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Abstract
We present an efficient technique to compute the potentiallyvisible set (PVS) of triangles in a complex 3D scene
from a viewpoint. The algorithm computes a conservative PVSat object space accuracy. Our approach traces a
high number of small, volumetric frusta and computes blockers for each frustum using simple intersection tests.
In practice, the algorithm can compute the PVS of CAD and scanned models composed of millions of triangles
at interactive rates on a multi-core PC. We also use the visibility algorithm to accurately compute the reflection
paths from a point sound source. The resulting sound propagation algorithm is10−20X faster than prior accurate
geometric acoustic methods.

1. Introduction

Visibility computation is a widely-studied problem in com-
puter graphics and related areas. Given a scene, the goal is
to determine the set of primitives visible from a single point
(i.e. from-point visibility), or from any point within a given
region (i.e. from-region visibility). At a broad level, these al-
gorithms can be classified into object space and image space
algorithms. The object space algorithms operate at object-
precision and use the raw primitives for visibility computa-
tions. The image space algorithms resolve visibility based
on a discretized representation of the objects and the accu-
racy typically corresponds to the resolution of the final im-
age. These algorithms are able to exploit the capabilities of
rasterization hardware and can render large, complex scenes
composed of tens of millions of triangles at interactive rates
using current GPUs.

In this paper, we primarily focus on from-point, object space
conservative visibility, whose goal is to compute a super-
set of visible geometric primitives. Such algorithms are use-
ful for walkthroughs, shadow generation, global illumina-
tion and occlusion computations. Another application for
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object space visibility algorithms is accurate computation
of reflection paths for acoustic simulation or sound render-
ing. Given a point sound source, 3D models of the environ-
ment with material data, and the receiver’s position, geomet-
ric acoustic (GA) methods perform multiple orders of re-
flections from the obstacles in the scene to compute the im-
pulse response (IR). Sample-based propagation algorithms,
such as stochastic ray-tracing for GA can result in statisti-
cal errors or inaccurate IRs [Len93]. As a result, we need
to use object space visibility techniques, such as beam trac-
ing [FCE∗98, LSLS09], to accurately compute the propa-
gation paths. However, current object space visibility algo-
rithms only work well on simple scenes with tens of thou-
sands of triangles or with large convex occluders. There is a
general belief that it is hard to design fast and practical object
space visibility algorithms for complex 3D models [Gha01].

Main Results: We present a novel algorithm (FastV)
for conservative, from-point visibility computation. Ourap-
proach is general and computes a potentially visible set
(PVS) of scene triangles from a given view point. The main
idea is to trace a high number of 4-sided volumetric frusta
and efficiently compute simple connected blockers for each
frustum. We use the blockers to compute a far plane and cull
away the non-visible primitives, as described in Section3.

Our guiding principle is to opt for simplicity in the choice
of different components, including frustum tracing, frustum-
intersection tests, blocker and depth computations. The main
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Figure 1: Fast Acoustic Simulation: We use FastV for com-
puting accurate reflection paths in this Cathedral model with
80K triangles. Our propagation algorithm performs three
orders of reflections from the source and computes the IR at
the receiver in less than 5 seconds on a 16-core PC. To the
best of our knowledge, ours is the first efficient and accurate
propagation algorithm to handle models of this complexity.

contribution of the paper is primarily in combining known
algorithms (or their extensions) for these parts. Overall,
FastV is the first practical method for visibility culling in
complex 3D models due to the following reasons:

1. Generality: Our approach is applicable to all trian-
gulated models and does not assume any large objects or
occluders. The algorithm proceeds automatically and is not
susceptible to degeneracies or robustness issues.

2. Efficiency: We present fast and conservative algo-
rithms based on Plücker coordinates to perform intersection
tests. We use hierarchies along with SIMD and multi-core
capabilities to accelerate the computations. In practice,our
algorithm can trace 101−200K frusta per second on a sin-
gle 2.93 Ghz Xeon Core on complex models with millions
of triangles.

