considered expensive, and hard to achieve in
real-time on current graphics systems [ESSS01].

Given the complexity of occlusion culling for general en-
vironments, different parallel approaches based on multiple
graphics pipelines have been proposed. However, they ei-
ther make assumptions about the environment or user’s mo-
tion [WWS01] or are based on shared-memory multiproces-
sor, multi-pipeline graphics systems [BSGM02] such as SGI
Reality Monster, which are quite expensive. On the other
hand, there are many advantages of using a parallel occlusion
culling algorithm based on commodity hardware components.
It allows us to leverage the favorable price-to-performance ra-
tio of PC graphics cards. Moreover, the recent cards including
the NVIDIA’s GeForce family or ATI’s Radeon family have
been progressing at a rate higher than Moore’s law and it is
relatively simple to replace or upgrade them.
Main Results: We present a new parallel occlusion culling al-
gorithm that uses a cluster of three GPUs. The first two GPUs
are used to compute an occlusion representation and cull away
objects that are not visible from the current viewpoint based
on that representation. The third GPU renders the visible ge-
ometry by selecting an appropriate level-of-detail. Moreover,
the roles of first two GPUs are switched between successive
frames to reduce the communication overhead. As compared
to earlier image-space occlusion culling algorithms, our ap-
proach has lower bandwidth requirements and is able to cull
a higher percentage of occluded primitives. It uses multiple
GPUs in parallel and doesn’t require high-end CPUs for in-
teractive performance. Its overall performance is based on the
graphics hardware computational power growth curve which
has recently outperformed the general CPU power growth
curve based on Moore’s Law.

The overall rendering algorithm is general, automatic and
applicable to large models. It makes no assumption about
model representation or distribution of primitives. The com-
bination of view frustum culling, occlusion culling and levels-
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of-detail results in a bounded set of primitives that need to
be rendered. In practice, it is almost independent of the input
model size. We have implemented the resulting algorithm on a
cluster of three PCs connected via Fast Ethernet. We demon-
strate its performance on two large environments: a Power-
plant model with more than13 million triangles and a Double
Eagle tanker with more than82 million triangles.
Organization: The rest of the paper is organized in the fol-
lowing manner. We give a brief overview of previous work
on parallel rendering and occlusion culling in Section 2. Sec-
tion 3 describes our parallel occlusion culling algorithm and
addresses bandwidth and latency requirements. In Section 4,
we combine it with pre-computed levels-of-detail and use it
to render large environments. We describe its implementation
and highlight its performance on two complex environments
in Section 5. Finally, we highlight areas for future research in
Section 6.

2 Related Work
In this section, we give a brief overview of previous work on
parallel rendering and occlusion culling algorithms.

2.1 Parallel Rendering
A number of parallel algorithms have been proposed in the
literature to develop rendering algorithms on shared-memory
systems or clusters of PCs. A sorting classification of dif-
ferent approaches for parallel rendering has been described
in [MCEF94]. Some of the recent work on rendering large
geometric datasets has focused on using PC clusters. These
include techniques to assign different parts of the screen to
different PCs [SFLS00] as well as distributed algorithms for
scalable displays [HBEH00]. Other cluster-based approaches
include WireGL, which allows a single serial application to
drive a tiled display over a network [HEB+01] as well par-
allel rendering with k-way replication [SFL01]. The perfor-
mance of these algorithms varies with different environments
as well as the underlying hardware. Most of these approaches
are application independent and complimentary to our parallel
occlusion algorithm that uses a cluster of three PCs for inter-
active display.

Parallel algorithms have also been designed for volume
rendering [GP93] and ray tracing. These include interactive
ray-tracing of volumetric and geometric models on a shared-
memory multi-processor system [PMS+99]. A fast algorithm
for distributed ray-tracing of highly complex models has been
described in [WSB01].

2.2 Occlusion Culling
The problem of computing portions of the scene visible from
a given viewpoint is one of the fundamental problems in com-
puter graphics, computational geometry and computer vision.
It has been well studied for more than three decades and a
recent survey of different algorithms is given in [COCS01].
In this section, we give a brief overview of occlusion culling
algorithms. The goal of such algorithms is to cull away prim-
itives that are occluded by other primitives, and therefore,
not visible from the current viewpoint. In practice, these al-
gorithms only cull away a subset of the primitives not visi-
ble from the current viewpoint and are different from hidden-
surface removal algorithms that compute the visible surface.

