
c©2009 IEEE. Reprinted, with permission, from IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 13, NO. 6, NOVEMBER/DECEMBER 2007

Interactive Sound Rendering in Complex and Dynamic Scenes
using Frustum Tracing

Christian Lauterbach, Anish Chandak, and Dinesh Manocha, Member, IEEE

Abstract—We present a new approach for real-time sound rendering in complex, virtual scenes with dynamic sources and objects.
Our approach combines the efficiency of interactive ray tracing with the accuracy of tracing a volumetric representation. We use a
four-sided convex frustum and perform clipping and intersection tests using ray packet tracing. A simple and efficient formulation
is used to compute secondary frusta and perform hierarchical traversal. We demonstrate the performance of our algorithm in an
interactive system for complex environments and architectural models with tens or hundreds of thousands of triangles. Our algorithm
can perform real-time simulation and rendering on a high-end PC.

Index Terms—Acoustic propagation,Interactive systems

1 INTRODUCTION

Traditionally, the focus in interactive visualization hasbeen on high-
quality, realistic visual rendering of complex datasets. These devel-
opments are supported by high growth rates and programmability of
current graphics hardware as well as advances in rendering accelera-
tion algorithms. However, at the same time it is important todevelop
interactive algorithms for sound or auditory rendering. Ina multi-
sensory visualization system, spatial sound can be combined with vi-
sual rendering to provide a more immersive experience for many ap-
plications [28]. These can be used for the development of an audi-
tory display [38, 16, 31] to convey intuitive spatial cues directly and
therefore can result in better understanding and evaluation of complex
datasets.

In this paper we address the problem of interactive sound rendering
and visualization in complex and dynamic environments.. Some of
the driving applications include acoustic design of architectural mod-
els or outdoor scenes, walk-throughs of a virtual prototypeof a large
CAD model with sounds of machine parts or moving people, virtual
environments with multiple avatars, or even visualizationof multi-
dimensional datasets [28]etc. The sound rendering algorithms take
into account the knowledge of sound sources, listener locations, 3D
models of the environments, and material absorption data togenerate
realistic and spatialized sound effects.

Over the last few decades, the problem of fast visual rendering
of complex datasets has received considerable attention incomputer
graphics and visualization literature. Current algorithms and systems
are able to handle complex datasets composed of millions of primitives
at interactive rates on commodity hardware. In contrast, prior sound
rendering are limited to relatively simple models and cannot handle
complex or dynamic datasets at interactive rates. The main challenge
in sound rendering is to compute the reflection paths from thesound
sources to the listeners at interactive rates. Prior approaches for com-
plex environments have been based on geometric methods thatuse ei-
ther ray or beam tracing methods to explicitly follow the paths. How-
ever, ray tracing methods are prone to inaccuracies due to sampling
or aliasing errors, and beam tracing methods involve considerable pre-
processing and are limited to static, densely-occluded environments.
As a result, current interactive applications are limited to using sound
sources that are associated with a static, precomputed effect.

• The authors are with the Department of Computer Science, Campus Box
3175, Sitterson Hall, University of North Carolina-ChapelHill, Chapel
Hill, NC 27599. E-mail: {cl, achandak, dm}@cs.unc.edu.

Manuscript received 31 March 2007; accepted 1 August 2007; posted online
27 October 2007. Published 14 September 2007.
For information on obtaining reprints of this article, please send e-mail to:
tvcg@computer.org.

Main Results: We present an interactive algorithm for sound ren-
dering using frustum tracing. Our approach uses a simple volumetric
representation based on a four-sided convex frustum, for which de-
scribe efficient algorithms to perform hierarchy traversal, intersection
and specular reflection and transmission interactions at the geometric
primitives. Unlike beam tracing and pyramid tracing algorithms, we
perform approximate clipping by using a subdivision into sub-frusta.
As a result our rendering algorithm reduces to tracing ray packets
and maps well to the SIMD instructions available on current CPUs.
We support dynamic scenes by using bounding volume hierarchies
(BVHs) to accelerate the computations on complex models. Overall,
our approach combines the efficiency of interactive ray tracing with
the accuracy of tracing a volumetric representation.

We have implemented our algorithm and have used it for interac-
tive sound rendering in complex environments composed of tens or
hundreds of thousands triangles and dynamically moving objects. The
performance of our system varies with the complexity of the envi-
ronments, especially as a function of the number of reflections. In
practice, our approach can trace enough frusta to simulate sound on a
current high-end PC at interactive rates with up to 7 reflections.

As compared to prior geometric approaches for sound rendering,
our approach offers the following advantages:

• Generality: No special or logical scene representation is neces-
sary and our algorithm is able to handle all polygonal models.

• Efficiency: Our algorithm scales with the complexity of the
scenes as a logarithmic function of the model size (although
a linear complexity update step is needed whenever geometry
moves). Most of the benefits of ray packet tracing are directly ap-
plicable, including SIMD implementation and trivial paralleliza-
tion on multi-core processors.

• Dynamic, complex scenes:We can handle all kind of dynamic
scenes and make no assumptions on the motion of sound sources,
listener or objects in the scene.

• Integrated visual and sound rendering:We use a BVH to per-
form fast intersection tests between ray packets and the primi-
tives. The same hierarchy can be used for ray tracing for visual
rendering and frustum tracing for sound rendering.

Organization: The rest of the paper is organized in the following
manner: we give a brief overview of prior work on sound propagation
in Section 2. Section 3 presents our frustum tracing algorithm and
shows how to use the algorithm to compute the reflection pathsfrom
the sound sources to the listeners. We describe our implementation
in Section 4 and demonstrate its performance on different models in
Section 5. We analyze the performance in Section 6 and highlight a
few limitations of our approach.