3. Conservative:Our algorithm computes a conserva-
tive superset of the visible triangles at object-precision. As
the frustum size decreases, the algorithm computes a tighter
PVS. We have applied the algorithm to complex CAD and
scanned models with millions of triangles and simple dy-
namic scenes. In practice, we can compute conservative
PVS, which is within a factor of 5−25% of the exact visible
set, in a fraction of a second on a 16-core PC (as described
in Section4).

Accurate Sound Propagation:We use our PVS compu-
tation algorithm to accurately compute the reflection paths
from a point sound source to a receiver, as described in Sec-
tion 5. We use a two phase algorithm that first computes
image-sources for scene primitives in the PVS computed for
primary (or secondary) sources. This is followed by finding
valid reflection paths to compute actual contributions at the
receiver. We have applied our algorithm to complex mod-
els with tens of thousands of triangles. In practice, we ob-
serve performance improvement of up to 20X using a single-

core implementation over prior accurate propagation meth-
ods that use beam tracing.

2. Previous Work

The problem of visibility has been extensively studied in
computer graphics, computational geometry, acoustic simu-
lation and related areas for more than four decades. We refer
the readers to excellent recent surveys [Dur99, COCSD03].
Due to space limitations, we only give a brief overview of
some object space and sampling-based methods.

Object space visibility computations: There is extensive
work on object-precision algorithms, including methods for
hidden surface removal [Gha01] and exact visibility com-
putation from a point using beam tracing [HH84, FCE∗98,
ORM07] or Plücker coordinates [Nir03]. Many exact al-
gorithms have also been proposed for region-based visi-
bility [ Dur99, DD02, Nir03, BW05]. There is considerable
literature on conservative visibility computations from a
point [BHS98, CT97, HMC∗97, LG95] or from a region
[KCCO00,LSCO03,Tel92]. Some of these algorithms have
been designed for special types of models, e.g. architectural
models represented as cells and portals, 2.5D urban models,
scenes with large convex occluders, etc. It is also possible
to perform conservative rasterization [AMA05] on current
GPUs to compute an object-precision PVS from a point.

Image space or sample-based visibility computations:
These methods either make use of rasterization hardware or
ray-shooting techniques to compute a set of visible prim-
itives [COCSD03]. Most of these methods tend to be ei-
ther approximate or aggressive [NB04, WWZ∗06]. Current
GPUs provide support for performing occlusion queries for
from-point visibility and are used for real-time display of
complex 3D models on commodity GPUs [KS00,MBW08].

3. FastV: Visibility Computation

In this section, we present our conservative visibility com-
putation algorithm. The inputs to our algorithm are: a view
point (v ∈ ℜ3), a set of scene primitives (Π), and a viewing
frustum (Φ), with an apex atv. Our goal is to compute a
subset of primitivesπ ⊆ Π such that every primitivep∈ Π,
which is hit by some rayr ∈ Φ is included in the computed
subsetπ. The subsetπ is called the potentially visible set
(PVS). The smallest such PVS is the set of exactly visible
primitives (πexact). The subsetπ computed by our algorithm
is conservative, i.e.,π ⊇ πexact. For the rest of the paper,
we assume that the primitives are triangles, though our al-
gorithm can be modified to handle other primitives. We also
assume that the connectivity information between the scene
triangles is precomputed. We exploit this connectivity foref-
ficient computation; however our approach is also applicable
to polygon soup models. In order to perform fast intersection
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Figure 2: Overview: We divide the view-frustum with an
apex atv, into many small frusta. Each frustum is traced
through the scene and its far plane is updated when it is
blocked by a connected blocker. For example, frustum F5
is blocked by primitives of object V2 but frustum F1 has no
blockers.

tests, we store the scene primitives in a bounding volume hi-
erarchy (BVH) of axis-aligned bounding boxes (AABBs).
This hierarchy is updated for dynamic scenes.