Many occlusion culling algorithms have been designed
for specialized environments, including architectural models
based on cells and portals [ARB90, Tel92] and urban datasets
composed of large occluders [CT97, HMC+97, SDDS00,
WWS00, WWS01]. However, they may not be able to ob-
tain significant culling on large environments composed of a
number of small occluders.

Algorithms for general environments can be broadly clas-
sified based on whether they are conservative or approxi-
mate, whether they use object space or image space hier-
archies or whether they compute visibility from a point or
a region. The conservative algorithms compute thepoten-
tially visible set (PVS) that includes all the visible primi-
tives, plus a small number of potentially occluded primitives
[CT97, GKM93, HMC+97, KS01, ZMHH97]. On the other
hand, the approximate algorithms include most of the visi-
ble objects but may also cull away some of the visible ob-
jects [BMH99, KS00, ZMHH97]. Object space algorithms
make use of spatial partitioning or bounding volume hierar-
chies; however, it is hard to perform “occluder fusion” on
scenes composed of small occluders with object space meth-
ods. Image space algorithms including the hierarchical Z-
buffer (HZB) [GKM93, Gre01] or hierarchical occlusion maps
(HOM) [ZMHH97] are generally more capable of capturing
occluder fusion.

It is widely believed that none of the current algorithms
can compute the PVS at interactive rates for complex environ-
ments on current graphics systems [ESSS01]. Recently, three
different approaches have been proposed to improve their per-
formance. These include region-based visibility algorithms,
use of hardware-based visibility queries and using multiple
graphics pipelines in parallel.

2.3 Region-based visibility algorithms
These algorithms pre-compute visibility for a region of
space to reduce the runtime overhead [DDTP00, SDDS00,
WWS00]. Most of them work well for scenes with large or
convex occluders. Nevertheless, there is a tradeoff between
the quality of the PVS estimation for a region and the memory
overhead. These algorithms may be extremely conservative or
not able to obtain significant culling on scenes composed of
small occluders.

2.4 Hardware visibility queries
A number of image-space visibility queries have been added
by manufacturers to their graphics systems to accelerate vis-
ibility computations. These include the HP occlusion culling
extensions, item buffer techniques, ATI’s HyperZ extensions
etc. [BMH99, KS01, Gre01, MBH+02]. All these algorithms
propose using the same GPU to perform visibility queries as
well as render the visible geometry. As a result, only a fraction
of a frame time is available for rasterizing the visible geome-
try. If a scene has no occluded primitives, this approach will
slow down their performance.

2.5 Multiple Graphics Pipelines
The use of an additional graphics system as a visibility server
has been used by [WWS01, BSGM02]. The approach pre-
sented by Wonka et al. [WWS01] computes the PVS for a
region at runtime in parallel with the main rendering pipeline
and works well for urban environments. However, it uses
the occluder shrinkingalgorithm [WWS00] to compute the
region-based visibility, which works well only if the occluders
are large and volumetric in nature. The method also makes
assumptions about the user’s motion.

More recently, Baxter et al. [BSGM02] have used a
two-pipeline based occlusion culling algorithm for interactive
walkthrough of complex 3D environments. The resulting sys-
tem, GigaWalk, uses a variation of two-pass HZB algorithm
and combines it with hierarchies of levels-of-detail. It uses a
shared-memory architecture and has been implemented on a
SGI Reality Monster and uses two Infinite Reality pipelines
and three CPUs. In Section 5, we compare the performance of
our algorithm with GigaWalk.
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3 Parallel Occlusion Culling
In this section, we present the parallel occlusion culling algo-
rithm. It utilizes multiple graphics processing units (GPUs)
and hardware-based visibility query. Our parallel architec-
ture involves using three GPU’s, where two GPU’s are used
to generate an occlusion representation and perform occlu-
sion culling based on the representation, respectively, while
the third GPU is used to render the visible geometry.
3.1 Occlusion Representation and Culling
An occlusion culling algorithm has three main components.
These include:

1. Compute a set of occluders that correspond to an approx-
imation of the visible geometry.

2. Compute an occlusion representation.

3. Cull away primitives that are not visible based on the oc-
clusion representation.

Different culling algorithms perform these steps either explic-
itly or implicitly. We use an image-based occlusion represen-
tation, as it is able to perform “occlusion fusion” on possi-
bly disjoint occluders [ZMHH97]. Some of the well-known
image-based representations include HZB and HOM. But we
don’t use these hierarchical representations, because the cur-
rent GPUs do not support these hierarchies in the hardware.
Many two-pass occlusion culling algorithms rasterize the oc-
cluders, read back the frame-buffer or depth-buffer, and build
the hierarchies in software [BSGM02, GKM93, ZMHH97].
However, reading back a high resolution frame-buffer or
depth-buffer, say1024 × 1024 pixels, can be slow on PC ar-
chitectures. Moreover, building the hierarchy in software has
additional overhead and introduces additional latency in the
pipeline.

We use the hardware-based occlusion queries that are be-
coming common on current GPUs. These queries scan-
convert the specified primitives (e.g. bounding boxes) to de-
termine whether the depth of any pixels is affected. Different
queries vary in their functionality. Some of the well-known
occlusion queries based on the OpenGL culling extension in-
clude the HPOcclusionQuery1, and the NVIDIA OpenGL
extension GLNV occlusionquery2. These queries can some-
time stall the pipelines while waiting for the results. As a re-
sult, we dedicate one of the three GPUs to only perform these
queries during each frame.

Our algorithm uses the visible geometry from framei as an
approximation to the occluders for framei+ 1. The occlusion
representation implicitly corresponds to the depth buffer after
rasterizing all these occluders. The occlusion tests are per-
formed using hardware-based occlusion queries and the sys-
tem involves no readbacks.
3.2 System Architecture
In this section, we present the overall architecture for parallel
occlusion culling. Our algorithm uses three GPUs connected
to each other via a LAN. These GPUs perform the following
functions, each running as a separate process:

• Occlusion Representation (OR): Render the occluders
to compute the occlusion representation. The occluders
for framei + 1 correspond to the visible geometry from
framei.

1http://oss.sgi.com/projects/ogl-sample/registry/HP/occlusiontest.txt
2http://oss.sgi.com/projects/ogl-sample/registry/NV/occlusionquery.txt

Figure 1: System Architecture: Each color represents a separate
GPU. Note thatGPU1 and GPU2 switch their roles each frame
with one performing hardware culling and other rendering occlud-
ers. GPU3 is used as a display client.

• Hardware Culling (HC) : Enable the occlusion query
state on the GPU and render the bounding boxes of the
scene geometry. Query for the result and send the visible
nodes to other two processes. Moreover, we disable mod-
ifications to the depth buffer while performing the tests.

• Render Visible Geometry (RVG): Render the visible
nodes for the current frame.

Each of these tasks is performed using a separate GPU for
each frame. The output of OR and HC is used by other pro-
cesses. The depth buffer computed by OR is used by HC to
perform the occlusion queries. Moreover, the visible nodes or
primitives computed by HC are passed onto the RVG (to be
used for the current frame) and OR (to be used for the next
frame). A key issue in the design and implementation of such
an architecture is to minimize the communication between dif-
ferent process. Moreover, each of these tasks is performed in
parallel.