2 PREVIOUS WORK

There has been considerable work on sound generation and propaga-
tion in computational acoustics, computer graphics, computational ge-
ometry and related areas for more than four decades [5, 7, 14]. These
include physically-based sound synthesis algorithms [19,32], numer-
ical and geometric methods for sound propagation and acceleration
techniques. In this section we give a brief overview of soundpropaga-
tion algorithms.

Numerical methods: Numerical solutions [24] attempt to accu-
rately model the propagation of sound waves by numerically solving
the wave equation. These methods are general and highly accurate
[33]. However, they can be very compute and storage intensive [41].
Current approaches are too slow for interactive sound propagation in
complex environments and are mainly limited to simple scenes.

Geometric methods: These algorithms model the propagation of
sound based on rectilinear propagation of waves and can accurately
model the early reflections. Most of these methods are closely related
to parallel techniques in global illumination, and many advances in
either field can also be applied to the other. The earliest of these ap-
proaches were particle and ray based [23, 25] and simulated the prop-
agation paths by stochastically sampling them using rays. Based on
recent advances in interactive ray tracing, these methods are also appli-
cable to dynamic scenes [45, 26]. Approaches using discreteparticle
representations calledphononsor sonels[3, 9, 22] have been devel-
oped in the last few years. These methods look very promisingbut are
currently limited to simple scenes. Moreover, particle andray-based
algorithms are susceptible to aliasing errors and may need avery high
density of samples to overcome those problems.

The image sourcealgorithms create virtual sources for specular re-
flection from the scene geometry and can be combined with diffuse
reflections and diffractions [4, 8]. They accurately compute the prop-
agation paths from the source to the listener, but the numberof virtual
sources can increase exponentially for complex scenes [4].This makes
these techniques suitable only for static scenes.

The third type of geometric methods is based onbeam tracing,
which recursively traces pyramidal polyhedra from the source to the
listener [18, 10, 11]. In their seminal work, Funkhouser et al. [12, 13]
showed how beam tracing methods can be used for sound propagation
at interactive rates in complex virtual environments. Somealgorithms
have been proposed to use beam tracing on moving sources [2, 15].
However, current algorithms take large pre-processing time and are
not directly applicable to dynamic scenes with moving objects.

Interactive Sound Propagation: Many other methods have been
presented for rendering of room acoustics [29, 36, 42] or have been
integrated with VR systems [30]. Joslin and Thalmann [21] present a
technique to reduce the number of facets in order to accelerate the re-
flection computations in sound rendering. A point-based algorithm
for multi-resolution sound rendering has been presented for scenes
with a large number of emitters [46]. Doel et al. [43] presentan al-
gorithm for interactive simulation of complex auditory scenes using
model-pruning techniques based on human auditory perception. Our
approach is complementary to many of these algorithms and can be
combined to further improve the performance.

3 FRUSTUM TRACING

In this section we present our algorithm for interactive sound prop-
agation in complex and dynamic scenes. Our approach is builton
recent advances in interactive ray tracing, including packet traversal
algorithms [44] and dynamic scenes [45, 26].

3.1 Frustum Representation

As discussed above, ray tracing algorithms for sound propagation suf-
fer from noise and aliasing problems [27], both spatially and tempo-
rally. In order to avoid these sampling issues, we trace a simple con-
vex polyhedron instead of infinitesimal rays. Specifically,we perform
frustum tracing1, which is similar to beam tracing and pyramid trac-

1We use the termfrustum tracingin a different sense than earlier work on
radio propagation presented in [40], which is very similar to beam tracing.

Fig. 1. Frustum-based packet:The frustum primitive used in our algorithm.
a) The frustum is defined by the four side faces and the front face, or equiv-
alently by the boundary rays on the sides where the faces intersect. b) the
frustum is uniformly subdivided into sub-frusta defined by their center sample
rays (dots), depending on a sampling factor.

ing. We use a simple convex frustum so that we can perform fast
intersection tests with the nodes of the hierarchy and the primitives.
Unlike beam tracing algorithms, we perform approximate clipping us-
ing ray packets. Overall, our representation combines someof the
speed advantages of ray packet tracing with the benefits of volumetric
formulations.

We use a convex four-sided frustum, i.e. a pyramid with a quadri-
lateral base (see Fig. 1(a)) that is defined by its four side faces and
one front face. Equivalently, the frustum can be represented as the
convex combination of four corner rays defining the frustum.At a
broad level, the main difference between frustum and beam tracing is
how we keep track of intersections with the primitive and thescene.
Beam tracing performs exact clipping with each primitive inthe scene
and therefore needs to maintain a full list of clipped edges or faces of
the beam. We avoid these relatively expensive operations bysubdi-
viding the frustum uniformly into smaller sub-frusta to perform dis-
crete clipping, and only keep track of intersections at the level of those
sub-frusta (see 1(b)). Moreover, each sub-frustum is represented by a
sample ray, and a sub-frusta is considered to intersect a primitive only
if its sample ray hits the primitive. Essentially, this can be interpreted
as a discrete version of a clipping algorithm and can introduce some
errors in our propagation algorithm.

The difference between the frustum and beam tracing processis also
highlighted in Fig. 2. We show the intersection of the beam (left) and
frusta (right) with three primitives and the resulting secondary beams
and frusta computed for reflection and transmission. Note that since
the intersection is determined by the location of the sampleray, the
frustum tracing algorithm in this example will underestimate the size
of secondary beams at the primitive on the left. The amount oferror
introduced depends on the sampling rate, i.e. the rate of subdivision
of the frustum.