3.1. Overview

We trace pyramidal or volumetric beams from the viewpoint.
Prior beam tracing algorithms perform expensive exact inter-
section and clipping computations of the beam against the
triangles and tend to computeπexact. Our goal is to avoid
these expensive clipping computations, and rather perform
simple intersection tests to compute the PVS. Moreover, it
is hard to combine two or more non-overlapping occluders
(i.e. occluder fusion) using object space techniques. Thisis
shown in Figure2, where objectH1 is occluded by the com-
bination ofV1 andV2. As a result, prior conservative object
space techniques are primarily limited to scenes with large
occluders.

We overcome these limitations by tracing a high number of
relatively small frusta and computing the PVS for each frus-
tum independently. In order to compute the PVS for each
frustum, we try to compute ablocker that is composed of
connected triangles (see Figure3). The blockers are com-
puted on the fly and need not correspond to a convex set or a
solid object; rather they are objects that are homeomorphic
to a disk. We use simple and fast algorithms to perform in-
tersection tests and blocker computation.

Frustum Tracing : We use a simple 4-sided frustum, which
is represented as a convex combination of four corner rays
intersecting at the apex. Each frustum has a near plane, four
side planes, and a far plane. The near plane and the four side
planes of a frustum are fixed and the far plane is parallel
to the near plane. The depth of the far plane from the view
point is updated as the algorithm computes a new blocker for
a frustum. Our algorithm sub-dividesΦ into smaller frusta
using uniform or adaptive subdivision and computes a PVS
for each frustum. Eventually, we take the union of these dif-
ferent PVSs to compute a PVS forΦ.

Algorithm : The algorithm computes the PVS for each frus-
tum independently. We initialize the far plane associated
with a frustum to be at infinity and update its value if
any connected blocker is found. The algorithm traverses the
BVH to efficiently compute the triangles that potentially in-
tersect with the frustum. We perform fast Plücker intersec-
tion tests between the frustum and a triangle to determine
if the frustum is completely inside, completely outside, or
partially intersecting the triangle. If the frustum is partially
intersecting, we reuse the Plücker test from the frustum-
triangle intersection step to quickly find the edges that in-
tersect the frustum (see Section3.3). We perform frustum-
triangle intersection with the neighboring triangles thatare
incident to these edges. We repeat this step of finding edges
that intersect with the frustum and performing intersection
tests with the triangles incident to the edge till the frustum
is completely blocked by some set of triangles. If a blocker
is found (see Section3.2), we update the far plane depth of
the frustum. Triangles beyond the far plane of the frustum
are discarded from the PVS. If there is no blocker associated
with the frustum, then all the triangles overlapping with the
frustum belong to the PVS. Additionally, we compute the
PVS for each frustum in parallel as described in Section3.5.

3.2. Frustum Blocker Computation

We define a blocker for a frustum as a set of connected trian-
gles such that every ray inside the frustum hits some triangle
in the frustum blocker (see Figure3(a)). When we intersect
a frustum with a triangle, the frustum could partially inter-
sect the triangle. In such a case, we walk to the neighboring
triangles based on that intersection and try to find a blocker
for the frustum (see Figure3). We compute all the edges of
the triangle that intersect with the frustum. For every inter-
secting edge, we walk to the neighboring triangle incident to
the edge and perform frustum-triangle intersection test with
the neighbor triangle.

The intersection and walking steps are repeated until one of
the following conditions is satisfied:

a All triangles incident to every intersecting edge found
during the frustum blocker step have been processed.
This implies that we have found a blocker.

b A free-edge, i.e. an edge with only one incident triangle,
or a silhouette edge, i.e. an edge with incident triangles
facing in opposite directions as seen from the viewpoint,
intersects with the frustum. In that case, we conclude that
the current set of intersecting triangles does not constitute
a blocker.