In our architecture, we use a GPU to perform occlusion
queries for the current frame, another GPU to generate occlu-
sion representation by rendering occluders for the next frame
and the third GPU to render the visible primitives for the cur-
rent frame. We circumvent the problem of transmitting the
occlusion representation (OR) from GPU generating OR to
GPU performing hardware cull (HC) tests by “switching” their
roles between successive frame as shown in Fig. 1. For exam-
ple,GPU1 is performing HC for framei and sending visible
nodes toGPU2 (to be used to compute OR for framei + 1)
andGPU3 (to render visible geometry for framei). For frame
i+ 1 GPU2 has previously computed OR for framei+ 1. As
a result,GPU2 performs HC andGPU1 generates the OR for
framei+ 2 andGPU3 displays the visible primitives. In this
case,GPU1 andGPU2 form a “switch”.
3.3 Bandwidth requirements
In this section, we discuss the bandwidth requirements of our
system. In our implementation, we map each node of the scene
by the same node identifier across the three different PC’s. We
transmit this integer node identifier across the network from
GPU performing HC to each of GPUs performing OR and
RVG if it is visible. This has the advantage over sending the
node geometry as it requires relatively smaller bandwidth. So,
if the number of visible nodes aren, then GPU performing
HC would need to send4n bytes per frame to each of OR and
RVG client. Heren refers to number of visible objects and not
visible polygons. We can reduce the header overhead by send-
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ing multiple integers in a packet - however this incurs some
latency due to buffering. The size of camera parameters is72
bytes and therefore, the bandwidth requirement per frame is
8(nh/b) + 3(72 + h) bytes, whereh is the size of header in
bytes and buffer sizeb is the number of node ids in a packet.
If the frame rate isf frames per second, the total bandwidth
required is8nhf/b+ 216f + 3hf .
3.4 System Latency
A key component of any parallel algorithm implemented us-
ing a cluster of PCs is the network latency introduced in terms
of transmitting the results from one PC to another during
each frame. The performance of our system is dependent on
the latency involved in receiving camera parameters by the
GPU performing HC and the GPU generating OR for the next
frame. There is also a latency in sending camera parameters
from GPU performing HC to GPU performing RVG. More-
over, there is latency involved in sending the visible nodes
across the network to RVG and OR. We handle the latency
problem in receiving the camera parameters by the GPU per-
forming HC using the switching mechanism.

Figure 2:System Overview: Each color represents a separate GPU
with GPU1 andGPU2 forming a switch andGPU3 as the display
client. Each ofGPU1 andGPU2 have a camera-receiver thread
and receives camera parameters when the client transmits them due
to user’s motion and stores them in a camera buffer of size one. The
GPU performing OR grabs the latest camera from this thread as the
camera position for the next frame. Notice that in this design, the
GPU performing HC doesn’t have any latency in terms of receiving
the camera parameters.

LetGPU1 andGPU2 constitute a switch.GPU1 performs
HC for framei andGPU2 generates OR for framei+ 1. For
framei + 1, GPU1 generates OR for framei + 2 andGPU2
performs HC for framei + 1. We note that sinceGPU2 has
already rendered occluder geometry for framei + 1, it al-
ready has the correct camera parameters for performing HC
for frame i + 1. As a result, there is no additional latency
in terms of HC receiving the camera parameters. However,
the GPU performing OR requires the camera-parameters from
GPU performing RVG. This introduces some latency in terms
of receiving the camera parameters. However, since HC re-
quires time to perform Hardware Cull tests before transmitting
the first visible node to GPU performing OR, this latency is
usually hidden. We reduce the latency in transmitting camera
parameters from HC to RVG by sending them in the begin-
ning of frame. Figure 2 illustrates the basic camera transfer
routines between the 3 GPU’s.

There is some delay introduced by the network. This in-
cludes the protocol dependent buffering delays and the hard-
ware level transfer delay. It is important to note that the al-

gorithm would be applicable even if all the GPU’s are on the
same PC and this would reduce the latencies involved in send-
ing nodes and camera’s over network.
3.5 Reliability
The correctness and conservativity of our algorithm is depen-
dent upon the reliable transmission of camera parameters and
the visible nodes. Our system is synchronized based on trans-
mission of an end of frame (EOF) packet. This requires us
to have reliable transmission of camera parameters from GPU
performing HC to GPU performing RVG, Also we require re-
liable transmission of node ids and EOF from GPU perform-
ing HC to each of GPUs performing OR and RVG. We used
TCP/IP to transfer data across the network, as it provides a
reliable transfer mechanism.

4 Interactive Display
In this section, we present our approach to interactive display
of large environments based on the occlusion culling algo-
rithm described above. In particular, we integrate with pre-
computed static levels-of-detail (LODs) to render large envi-
ronments. We represent our environment by a scene graph
described in [EMB01]. In addition, we store the bounding
box of each node in the scene graph, which is used for view
frustum culling and occlusion tests. We pre-compute levels-
of-detail for each node in the scene graph and also compute hi-
erarchical levels-of-detail HLODs for each intermediate node
in the scene graph [EMB01]. Each LOD and HLOD of a node
in the scene graph is associated with an error deviation met-
ric that approximately corresponds to the Hausdorff distance
between the original model and the simplified object. At run-
time, we project this error metric to the screen space and com-
pute the maximum deviation in the silhouette of the original
object and its LOD. Our rendering algorithm uses an upper
bound on the maximum silhouette deviation error and selects
the lowest resolution LOD or HLOD that satisfies the error
bound.