Benefits: Our formulation of the frustum and the clipping algo-
rithm allows a faster and more general algorithm for propagation. We
use the main frustum as a placeholder for all the enclosed sub-frusta
during hierarchy traversal or intersection computations.As a result we
are able to achieve very efficient and fast traversal using our represen-
tation in both static and dynamic scenes. In addition, we organize our
sample rays in ray packets similar to those used in interactive ray trac-
ing, and exploit the uniform subdivision of frusta for faster primitive
intersection computations. Finally, we defer constructing the actual
sample ray computation until the sub-frusta are actually needed, i.e.
if the whole frustum does not fully hit a primitive. This reduces the
set-up cost, especially for very small beams.

3.2 Frustum Tracing

The goal of frustum tracing is to identify the primitives (i.e. triangles)
that intersect the frustum and then to construct new secondary beams
that represent specular reflection and transmission of sound. This in-
volves traversing the scene hierarchy, computing the intersection with
primitives and then constructing secondary frusta. We present algo-
rithms for each of these computations.

Construction of secondary frusta: Whenever a frustum hits a
primitive, we construct secondary frusta for transmissionand specular

Fig. 2. Beam vs. frustum tracing: Our approach compared to beam trac-
ing for a simple example.(Left): beam tracing. (Right): frustum tracing. The
discrete sampling in our frustum based approach underestimates the size of the
exact reflection and transmission frustum for primitive 1 and overestimates the
size for primitives 2 and 3.

reflection. If the entire frustum hits one primitive, the construction of
the secondary frusta is simple and can be accomplished by just using
the four corner rays. For the general case, when different sub-frusta
hit different primitives, multiple secondary frusta have to be generated.
A naïve solution would be to generate reflection and transmission for
each single sub-frustum defined by a sample ray. However, this could
result in an extremely high number of additional frusta, andthe com-
plexity of the algorithm will grow as an exponential function of the
number of reflections. To avoid this, we combine those sub-frusta that
hit the same primitive by hierarchically comparing four neighboring
samples and treating them as one larger frustum (see Fig. 3).This
can be seen as a quad-tree structure, although we do not compute the
tree explicitly. If the samples hit neighboring primitivesthat have the
same material and normal, we combine those primitives in thesame
way to avoid splitting too many sub-frusta. This is especially useful
when rectangles are represented by two triangles, which is acommon
case in architectural models. In practice, we have found that our ap-
proach yields a good compromise between the time taken to findopti-
mal groups of sub-frusta and the number of secondary frusta needed.
We also exploit the fact that the combined frustum exactly represents
the sub-frusta, and there is no loss of accuracy due to this hierarchical
grouping. If the primitives in the scene are over-tessellated, we could
use simplification algorithms to decrease their size [21]. This can in-
troduce some additional error in our propagation algorithm, but big
triangles in the scene would result in fewer secondary sub-frusta.

Hierarchy traversal: We use a bounding volume hierarchy (BVH)
as our choice of scene hierarchy, as it has been shown to work well for
general dynamic scenes. However, our algorithm can also be adapted
to be used with kd-trees or other hierarchies. The main operation for
traversal of the BVH is checking for intersection with a BV, most
commonly an axis-aligned bounding box (AABB). As describedby
Reshetov et al. [35], a frustum can be tested for overlap withan AABB
quickly. If the frustum does not intersect the AABB node, theentire
subtree rooted at that node can be culled. Otherwise the children of the
node are tested in a recursive manner. However, this traversal method
can result in traversing too many nodes, because traversal cannot stop
until the first hit between the scene geometry and the frustumhas been
computed. Interactive ray tracing algorithms using BVHs also track
which rays in the packet are still currently active (i.e. hitthe current
node) at any point during traversal [45, 26]. Since we want toavoid
performing intersection tests with the frustum’s sample rays as long as
possible, we also keep track of the farthest intersection depth found so
far to rule out intersecting nodes that cannot possibly contribute.

Efficient primitive intersection: We assume that the models are
triangulated. The main goal for intersection with triangles is to min-
imize the number of ray-triangle intersections, as they canbe more
expensive than the traversal steps. Most importantly we want to avoid
performing any ray intersections at all if we can determine that the

Fig. 3. Constructing secondary frusta: We compute reflected and transmitted
frusta efficiently by grouping sub-frusta that hit the same primitive together in
a single secondary frustum instead of having to trace each ofthem individually.
Using a hierarchical process, we combine groups of four sub-frusta together as
long as they hit the same primitive.

entire frustum hits the primitive, which can happen many times. Con-
sider Fig. 4, which shows the different configurations that can arise
when intersecting a frustum with a primitive. Case 1 shows that the
frustum fully misses the primitives (i.e. no overlap at all); therefore,
we can skip that intersection right away. Case 2 shows that the frus-
tum fully hits the primitives, which means we can construct secondary
frusta right away without having to consider subdividing the frustum,
unless a closer hit is found later on. In cases 3 and 4, the frustum par-
tially overlaps the primitive or contains the primitive andwe have to
consider the individual sub-frusta.

We test for these four cases by using a Plücker coordinate repre-
sentation for the triangle edges and frustum rays [37], which gives us
a way to test the orientation of any ray relative to an edge. Given a
consistent orientation of edges (clockwise or counter-clockwise), we
can test for intersection if all the edge orientations have the same sign.
When testing the corner rays of the frustum, which can be performed
in parallel using SIMD instructions, we check for Case 1 and Case 2
simply by testing whether all the corner rays are inside the triangle
(Case 2) or fully outside one or more edges (Case 1). Note thatthe lat-
ter test is conservative and may conclude that the frusta areintersecting
the triangle, even if they are not. These intersections willeventually
be culled in our handling of Cases 3 and 4.