Note that our termination condition (b) for blocker com-
putation is conservative. It is possible that there may ex-
ist a frustum blocker with a silhouette edge, but we need
to perform additional computations to identify such block-
ers [NRJS03,Lai06]. In this case, we opt for simplicity, and
rather search for some other blocker defined by a possibly
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(a) (b) (c) (d)

Figure 3: Frustum Blocker Computation: (a) Example of
a blocker with connected triangles. (b)-(c) Intersection and
Walking: Identify intersecting edges (e1, e2, e3, and e4) and
walk to the adjacent triangles (denoted by arrows from edge
to the triangle). (d) Abort frustum blocker computation if a
free-edge or a silhouette-edge is found.

different set of triangles. Or we subdivide the frustum and
the current object will become a blocker for a smaller sub-
frustum.

If we terminate the traversal test due to condition (a), we
have successfully found a frustum blocker. All triangles in
the frustum blocker are marked visible and the far plane
depth associated with the frustum is updated. Note that the
depth of the far plane of the frustum is chosen such that all
triangles in the frustum blocker lie in front of the far plane. If
we terminate due to condition (b), then the algorithm cannot
guarantee the existence of a frustum blocker. All triangles
processed during this step are still marked visible but the far
plane depth is not updated.

3.3. Frustum Intersection Tests

A key component of the algorithm is performing the inter-
section tests of the scene primitives with a frustum. The al-
gorithm traverses the BVH and performs intersection tests
between a frustum and the AABBs associated with the BVH.
We use the technique proposed by Reshetov et al. [RSH05]
to perform fast intersection tests between a frustum and an
AABB. For every leaf node of the hierarchy we perform
the intersection test with the frustum and triangle(s) asso-
ciated with that leaf node. In order to perform the intersec-
tion test efficiently, we represent the corner rays of a frustum
and the oriented edges of the triangle using Plücker coordi-
nates [Sho98]. The orientation of a ray as seen along the
edges of a triangle governs the intersection status of the ray
with the triangle (see Figure4(a)). Similarly, the orientation
of four corner rays of the frustum as seen along the edges of
a triangle governs the intersection status of the frustum with
the triangle. We can determine with object-precision accu-
racy whether the frustum lies completely inside the triangle,
completely outside the triangle, or partially intersects the tri-
angle [CLT∗08].

In practice, the Plücker test is conservative and it can
wrongly classify a frustum to be partially intersecting a tri-
angle even if the frustum is completely outside the triangle
(as shown in Figure4(b)). This can affect the correctness
of our algorithm as we may wrongly classify an object as a
blocker due to these conservative intersection tests. We make

(a) (b) (c)

Figure 4: Conservative Plücker Tests: (a) All four corner
rays of the frustum F1 have the same orientation as seen
along every directed edge of the triangle ABC. Thus, F1 is
completely-inside ABC. (b) Intersection between a frustum
and a triangle can be conservative. F2 will be classified as
partially intersecting. (c) Different cases of frustum-edge in-
tersections: F1 does not intersect the edge AB, F2 intersects
AB. F3 is falsely classified as intersecting with AB.

sure that atleast one of the corner rays is inside the blocker
to avoid such cases.

Frustum-Edge Intersection: When a frustum partially in-
tersects with a triangle, we can quickly determine which
edges of the triangle intersect the frustum. We reuse the
Plücker test between the frustum and the triangle to find the
edges of the triangle that intersect the frustum. As shown in
Figure4(c), a frustum intersects with an edge if all four cor-
ner rays of the frustum do not have the same orientation as
seen along the edge. This test may falsely classify an edge as
intersecting even if the frustum does not intersect the edge,
as shown in Figure4(c)and thereby make our algorithm con-
servative. This test is also used in Section3.2 to compute a
set of triangles that may block the frustum completely.