HardwareCull (Camera *cam)
1 queue = root of scene graph
2 disable color mask and depth mask
3 while( queue is not empty)
4 do
5 node = pop(queue)
6 visible= OcclusionTest(node)
7 if(visible)
8 if(error(node)< pixels of error)
9 Send node to OR and RVG
10 else
11 push children of node to end of queue
12 endif
13 end if
14 end do

ALGORITHM 4.1: Pseudo code for Hardware cull (HC). Oc-
clusionTest renders the bounding box and returns either the number
of visible pixels or a boolean depending upon the implementation of
query. The function error(node) returns the screen space projection
error of the node. Note that if the occlusion test returns the number
of visible pixels, we could use it in determining the level at which it
needs to be rendered. A detailed explanation is provided in section
4.5.2

4.1 Culling Algorithm
At run-time, we traverse the scene graph and cull away por-
tions of geometry that are not visible. The visibility of a node
is determined by rendering its bounding box against the oc-
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clusion representation and querying if it is visible or not. It
is important to note that the visibility of a bounding box is a
very fast way of rejecting geometry which is not visible. If the
bounding box of the node is visible, we test if any of the LOD
or HLOD associated with that node meets the error-bound ex-
pressed in terms of pixels of error deviation in the silhouette.
If a LOD or HLOD is selected, we send the node to the GPU
performing OR for the next frame as well as the GPU perform-
ing RVG to render the node at the appropriate level-of-detail.
If the node is visible but none of the HLOD associated with
it satisfy the simplification error bound, we recurse down the
scene graph and apply the procedure recursively on each node.
On the other hand, if the bounding box of the node is not vis-
ible, we do not render that node or any node in the sub-tree
rooted at the current node. The pseudocode for the algorithm
is described in Algorithm 4.1.
4.2 Occluder Representation Generation
In this section, we describe our algorithm to generate the oc-
clusion representation. At run-time, if GPU performing RVG
is processing for framei, grab camera for framei + 1 from
RVG and clear its depth and color buffer. Set the camera pa-
rameters for framei + 1. While we receive nodes from GPU
performing HC, we render them at the appropriate level of de-
tail. An end-of-frame identifier is sent from HC to notify that
no more nodes need to be rendered for this frame.
4.3 SWITCH Algorithm
We now describe the algorithm for “switching” mechanism
described in Section3. The two GPU’s involved in the
SWITCH toggle their roles of performing HC and generating
OR. We use the algorithms described in sections 4.1 and 4.2
to perform HC and OR respectively. The pseudocode for the
resulting algorithm is shown in Algorithm 4.2.

1 if GPU is generating OR
2 camera=grabLatestCam()
3 end if
4 Initialize the colormask and depth mask to true.
5 if GPU is performing HC
6 Send Camera to RVG
7 else /*GPU needs to render occluders */
8 Clear the color and depth buffer
9 end if
10 Set the camera parameters
11 if GPU is performing HC
12 HardwareCull(camera)
13 Send end of frame to OR and RVG
14 else /* Render occluders */
15 int id= end of frame +1 ;
16 while(id!=end of frame)
17 do
18 id=receive node from HC
19 render(id, camera);
20 end do
21 end if
22 if GPU is performing HC
23 do OR for next frame
24 else
25 do HC for next frame
26 end if

ALGORITHM 4.2: The main algorithm for the GPU’s forming
the switch. Note that we send the camera parameters to the RVG
client at the beginning of HC (on line 6) in order to reduce latency.