If no early culling is possible, we then perform a ray-triangle in-
tersection using the actual sample rays. As the number of rays that
actually intersect the triangle may be small compared to thenumber
of sample rays representing all the sub-frusta, we first compute the
subset of potential intersections efficiently. Since the sample rays are
uniformly distributed in the frustum space, we compute bounds on the
projected triangle in that space and only test those samplesthat fall
within those bounds. In order to perform these computations, we clip
the triangle to the bounds of the frustum by projecting the triangle to
one of the coordinate planes and use a line clipping algorithm against
the frustum’s intersection with the plane. Finally, when looking at
the clipped polygon’s vertices, we can compute their bounding box in
frustum parameter space (see Fig 5). The actual triangle intersection
is only performed for the sample rays that fall within the boundary of
the clipped triangle, and can easily be performed by using the indices.
Note that this can also be reduced to a rasterization problem: given a
triangle that is projected into the far plane of the frustum,we want to
find the sub-frusta it covers. Therefore, we can use other ways to eval-
uate this intersection. By using a higher set-up cost, the triangle could
be projected and processed with a scan-line rendering algorithm, inter-
secting with the respective sample ray for each covered sub-frustum.
Another interesting approach would be to use a modified A-buffer [6]
for computing the sub-frusta covered by the triangle through lookup
masks, at the cost of some precision.

Handling non-specular interactions: As described above, specu-
lar reflections and transmissions can be handled directly. Although we
have not implemented this, our frustum tracing approach canalso use
the diffraction formulation described by Funkhouser et al.[13] based
on the uniform theory of diffraction. For diffuse scattering the frustum
tracing approach could be adapted to also generate secondary frusta
on a hemisphere around the hit point. However, this could increase the

Fig. 4. Primitive intersection: Five different cases can occur when intersecting a frustum with a triangle. From left to right: Frustum misses completely, frustum
is contained, frustum intersects partially, frustum contains triangle. The last case shows a situation where the frustum is clearly outside the triangle, but is not
detected by the edge based test since it is not fully on one side of any edge. This case is handled as intersecting, but is culled later on during the clipping test.

Fig. 5. Packet-triangle intersection: Our novel intersection algorithm
quickly computes the potential ray intersections in frustum space by clipping
the triangle to the frustum’s edges in 2-D, then finding the rectangular bounds
of the clipped point in frustum space. The bounds can then be used to effectively
limit the number of actual sample rays that have to be tested.

branching factor per interaction dramatically and therefore have a high
impact on performance.

3.3 Sampling and Aliasing

Our algorithm uses a discrete approximation of the exact secondary
beams that would be computed by using an exact clipping algorithm.
As a result the reflections obtained by our method can suffer from
aliasing artifacts, especially along object boundaries. As shown in
Fig. 2, reflected frusta often subtend areas that are outsideof the prim-
itive or do not cover all of the area. This is due to the fact that our
tracing algorithm assumes that a sub-frustum hits the primitive in its
full projected area if its sample ray hits the primitive. This can result
in other possible effects such as missing paths, e.g. a smallhole in
the object might be missed due to our sampling density. Fortunately,
these artifacts only result in some missed contribution paths from the
reflections. Moreover, in a dynamic environment these effects would
be far less obvious to the listener as compared to the noise artifacts that
can arise due to stochastic sampling in ray tracing methods.Note that
our algorithm will also avoid creating holes or overlaps in the reflec-
tions field during the computation of reflected or transmitted frusta.
These holes or overlaps can have a far larger contribution oferror
since they tend to be more apparent in an interactive application be-
cause of abrupt changes in the contribution. An interestingaspect of
our approach is that having small geometric objects or primitives (i.e.
a statue) in the scene will not result in a very high number of small
secondary frusta. Instead, the number of reflections is bounded by the
sampling density in the packet. These very small frusta would be com-
puted by an exact clipping algorithm, though they have very little or
no contribution.

One of the main challenges is to compute an appropriate sampling
rate (i.e. the number of rays in the frustum). Ideally, the sampling rate
could be chosen by taking the highest detail in the scene and setting
the frequency so that detail could be reconstructed. Similar to rasteri-
zation algorithms, performing this computation in a view-independent
manner is almost infeasible due to its high complexity and can lead to
very conservative bounds. As a result we use realistic sampling rates

and allow some error. There are several approaches for choosing the
sampling rate in this context: first, a good way of choosing the subdi-
vision is to select the number of rays depending on the angular spread
of the packet. For example, a very narrow frustum will likelyneed a
lower sampling density than a wide frustum. Since the actualrays are
not constructed until a sufficiently small primitive is encountered, it is
also possible to select the sampling rate relative to the local geometric
complexity in order to avoid under-sampling. One way to measure lo-
cal complexity, for instance, would be to use the current depth of the
subtree in the BVH. Finally, the sampling rate can also be made depen-
dent on the energy carried by a frustum or the number of reflections
before reaching the current position. This is a useful approximation
as the actual contribution will likely decrease, and we can lower the
sampling rate after a few reflections.

4 IMPLEMENTATION

We now describe the overall sound rendering system that usesour
sound propagation algorithm. Our system is designed to be fully real-
time and dynamic. We allow movement of the listener, the sound
sources and the geometric primitives in the scene. The soundprop-
agation algorithm is run as an asynchronous thread from the rest of the
system.

The sound propagation simulation starts out from each pointsound
source and constructs frusta from that origin that span the whole sphere
of directions around it according to a predefined subdivision factor.
Each of the frusta is traced through the scene, and secondaryfrusta are
constructed based on the algorithm described in Section 3. There is a
user-specified maximum reflection order that limits the number of total
frusta that need to be computed. Attenuation and other wavelength-
dependent effects are applied according to the material properties per
frequency band. Since we regenerate the sound contributions at each
frame, we do not save the full beam tree of the simulation, butjust the
those that actually contain the listener.