Far Plane Depth Update: The far plane associated with a
frustum is updated whenever a blocker is found. The blocker
may correspond to a single triangle or multiple triangles. If a
frustum lies completely inside a triangle, the triangle blocks
the frustum. We, therefore, mark the triangle as visible and
update the depth of the far plane of the frustum as shown in
Figure5(a). The frustum intersects the triangle at pointsH1
andH2, andd1 andd2 are the projected distances of|VH1|
and|VH2| along the near plane normal. We set the far plane
depth of the frustum as the maximum of the projected dis-
tances. In other cases, the blocker may be composed of mul-
tiple triangles. We update the far plane depth of the frustum
as shown in Figure5(b). We compute the far plane depth for
every triangle in the frustum blocker, assuming the frustum
is completely inside the triangle. In Figure5(b), d and d′

are the far plane depths for trianglesT1 andT′
1, respectively,

of the frustum blocker. The far plane depth of the frustum
is set to the maximum of far plane depths computed for the
triangles in the frustum blocker, which isd′ in this case.

3.4. Frustum Subdivision

Our algorithm implicitly assumes that the size of connected
blockers is larger that the cross-section of the frusta. The
simplest algorithm subdivides a frustum in a uniform man-
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(a) (b)

Figure 5: Updating Far Plane Depth: (a) Frustum lies com-
pletely inside triangle T1. The depth of the far plane is set to
the maximum ofd1 andd2. (b) Triangles T1 and T′1 consti-
tute the blocker. We compute the far plane depths of each
triangle and use the maximum of the depth values.

ner. This approach is simpler to implement and also simpler
to parallelize on current multi-core and many-core architec-
tures, in terms of load balancing. However, many complex
models (e.g. CAD models) have a non-uniform distribution
of primitives in 3D. In that case, it may be more useful
to perform adaptive subdivision of the frusta. In that case,
we use the AD-FRUSTUM representation [CLT∗08], which
uses a quadtree data structure. We use the following criteria
to perform subdivision. If the PVS associated with a frus-
tum is large, we recursively compute the PVS associated
with each sub-frustum. Whenever the algorithm only com-
putes a partial blocker of connected triangles using the inter-
section tests, we estimate its cross-section area and use that
area to compute the sub-frusta. There are other known tech-
niques to estimate the distribution of primitives [WWZ∗06]
and they can be used to guide the subdivision. As compared
to uniform subdivision, adaptive techniques reduce the to-
tal number of frusta traced for PVS computation [CLT∗08].
Moreover, we use spatial coherence to reduce the number of
intersection tests between the parent and child frusta.

3.5. Many-core Implementation

Our algorithm is highly parallelizable as the PVS for each
frustum can be computed independently. However, the union
of these different PVSs have to be performed in a thread safe
manner. This can be done by maintaining an array of bits,
one bit per triangle, and marking a bit visible only when the
corresponding triangle is found visible. The bits are reset
only once at the start of the algorithm. In this case the time
to query if a triangle is visible isO(1) but enumerating the
visible triangles isO(N), whereN is the number of triangles
in the scene. To improve upon this we maintain a per thread
hash map to compute PVS per thread. The PVS per thread is
combined in the end to compute the final PVS. The average
time to query if a triangle is visible isO(1) and the time
to enumerate the visible triangles isO(K), whereK is the
number of visible triangles.

Model PVS PVS Time
Name Tris Ratio Size (ms)
Armadillo 345K 1.16 98K 30
Blade 1.8M 1.05 190K 90
Thai 10M 1.06 210K 66
SodaHall 1.5M 1.22 2.1K 15
PowerPlant 12M 1.25 15K 130
Flamenco 40K 1.11 7K 16

Table 1: Performance Results: From-point conservative vis-
ibility computation of models with varying complexity (CAD
models, scanned models and dynamic scenes). All the tim-
ings were computed on a 16-core 64-bit Intel X7350@2.93
GHz. The PVS ratio provides a measures of how conserva-
tive is the computed PVS with respect to exact visibility.

4. Results and Analysis

In this section, we present our results on from-point con-
servative visibility (Section4.1). We also compare our ap-
proach with prior visibility computation algorithms. Our re-
sults were generated on a workstation with 16-core, 64-bit
Intel X7350@2.93 GHz processors. We generate timings by
using different number of cores (1−16) for visibility com-
putations and sound propagation. We also use SSE instruc-
tions to accelerate frustum intersection tests and OpenMP to
parallelize on multiple cores.