4.4 Render Visible Geometry
The display client receives the camera from HC and sets it
for the current frame. In addition, it receives the nodes of

scene graph which are determined as visible by the HC and
renders them at the appropriate level of detail. Also, the dis-
play client transmits the camera information to the GPU’s in-
volved in SWITCH based on user interaction. The colormask
and depthmask are set to true during initialization. The algo-
rithm for display routine is shown in Algorithm 4.3

1 Receive camera from HC
2 Set the camera parameters
3 clear depthbit and colorbit of framebuffer.
4 int id= end of frame +1 ;
5 while(id!=end of frame)
6 do
7 id=receive node from HC
8 render(id, camera);
9 end do
10 end if

ALGORITHM 4.3: Algorithm for the display routine for GPU
performing RVG

4.5 Optimizations
We now describe the optimizations in maximizing the perfor-
mance of our algorithms. The following are the optimizations:

• Multiple Occlusion Tests: Our culling algo-
rithm performs multiple occlusion tests using
GL NV occlusionquery and this avoids immediate
readback of occlusion identifiers, which can stall the
pipeline. More details on implementation are described
in section 4.5.1.

• Visibility for LOD Selection : We utilize the num-
ber of visible pixels of geometry queried using
GL NV occlusionquery in selecting the appropriate
LOD. Details are discussed in section 4.5.2.

4.5.1 Multiple Occlusion Tests
Our rendering algorithm performs several optimizations to
improve the overall performance of the system. The
GL NV occlusionquery on Nvidia GeForce 3 and GeForce
4 cards allow the programmer to execute multiple occlusion
queries at a time and query the results at a later time. We can
traverse the scene graph in a breadth first manner and perform
all possible occlusion queries for nodes at a level. This would
result in a higher performance. Note that certain nodes may
be occluded at a level and they are not tested for visibility.
We then query the results and determine the visibility of each
node. Therefore, ifLi is the list of nodes at leveli which are
being tested for visibility and pixels of error criteria, we gen-
erate the listLi+1 to be tested for leveli + 1 by pushing the
children of a noden ∈ Li only if its bounding box is visible
and it doesn’t meet the pixels of error. We use an occlusion
identifier for each node in the scene graph and exploit the par-
allelism available in GLNV occlusionquery by performing
multiple occlusion queries at each level.
4.5.2 Visibility for LOD Selection
The number of visible pixels of a bounding box of a node
provides an upper bound on the number visible pixels of its
geometry. The GLNV occlusionquery occlusion query also
returns the number of pixels visible when the geometry is ren-
dered. We compute the visibility of a node by rendering the
bounding box of the node and the query returns the number of
visible pixels corresponding to the box. If the number of visi-
ble pixels is less than the pixels of error specified by a bound,
we don’t traverse the scene graph any further at that node. This
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(a) Double Eagle tanker rendered at20 pixels of error (b) Powerplant rendered at10 pixels of error

Figure 3:Both the models are rendered at10− 20 frames per second on a Nvidia GeForce4 GPU at1024× 1024 screen resolution.

Average FPS
Pixels of SWITCH Distributed GigaWalk

Model Error GigaWalk
PP 10 10.0 6.2 5.6
DE 20 11.5 4.85 3.50

Table 1:Average frame rates obtained by different acceleration tech-
niques over the sample path.FPS= Frames Per Second,DE = Dou-
ble Eagle Tanker model,PP= Power Plant model

Pixels of Number of Polygons (in105)
Model Error SWITCH GigaWalk Exact Visibility

PP 10 0.9155 1.1924 0.0750
DE 20 1.4163 1.7335 0.1089

Table 2:Comparison of number of polygons rendered to the actual
number of visible polygons by the two implementations.DE = Dou-
ble Eagle Tanker model,PP= Power Plant model

additional optimization is very useful if only a very small por-
tion of the geometry is visible and the node has a very high
screen space projection error associated with it.

5 Implementation and Performance
We have implemented our parallel occlusion culling algorithm
on a cluster of three2.2 GHz Pentium4 PCs each with4 GB
of RAM and a GeForce4 Ti 4600 graphics card, running linux
and connected via a100 Mbps switched ethernet.

The scene database is replicated on each PC. Communi-
cation of camera parameters and visible node ids between
each pair of PCs is handled by a separate TCP/IP stream
socket. Synchronization between PCs is maintained by send-
ing a sentinel node over the node sockets to mark an end of
frame(EOF).

We compare the performance of our implementation
(SWITCH) with the following implementations:

• GigaWalk: It is a fast parallel occlusion culling system
which uses two IR2 graphics pipelines and three CPUs
[BSGM02]. OR and RVG are performed in parallel on
two separate graphics pipelines while occlusion culling is
performed in parallel using a software based hierarchical

Pixels of Number of Objects
Model Error SWITCH GigaWalk Exact Visibility

PP 10 1557 2727 850
DE 20 3313 4036 1833

Table 3: Comparison of number of objects rendered to the actual
number of visible objects by the two implementations.DE = Double
Eagle Tanker model,PP= Power Plant model

Z-buffer. All the interprocess communication is handled
using the shared memory.