Handling dynamic scenes: The choice of a BVH as an accel-
eration structure allows us to update the hierarchy efficiently in linear
time if the scene geometry is animated, or rebuild it if a heuristic deter-
mines that culling efficiency of the hierarchy is low [26]. Asthe BVH
is a general structure, our algorithm can handle any kind of scene in-
cluding unstructured ’polygon soup’ and models with low occlusion.
Furthermore, we can use lazy techniques to rebuild the nodesof a hi-
erarchy in a top-down manner.

Auralization: So far we have not described how the actual sound
output is generated from the simulation algorithm described in the pre-
vious section, i.e. the auralization process (we refer the reader to a
more detailed overview such as [14] for an introduction). Asmen-
tioned above, the simulation is performed asynchronously to the ren-
dering and auralization, so we have a dedicated rendering thread and
one or more simulation threads. During the simulation, we donot
store the actual frusta, but test each frustum on whether thelistener’s
position is contained in it. If so, we store the sound information such
as source, delay and power for all bands in a temporary buffer. The
rendering thread reloads this buffer at regular intervals and computes
the contribution of each source as an impulse response function (IRF)

for each band and channel. Conceptually, each contributingfrustum
represents a virtual source located at the apex of the frustasuch as
in image source methods. Note that this approach can therefore up-
date the sound more often even if the simulation itself is only updated
infrequently, which reduces the impact of listener movement.

Furthermore, to incorporate frequency dependent effects,each
source’s sound signal is decomposed into 10 frequency bandsat
20,40,80,160,320,640,1280,2560,5120,10240 and 20480 Hz and
processed for two channels. For each channel the band-passed signal
is convolved with the impulse response for that band and the chan-
nel. The convolved signals are then added up and played at thecorre-
sponding channel. We also have provision for binaural hearing and we
use Head Related Transfer Functions (HRTFs) from a public-domain
HRTF database [1]. The sound pipeline is set up using the FMODEx
sound API. We currently perform all convolutions in software in the
rendering thread, but it would be possible to do this in dedicated sound
hardware using DSPs as well.

Implementation details: Our ray packet tracing implementation
utilizes current CPUs’ SIMD instructions that allow small-scale vector
operations on 4 operands in parallel. In the context of packet tracing,
this allows us to perform intersections of multiple rays against a node
of the hierarchy or against a geometric primitive in parallel. In our case
this is especially efficient for all intersection tests involving the corner
rays as we use exactly four rays to represent a frustum. Therefore
most operations involving the frustum are implemented in that manner.
The frustum-box culling test used during hierarchy traversal is also
implemented very efficiently using SIMD instructions [35].Finally,
since all the frusta can be traced in parallel, performing the simulation
using multiple threads on a multi-core processor is rather simple and
can be easily scaled to multi-processor machines.

5 RESULTS

We now present results of using frustum tracing in our systemon sev-
eral scenes. All benchmarks were run on an Intel Core 2 Duo system
at 3.0 GHz with a total of 4 cores. Our sound simulation runs asyn-
chronously to the rendering thread and can be executed in parallel on
the other three threads to exploit parallelism. As future CPUs will of-
fer more cores, the performance of our sound propagation algorithm
can therefore improve accordingly. Results are shown both for using
just one thread and using all three threads.

We tested our system on several different environments and con-
ditions (see Fig. 6). Our main performance is summarized in table
1 and shows that we can handle all of the benchmark models at in-
teractive rates on our test system. The theater model is an architec-
tural scene that is very open and therefore would be very challenging
for beam tracing approaches. Even with 7 number of reflections per
frustum, we can perform our simulation in less than one second with
dynamic geometric primitives and sound sources. The Quake model
was chosen as a typical example of a game-like environment and fea-
tures densely-occluded portions as well as open parts. Somedynamic
geometric objects and moving sound sources are also included in our
benchmark. We also tested a more complex, static scene with 190K
triangles with just one moving sound source.

The results in table 1 show that even though performance as mea-
sured by frusta per second decreases with increasing numberof prim-
itives, the decrease is still sub-linear. This is due to the logarithmic
scaling of ray packet tracing methods. We recompute the BVH when-
ever the geometric objects in the scene move. Even though thetime
complexity of updating a BVH is linear in the number of primitives,
the total time needed for updating a BVH is still negligible compared
to the simulation time, as shown in table 2. Moreover, the BVHupdate
can easily be parallelized using multiple threads between the simula-
tion runs.

A key measure in our algorithm is the number of sample rays that
are used per frustum. It can have a significant impact on the perfor-
mance. Figure 7 shows the overall simulation performance aswell as
the total number of frusta used in our benchmark models when chang-
ing the sampling rate. The graph shows that the scaling is logarith-
mic, which is due to the ray-independent frustum traversal as well as

Model Triangles Construction Update
Theater 9094 319 ms 2 ms
Quake 11821 53 ms 1 ms
Cathedral 196344 1615 ms 26 ms

Table 2. Construction and maintenance cost:Our results show that for all
the models maintaining or updating the BVH hierarchy adds a negligible cost
to the overall simulation. Note that construction only needs to be performed
once and then the hierarchy is maintained through updates.