4.1. Visibility Results

We demonstrate our results on computing from-point object
space conservative PVS on a variety of models ranging from
simple models (like soda hall, armadillo, blade) to complex
models (like power plant and thai statue) to a dynamic model
(flamenco animation). These models are shown in Figure6.
Our results are summarized in Table1. We are not aware of
any prior method that can compute the exact visible set on
these complex models. Therefore, we compute an approxi-
mation toπexact by shooting frusta at 4K × 4K resolution.
ThePVS-ratiorefers to: (size of PVS) / (size ofπexact), and
is a measure of how conservative is the computed PVS. In
all benchmarks, we are able to compute a conservative ap-
proximation to the PVS at interactive rates on multi-core PC.
The frame sequences used for generating average results are
shown in accompanying video. Further, we show that our
approach converges well toπexact as we shoot higher num-
ber of frusta (see Figure7). Detailed results on convergence
for each model are provided in the Appendix. Also, our ap-
proach maps well on multi-core architectures. We observe
linear scaling in performance as the number of cores increase
(see Figure8).

4.2. Analysis

We analyze our algorithm and compare it with prior tech-
niques. The accuracy of our algorithm is governed by the
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Figure 6: Benchmarks: Left to right: (a) Armadillo (345K
triangles). (b) Blade (1.8M triangles). (c) Thai Statue (10M
triangles). (d) Soda Hall (1.5M triangles). (e) PowerPlant
(12M triangles). (f) Flamenco (40K dynamic scene)
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Figure 7: PVS ratio vs. #Frusta: As the number of frusta
increase, the PVS computed by our approach converges to
πexact. This graph shows the rate of convergence for differ-
ent benchmarks. The CAD models have a higher ratio as
compared to scanned models.

accuracy of the intersection tests, which exploit the IEEE
floating-point hardware. Our approach is robust and general,
and not prone to any degeneracies.

Conservative approach:We compute a conservative PVS
for every frustum. This follows from our basic approach to
compute the blockers and far planes for each frustum. In
practice, our approach can be overly conservative in some
cases. The underlying blocker computation algorithm is con-
servative. Moreover, we don’t consider the case when the
union of two or more objects can serve as a blocker. This is
shown in Figure2) with two disjoint occluders,V1 andV2.
Instead of using more sophisticated algorithms for blocker
computation, we found it cheaper to subdivide the frustum
into sub-frusta and compute blockers for them. As a result,
we can make our approach less conservative by using more
frusta and the PVS (π) converges toπexact (see Figure7).

Model connectivity and triangle soup models:Our algo-
rithm exploits the connectivity information in the model to
compute the blockers, which are formed using connected tri-
angles. If the connectivity information is not available, then
the algorithm would subdivide the frustum such that each
blocker would consist of only one triangle.

4.3. Comparisons

Our approach performs volumetric tracing, which is similar
to beam tracing. However, we don’t perform exact clipping
operations to compute an exact representation of the visi-
ble surface. Rather we only estimate the triangles belong-
ing to the PVS by identifying the blockers for each frus-
tum. Beam tracing algorithms can also be accelerated by us-
ing spatial data structures [FCE∗98,LSLS09], but they have
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Figure 8: Performance scaling vs. #Cores: The performance
of our system scales linearly with the #cores. We have bench-
marked our system on upto 16 cores.

mostly been applied to scenes with large occluders (e.g. ar-
chitectural models). Recently, Overbeck et al. [ORM07] pre-
sented a fast beam tracing algorithm that is based on spatial
hierarchies. We performed a preliminary comparison with an
implementation of this beam tracing algorithm with FastV.
We chose multiple key frames from the armadillo model
sequence (see Video) and compared the PVS computed by
FastV algorithm (with 4K×4K uniform frusta) with the PVS
computed by the beam tracer. We observed that FastV’s PVS
converges to within 1− 10% of the exact from-point beam
tracing PVS (see Appendix). Furthermore, FastV appears to
be more robust than the beam tracing solution as the beams
may leak between the triangles due to numerical issues (see
Video). It is not clear whether current beam tracing algo-
rithms can robustly handle complex models like the power-
plant. In terms of performance, FastV is about 5− 8 times
faster on a single core on the armadillo model, as compared
to [ORM07]. Moreover, FastV is relatively easier to paral-
lelize on multi-core architectures.