• Distributed GigaWalk : We have implemented a dis-
tributed version of GigaWalk on two high end PC’s with
Nvidia GeForce 4 GPUs. One of the PC’s serves as the
occlusion server implementing OR and occlusion culling
in parallel. The other PC is used as a display client.
The occlusion culling is performed in software similar
to GigaWalk. Interprocess communication between PCs
is done using TCP/IP stream sockets.

We compared the performance of the three systems on two
complex environments: a coal fired Power Plant (shown in Fig
3(b)) composed of13 million polygons and1200 objects, and
a Double Eagle Tanker (shown in Fig. 3(a)) composed of82
million polygons and127 thousand objects. Figures 4(b) and
4(a) illustrate the interactive performance of our algorithm on
a reasonably complex path for Powerplant and Double Eagle
models respectively. We have also compared the performance
of occlusion culling in terms of the number of objects and
polygons rendered and the number of objects and polygons
exactly visible. Exact visibility is defined as the number of
primitives actually visible from a given viewpoint. It is deter-
mined upto the Z-buffer resolution by drawing each primitive
in a different color to an “itembuffer” and counting the num-
ber of colors visible. Figures 5(a) and 5(b) show our culling
performance on the Double Eagle Tanker model. The average
speedup in frame rate for the sample paths is shown in Table
1. Tables 2 and 3 summarize the comparison of the primitives
rendered by SWITCH and GigaWalk with the exact visibility
for polygons and objects respectively. As the scene graph of
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the model is organized in terms of objects and we perform visi-
bility tests for objects (not polygons) as primitives, we observe
a discrepancy in the ratios of number of primitives rendered to
the exact visibility for objects and polygons.
5.1 Bandwidth Estimates
In our experiments, we have observed that number of visible
objectsn typically ranges in the order of100 to 4000 depend-
ing upon scene complexity. If we render atmost30 frames per
second (fps), header sizeh (for TCP, IP and ethernet frame)
is 50 bytes, buffer sizeb is 10, then we require a maximum
bandwidth of39 Mbps. Hence, our system is not limited by
the available bandwidth on standard ethernet. However, due to
the variable window size buffering in TCP/IP [Jac88], we ex-
perience network delays under TCP. With UDP, the network
delays are significantly lower, but does not guarantee reliabil-
ity and correctness of our occlusion algorithm.
5.2 Limitations
Our parallel occlusion culling algorithm introduces a frame
latency due to multipass rendering.This does not decrease the
frame rate as the second pass is performed in parallel. How-
ever, it introduces an end-to-end latency and is best suited for
latency-tolerant applications.

In addition, a distributed implementation of the algorithm
may suffer from network delays, depending upon the imple-
mentation of network transmission protocol used. However,
our approach is general and is independent of the underlying
networking protocol.

6 Conclusions and Future Work
We have presented a new parallel occlusion culling algorithm
using multiple GPUs for rendering massive models at interac-
tive rates. In particular, it uses three GPUs in parallel and re-
verses the role of two of the GPUs between successive frames.
We have illustrated the performance of the algorithm on two
complex environments and demonstrated its efficiency with
two fast parallel occlusion culling implementations.

There are many avenues for future work. These are main
related to network communication between different GPUs.
A low latency network implementation is highly desirable to
maximize the performance achieved by our parallel occlusion
culling system. We are working on implementing the system
using Myrinet which is a low latency network implementa-
tion. We are also interested in exploring other low latency
implementations like ATM. Finally, we will like to apply our
algorithm to more complex environments.
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(a) Double Eagle Tanker model at 20 pixels of error (b) Powerplant model at 10 pixels of error

Figure 4:Frame rate comparison between SWITCH, GigaWalk and Distributed GigaWalk at1024× 1024 screen resolution.

(a) At polygon level (b) At object level

Figure 5:Comparison with exact visibility between SWITCH, GigaWalk and Distributed GigaWalk at20 pixels of error at1024×1024 screen
resolution.
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