0 32 64 96 128 160 192 224 256
0

2

4

6

8
x 10

4

Samples per frustum

T
im

e
 (

m
s
)

0 32 64 96 128 160 192 224 256
0

1

2

3

4
x 10

6

Samples per frustum
#
 F

ru
s
ta

 t
ra

c
e
d Boxes

Theater
Quake
Cathedral

Boxes
Theater
Quake
Cathedral

Fig. 7. Sampling rates: The graphs show the impact of increasing the sam-
pling rate per frustum on both the simulation times as well asnumber of frusta
generated (all simulations are performed for 7 reflections.) In addition to the
benchmark scenes used in Table 1, the ’Boxes’ scene is a simple environment
of two boxes connected by a small opening. Due to our frustum traversal al-
gorithm, efficient triangle intersection and secondary frustum construction, in-
creasing the sampling rate only causes logarithmic growth in the simulation
time and number of frusta generated. This suggests that changing the frusta
sampling rate can be an efficient method to control the accuracy of our simu-
lation.

our merging algorithm for constructing secondary frusta. This scaling
makes the sampling rate a good parameter for trading off quality and
runtime performance, depending on the requirements on the simula-
tion.

6 ANALYSIS AND COMPARISON

We now analyze the performance of our algorithm and discuss some
of its limitations. As discussed in section 3 our approach introduces
errors due to discrete clipping as compared to beam tracing.We have
found that the artifacts created through aliasing are usually hardly no-
ticeable except in contrived situations, and they are far less obtrusive
than temporal aliasing that arises in ray tracing algorithms based on
stochastic approaches. Note that the sample location in thesub-frusta
does not need to be the center, so the aliasing due to sub-sampling
could be ameliorated by stochastic sampling of the locations, e.g. by
jittering. However, this may introduce temporal aliasing in animated
scenes as stochastic sampling may change simulation results notice-
ably over time. It is possible that Quasi-Monte Carlo sampling could
eliminate these problems.

Another source of potential errors stems from the construction of
secondary frusta: since the reflected or transmitted frustum is con-
structed from the corner rays of the sub-frustum, the base surface of
the new frustum can significantly exceed the area of the primitive if
the incoming frustum comes from a grazing angle and the sample rays
hits close to he boundary of the object.

Another limitation of the frustum-based approach are that we as-
sume surfaces are locally flat, and our algorithm may not be able to

Fig. 6. Benchmark scenarios: We achieve interactive sound propagation performance on several benchmark models ranging from 9k to 235k triangles while
simulating up to 7 reflections. From left to right: Theater (9k), Quake (12k), Cathedral (196k).

Model Size Dynamic Objects Simulation results Simulation update time (avg.) Frusta/second
(triangles) Listener Source Geometric objects Reflections Frusta 1 thread 3 threads 1 thread

Theater 9094 D D D 6 132k 754 ms 276 ms 175k-
Quake 11821 D D (x3) D 5 157k 861 ms 290 ms 182k

Cathedral 196344 D D - 5 60k 1607 ms 550 ms 37k

Table 1. Results: This table highlights the performance of our system on different benchmarks. The "D" indicates that listener, source orthe scene objects are
dynamic. Note that the frustum tracing performance does scale logarithmically with scene complexity and linearly withthe number of threads. Please see the
video for demonstration of the benchmark scenes.

Fig. 8. Impulse Response (IR) vs Sampling Resolution: The above picture shows IRs generated from our frustum-tracing approach for a simple
scene of two connected boxes (top) and the Theater scene (bottom), with reflection order = 4 and varying frustum sampling resolution {4×4,8×
8,16×16,32×32}. Notice that the sampling resolution of 4x4 misses some contributions compared to higher ones, but captures most of the detail
correctly. As the sampling resolution increases, the accuracy of our method approaches that of the beam tracing method. These results indicate
that the accuracy of our method for 4×4 or 8×8 sampling resolution can be close to that of beam tracing.

handle non-planar geometry correctly. This is common to most vol-
umetric approaches, but we can still approximate the reflections by
increasing the number of sample rays and using the planar approxi-
mation defined by the local surface normal. Our implementation is
also currently limited to point sound sources. However, we can po-
tentially simulate area and volumetric sources if the source can be ap-
proximated by planar surfaces. The lack of non-specular reflections is
another limitation of our approach. For example, it could behard to
create a frusta for diffuse reflection from a surface based ona scatter-
ing coefficient without significantly affecting the performance of our
algorithm.

We also studied the behavior of our algorithm for different sampling
rates. As Fig. 7 shows, the simulation time increases sub-linearly to
the sampling rate due to our optimized intersection and sample com-
bination algorithm. Fig 8 compares the resulting impulse response
functions on two different models for varying sampling rates, which is
significant since it is obvious that – as the sampling rate goes to infin-
ity – our algorithm essentially becomes beam tracing. As theresults
show, even for low sampling resolutions, the response converges very
quickly, which suggests that we can achieve almost the same qual-
ity with very low sampling rates. Of course, our approach is still a
geometric algorithm and like all others its accuracy for high-quality
simulation is may therefore be limited compared to full numerical
simulation[47].

Note that our frustum tracing technique is could be seen to bere-
lated to adaptive super-sampling techniques in computer graphics such
as [48, 17, 20]. However, recent work in interactive ray tracing (for vi-
sual rendering) has shown, that adaptive sampling – despiteits natural
advantages – does not perform near as fast as simpler approaches that
are based on ray packets and frustum techniques. While high uniform
sampling, as used in our algorithm, may seem uneconomical atfirst,
our clipping algorithm reduces the actual work and simplicity makes
this approach map much better to current hardware. Combining sam-
ples only after the sampling has been performed reduces the detail of
the uniform sampling to the same that adaptive sampling would gener-
ate, but does not add any overhead to the traversal process. Similarly,
there were parallel approaches in other areas such as radio [34] and
sound propagation [39, 10] using adaptive beam methods, butfor the
same reasons they do not perform nearly as well and are limited in the
scale and generality of scenes they can handle.