Most of the prior object space conservative visibility culling
algorithms are designed for scenes with large occluders
[BHS98,CT97,HMC∗97,LG95]. These algorithms can work
well on special types of models, e.g. architectural models
represented using cells and portals or urban scenes. In con-
trast, our approach is mainly designed for general 3D models
and doesn’t make any assumption about large occluders. It is
possible to perform conservative rasterization using current
GPUs [AMA05]. However, it has the overhead of rendering
additional triangles and CPU-GPU communication latency.

It is hard to make a direct comparison with image space ap-
proaches because of their accuracy. In practice, image space
approaches can exploit the rasterization hardware or fast ray-
tracing techniques [RSH05] and would be faster than FastV.
Moreover, image space approaches also perform occluder
fusion and in some cases may compute a smaller set of visi-
ble primitives than FastV. However, the main issue with the
image space approaches is deriving any tight bounds on the
accuracy of the result. This is highlighted in the appendix,
where we used ray tracing to approximate the visible prim-
itives. In complex models like the powerplant, we need a
sampling resolution of at least 32K × 32K to compute a
good approximation of the visible primitives. At lower reso-
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lutions, the visible set computed by the ray tracing algorithm
doesn’t seem to converge well.

5. Geometric Sound Propagation

In this section, we describe our geometric sound propaga-
tion algorithm based on FastV. Given a point sound source,
the CAD model with material properties (i.e. the acoustic
space), and the receiver position, the goal is to compute the
impulse response (IR) of the acoustic space. Later the IRs
are convolved with an audio signal to reproduce the sound.
We use our PVS computation algorithm described above for
fast image-source computation that only takes into account
specular reflections [AB79, FCE∗98, LSLS09]. In practice,
this approach is only accurate for high frequency sources.

Each image source radiates in free space and considers sec-
ondary sources generated by mirroring the location of the in-
put source over each boundary element in the environment.
For each secondary source, the specular reflection path can
be computed by performing repeated intersections of a line
segment from the source position to the position of the re-
ceiver. In order to accurately compute all propagation paths,
the algorithm creates image-sources (secondary sources) for
every polygon in the scene. This step is repeated for all
the secondary sources upto some user specified (sayk) or-
ders of reflection. Clearly, the number of image sources are
O(Nk+1), whereN is the number of triangles in the scene.
This can become expensive for complex models.

We use our PVS computation algorithm to accelerate the
computation for complex scenes. We use a two stage al-
gorithm. In the first stage, we use our conservative visibil-
ity culling algorithm and compute all the secondary image
sources up to the specified orders of reflection. Since we
overestimate the set of visibility triangles, we use the second
stage to perform a validation step. For the first stage, we use
a variant of Laine et al.’s [LSLS09] algorithm and only com-
pute the secondary image-sources for the triangles that are
visible from the source. Specifically, we shoot primary frusta
from the sound source. For every primary frustum we com-
pute its PVS. We then reflect the primary frustum against all
visible triangles to create secondary frusta, which is simi-
lar to creating image-sources for visible triangles. This step
is repeated for secondary frusta uptok orders of reflection.
In the second stage, we construct paths from the listener to
the sound source for all the frusta which reach the listener.
As our approach is conservative, we have to ensure that this
path is a valid path. To validate the path, we intersect each
segment of the path with the scene geometry and if an inter-
section is found the path is discarded.

5.1. Results

We present our results on accurate geometric sound propa-
gation in this section. Table2 summarizes our results. We

(a) (b) (c) (d)

Figure 9: Geometric sound propagation approaches: Given
a sound source, S, and triangles (a, b, c, d, and e) the image
source method (see9a) creates image-sources of S against
all primitives in the scene. Beam tracing method (see9b)
computes image-sources for only exactly visible triangles, b
and c in this case. Accelerated beam tracing approach com-
putes image-sources for all triangles inside the beam volume
(see9c), i.e., b, c, d, and e in this case. Our implementation
(see9d) computes image-sources for triangles b, c, and d in
the PVS as computed according to the technique described
in previous sections.

perform geometric sound propagation on models of vary-
ing complexity from 438 triangles to 212K triangles. We
use three benchmarks presented in accelerated beam trac-
ing (ABT) algorithm [LSLS09]. We also used two addi-
tional complex benchmarks with 80K and 212K triangles.
We are not aware of any implementation of accurate geomet-
ric propagation that can handle models of such complexity.

Model Tris Time Speed Up
(sec) (ABT)

Simple Room 438 .16 10.1X
Regular Room 1190 .93 22.2X
Complex Room 5635 6.5 11.8X

Sibenik 78.2K 72.0 –
Trade Show 212K 217.6 –

Table 2: Accurate sound propagation: The performance of
sound propagation algorithms for three orders of reflection
on a single core. We observe10−20X speedup on the simple
models over accelerated beam tracing (ABT) [LSLS09].

5.2. Comparison with Prior Approaches

Most accurate geometric acoustic methods can be described
as variants of the image-source method. Figure9 com-
pares different accurate geometric sound propagation meth-
ods. The main difference between these methods is in terms
of which image-sources they choose to compute [FCE∗98,
LSLS09]. A naïve image source method computes image
sources against all triangles in the scene [AB79]. Beam trac-
ing methods compute the image-sources for exactly visible
triangles from a source. Methods based on beam tracing,
like accelerated beam tracing [LSLS09], computes image-
sources for every triangle inside the beam volume. Our ap-
proach, shown in Figure9(d), finds the conservative PVS
from a source and computes image-sources for the trian-
gles in the conservative PVS. Thus, for a given model our
approach considers more image-sources compared to beam
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tracing. It is an efficient compromise between the expensive
step to compute exactly visible triangles in beam tracing vs.
computing extra image-sources in accelerated beam tracing.
We observe 10−20X speedups over prior accurate geomet-
ric sound propagation algorithms. Chandak et al. [CLT∗08]
also used adaptive frustum tracing for geometric sound prop-
agation. However, they perform discrete clipping and there-
fore, it is hard to derive good bounds on its accuracy.

6. Limitations and Conclusions

Our approach has some limitations. Since we don’t perform
occluder fusion, the PVS computed by our algorithm can be
overly conservative sometimes. If the scene has no big oc-
cluders, we may need to trace a large number of frusta. Our
intersection tests are fast, but the conservative nature ofthe
blocker computation can result in a large PVS. The model
and its hierarchy are stored in main memory, and therefore
our approach is limited to in-core models. Our algorithm is
easy to parallelize and works quite well, but is still slower
than image space approaches that perform coherent ray trac-
ing or use GPU rasterization capabilities.

Conclusions:We present a fast and simple visibility culling
algorithm and demonstrate its performance on complex
models. The algorithm is general and works well on com-
plex 3D models. To the best of our knowledge, this is the first
from-point object space visibility algorithm that can handle
complex 3D models with millions of triangles at almost in-
teractive rates.

Future Work: There are many avenues for future work. We
will like to implement the algorithm on a many-core GPU
or upcoming Larrabee processor to further exploit the high
parallel performance of commodity processors. This could
provide capability to design more accurate rendering algo-
rithms based on object-precision visibility computationson
complex models (e.g. shadow generation). We will also like
to evaluate the trade-offs of using more sophisticated blocker
computation algorithms [NRJS03,Lai06]. In terms of sound
propagation, our approach can be extended to compute edge
diffraction based on uniform theory of diffraction (UTD).
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