7 FUTURE WORK AND CONCLUSIONS

There is a rich history on the synergies between the researchdirec-
tions in sound and light, and we apply the lessons from one wave phe-
nomenon to the other. Our goal was to utilize the recent developments
in interactive ray tracing for sound propagation. As a result, we have
presented an interactive frustum tracing algorithm, whichcombines
the speed efficiencies of ray tracing with many of the accuracy benefits
of volumetric representation. All the other benefits of ray packet trac-
ing, including SIMD optimizations, multi-threaded implementations
and handling dynamic scenes are directly applicable to sound render-
ing. As a result we are able to render sound in complex and dynamic
scenes at interactive rates. We hope that this will be a step towards in-
cluding physical sound propagation into interactive applications such
as games and virtual environments with dynamic environments.

For future work we would be interested in further exploring the
sampling issues in our discrete clipping algorithm to minimize the er-
ror. A promising direction may be to investigate adaptive subdivision
to adjust sampling rates to local geometric complexity. We are also
interested in adding diffraction into the simulation, which has been
shown to add important contributions to the realism. Finally, we would
like to apply our algorithm to more complex scenarios and integrate
them into interactive applications such as games.

ACKNOWLEDGMENTS

We would like to thank Paul Calamia for his feedback and Charles
Ehrlich for the Candlestick theater model. This work was supported
in part by ARO Contracts DAAD19-02-1-0390 and W911NF-04-1-
0088, NSF awards 0400134, 0429583 and 0404088, DARPA/RDE-

COM Contract N61339-04-C-0043, Disruptive Technology Office and
Intel.

REFERENCES

[1] V. Algazi, R. Duda, and D. Thompson. The CIPIC HRTF Database. In
IEEE ASSP Workshop on Applications of Signal Processing to Audio and
Acoustics, 2001.

[2] F. Antonacci, M. Foco, A. Sarti, and S. Tubaro. Real time modeling of
acoustic propagation in complex environments. InProc. of 7th Interna-
tional Conference on Digital Audio Effects, 2004.

[3] M. Bertram, E. Deines, J. Mohring, J. Jegorovs, and H. Hagen. Phonon
tracing for auralization and visualization of sound. InProceedings of
IEEE Visualization 2005, pages 151–158, 2005.

[4] J. Borish. Extension of the image model to arbitrary polyhedra.Journal
of the Acoustical Society of America, 75(6):1827–1836, 1984.

[5] C. Brebbia, editor.Computational Acoustics and its Environmental Ap-
plications. Transactions of the Wessex Institute, 1995.

[6] L. Carpenter. The a-buffer, an antialiased hidden surface method. In
SIGGRAPH ’84: Proceedings of the 11th annual conference on Com-
puter graphics and interactive techniques, pages 103–108, New York,
NY, USA, 1984. ACM Press.

[7] P. R. Cook. Real Sound Synthesis for Interactive Applications. A. K.
Peters, 2002.

[8] B.-I. Dalenbäck, P. Svensson, and M. Kleiner. Room acoustic prediction
and auralization based on an extended image source model.The Journal
of the Acoustical Society of America, 92(4):2346, 1992.

[9] E. Deines, M. Bertram, J. Mohring, J. Jegorovs, F. Michel, H. Hagen,
and G. Nielson. Comparative visualization for wave-based and geometric
acoustics.IEEE Transactions on Visualization and Computer Graphics,
12(5), 2006.

[10] I. A. Drumm. The Development and Application of an Adaptive Beam
Tracing Algorithm to Predict the Acoustics of Auditoria. PhD thesis,
1997.

[11] A. Farina. Ramsete - a new pyramid tracer for medium and large scale
acoustic problems. InProceedings of EURO-NOISE, 1995.

[12] T. Funkhouser, I. Carlbom, G. Elko, G. Pingali, M. Sondhi, and J. West.
A beam tracing approach to acoustic modeling for interactive virtual en-
vironments. InProc. of ACM SIGGRAPH, pages 21–32, 1998.

[13] T. Funkhouser, N. Tsingos, I. Carlbom, G. Elko, M. Sondhi, J. West,
G. Pingali, P. Min, and A. Ngan. A beam tracing method for interactive
architectural acoustics.Journal of the Acoustical Society of America,
115(2):739–756, February 2004.

[14] T. Funkhouser, N. Tsingos, and J.-M. Jot. Survey of methods for model-
ing sound propagation in interactive virtual environment systems.Pres-
ence and Teleoperation, 2003.

[15] T. A. Funkhouser, P. Min, and I. Carlbom. Real-time acoustic modeling
for distributed virtual environments. InProc. of ACM SIGGRAPH, pages
365–374, 1999.

[16] M. A. Garcia-Ruiz and J. R. Gutierrez-Pulido. An overview of auditory
display to assist comprehension of molecular information.Interact. Com-
put., 18(4):853–868, 2006.

[17] J. Genetti and D. Gordon. Ray tracing with adaptive supersampling in
object space. InGraphics Interface ’93, pages 70–77, 1993.

[18] P. S. Heckbert and P. Hanrahan. Beam tracing polygonal objects. InProc.
of ACM SIGGRAPH, pages 119–127, 1984.

[19] D. L. James, J. Barbic, and D. K. Pai. Precomputed acoustic transfer:
output-sensitive, accurate sound generation for geometrically complex vi-
bration sources. InProc. of ACM SIGGRAPH, pages 987–995, 2006.

[20] D. G. Jon Genetti and G. Williams. Adaptive supersampling in object
space using pyramidal rays.Computer Graphics Forum, 17(1):29–54,
1998.

[21] C. Joslin and N. Magnetat-Thalmann. Significant facet retrieval for real-
time 3d sound rendering. InProceedings of the ACM VRST, 2003.

[22] B. Kapralos, M. Jenkin, and E. Milios. Acoustic modeling utilizing an
acoustic version of phonon mapping. InProc. of IEEE Workshop on
HAVE, 2004.

[23] A. Krokstad, S. Strom, and S. Sorsdal. Calculating the acoustical room
response by the use of a ray tracing technique.Journal of Sound and
Vibration, 8(1):118–125, July 1968.

[24] K. Kunz and R. Luebbers.The Finite Difference Time Domain for Elec-
tromagnetics. CRC Press, 1993.

[25] K. H. Kuttruff. Auralization of impulse responses modeled on the basis
of ray-tracing results.Journal of Audio Engineering Society, 41(11):876–

880, November 1993.
[26] C. Lauterbach, S.-E. Yoon, D. Tuft, and D. Manocha. RT-DEFORM: In-

teractive Ray Tracing of Dynamic Scenes using BVHs.IEEE Symposium
on Interactive Ray Tracing, 2006.

[27] H. Lehnert. Systematic errors of the ray-tracing algorithm. J. Applied
Acoustics, 38(2-4):207–221, 1993.

[28] R. B. Loftin. Multisensory perception: Beyond the visual in visualization.
Computing in Science and Engineering, 05(4):56–58, 2003.

[29] T. Lokki, L. Savioja, R. Vaananen, J. Huopaniemi, and T.Takala. Creat-
ing interactive virtual auditory environments.IEEE Computer Graphics
and Applications, 22(4):49–57, 2002.

[30] M. Naef, O. Staadt, and M. Gross. Spatialized audio rendering for im-
mersive virtual environments. InProceedings of the ACM VRST, 2002.

[31] K. V. Nesbitt. Modelling human perception to leverage the reuse of con-
cepts across the multi-sensory design space. InAPCCM ’06: Proceed-
ings of the 3rd Asia-Pacific conference on Conceptual modelling, pages
65–74, Darlinghurst, Australia, Australia, 2006. Australian Computer So-
ciety, Inc.

[32] J. F. O’Brien, P. R. Cook, and G. Essl. Synthesizing sounds from physi-
cally based motion. InProc. of ACM SIGGRAPH, pages 529–536, 2001.

[33] T. Otsuru, Y. Uchinoura, R. Tomiku, N. Okamoto, and Y. Takahashi. Ba-
sic concept, accuracy and application of large-scale finiteelement sound
field analysis of rooms. InProc. ICA 2004 (Kyoto), pages I–479–I–482,
April 2004.

[34] A. Rajkumar, B. F. Naylor, F. Feisullin, and L. Rogers. Predicting rf
coverage in large environments using ray-beam tracing and partitioning
tree represented geometry.Wirel. Netw., 2(2):143–154, 1996.

[35] A. Reshetov, A. Soupikov, and J. Hurley. Multi-level ray tracing algo-
rithm. ACM Trans. Graph., 24(3):1176–1185, 2005.

[36] L. Savioja. Modeling Techniques for Virtual Acoustics. PhD thesis,
Helsinki University of Technology, 1999.

[37] K. Shoemake. Pluecker coordinate tutorial.Ray Tracing News, 11(1),
1998.

[38] S. Smith. Auditory representation of scientific data. In Focus on Scientific
Visualization, pages 337–346, London, UK, 1993. Springer-Verlag.

[39] U. Stephenson. Quantized pyramidal beam tracing - a newalgorithm for
room acoustics and noise immission prognosis.Acustica - Acta Acustica,
82(3):517–525, 1996.

[40] H. Suzuki and A. S. Mohan. Frustum ray tracing techniquefor high spa-
tial resolution channel characteristic map. InRadio and Wireless Confer-
ence (RAWCON) 98, pages 253–256. IEEE Press, 1998.

[41] R. Tomiku, T. Otsuru, Y. Takahashi, and D. Azuma. A computational
investigation on measurements in reverberation rooms by finite element
sound field analysis. InProc. ICA 2004 (Kyoto), pages II–941–II–942,
April 2004.

[42] N. Tsingos, E. Gallo, and G. Drettakis. Perceptual audio rendering
of complex virtual environments.ACM Trans. Graph., 23(3):249–258,
2004.

[43] K. van den Doel, D. Knott, and D. K. Pai. Interactive simulation of com-
plex audio-visual scenes.Presence: Teleoperators and Virtual Environ-
ments, 13(1):99–111, 2004.

[44] I. Wald, C. Benthin, M. Wagner, and P. Slusallek. Interactive rendering
with coherent ray tracing. In A. Chalmers and T.-M. Rhyne, editors,Com-
puter Graphics Forum (Proceedings of EUROGRAPHICS 2001), vol-
ume 20, pages 153–164. Blackwell Publishers, Oxford, 2001.

[45] I. Wald, S. Boulos, and P. Shirley. Ray Tracing Deformable Scenes using
Dynamic Bounding Volume Hierarchies.ACM Transactions on Graphics,
2006.

[46] M. Wand and W. Straßer. Multi-resolution sound rendering. InSPBG’04
Symposium on Point - Based Graphics 2004, pages 3–11, 2004.

[47] L. M. Wang, J. Rathsam, and S. R. Ryherd. Interactions ofmodel detail
level and scattering coefficients in room acoustic computersimulation. In
International Symposium on Room Acoustics: Design and Science, 2004.

[48] T. Whitted. An improved illumination model for shaded display. Com-
mun. ACM, 23(6):343–349, 1980.

