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ABSTRACT
Over the last 10 years, the architecture of graphics accele–

rators (GPUs) has dramatically evolved, outpacing traditional gen-
eral purpose processors (CPUs) with an average 2.25-fold increase
in performance every year. With massive processing capabilities
and high-level programmability, current GPUs can be leveraged
for applications far beyond visual rendering.

In this paper, we offer an overview of modern programmable
GPUs and how they can be applied to audio rendering. For ap-
plications ranging from sound synthesis and audio signal process-
ing to numerical acoustic simulations, GPUs massive parallelism
and dedicated instructions can offer a 5 to 100-fold performance
improvement over traditional CPU implementations. We will il-
lustrate such benefits with results from 3D audio processing and
sound scattering simulations and discuss future opportunities for
auralization on massively multicore processors.

1. INTRODUCTION

Driven by an increasing consumer demand for high quality in-
teractive visuals, 3D graphics processors (GPUs) have dramati-
cally evolved in the past decade. GPUs have moved from a spe-
cialized and pricy component only available on high-end profes-
sional workstations to a commodity component available on ev-
ery consumer PC, reaching a market of hundreds of million units
per year. At the same time, thanks to advances in manufactur-
ing technology, GPUs evolved from ASICs implementing limited
fixed-function processing to fully programmable, massively par-
allel processors capable of handling complex data structures. As
can be seen in Figure 1, the raw computational power of current
GPUs largely exceeds that of the most powerful general purpose
processors (CPU) [1]. Arguably, GPUs are the first truly success-
ful parallel processors.

As a result of this widespread availability and custom pro-
gramming capabilities, modern GPUs have generated a lot of ded-
icated algorithmic research in the graphics community but also in
many other areas in need of massive parallel performance. In to-
day’s games, GPUs are used not only to generate photorealistic 3D
visuals but also accelerate visibility queries, character animation,
path planning, artificial intelligence and physics calculations, in-
cluding rigid and deformable body dynamics or fluid solvers. For a
general overview of general purpose GPU (GP-GPU) applications,
we refer the reader to the following references [2, 3, 4, 5, 6, 7].

Audio processing and rendering applications are among the
most compute-intensive and often rely on additional DSP resources
for real-time performance. However, programmable audio DSPs
are often only available to product developers while consumer au-
dio hardware (e.g., Creative Labs’ SoundBlaster) generally im-
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Figure 1: Evolution of GPU performance, memory bandwidth and
commoditization. Courtesy of Pat Hanrahan and David Luebke.

plements fixed-function pipelines, which traditionally evolved at
a rather slow pace. Increasingly, commodity audio hardware tends
to disappear from console or PC architectures and audio proces–
sing tasks are left to the multiple available CPU cores. GPU fea-
tures, such as multiply-accumulate instructions or multiple SIMD
execution units, are similar to those of most DSPs [8, 9]. More-
over, 3D audio rendering and auralization [10, 11] not only require
processing audio signals but also a significant number of geomet-
ric calculations, e.g. to determine sound occlusion or reflections,
which are well suited to graphics architectures. As a result, GPUs
are a compelling alternative to traditional DSPs for auralization.

In this paper, we review a number of recent contributions lever-
aging GPUs to accelerate audio rendering tasks ranging from au-
dio signal processing and sound synthesis to numerical simulations
of room acoustics and surface scattering. In Section 2, we give
a short overview of the architecture and programming models of
current GPUs, emphasizing some key differences between GPU
and CPUs. To better highlight the architecture and programming
model of GPUs and how they interact with the processing tasks,
we chose to organize the remainder of the paper according to the
different problems handled by auralization systems, which we can
roughly break into three categories:

• Audio signal processing: in this first category the GPU pro-
cesses an audio stream at typical audio sampling rates, in
time or frequency domain, to perform a variety of process-
ing, such as filtering, delay lines, synthesis, etc. We cover
this application in Section 3.

• Numerical calculations and linear algebra: in this case, the
GPU is used for numerical acoustics simulations, for in-
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stance to solve large finite elements or finite differences
problems. We review applications to room acoustics in Sec-
tion 4.

• Geometry processing: in this final category, the GPU is
used to process geometric primitives, such as polygons. This
is the area where the highest gains can be expected com-
pared to traditional CPU implementations since the calcu-
lations are closer to the original intent of graphics archi-
tectures. We review applications to acoustical ray-tracing,
occlusion and scattering in Section 5.

Despite a number of successful implementations and applications,
audio processing is not generally becoming a key component of-
floaded to the GPU. In section 6, we offer possible insights as to
why this may be and what limits the use of GPUs for audio pro-
cessing. Finally, the last couple of years have seen a convergence
of CPU and GPU architectures with CPUs becoming more paral-
lel and data paths between CPU and GPU becoming increasingly
faster. In section 7, we discuss possible evolutions of integrated
CPU and GPU programming and how this can benefit a variety of
audio applications for auralization and beyond.

2. A QUICK TOUR INSIDE THE GPU

In this first section, we give a quick overview of the architecture
of graphics accelerators and their recent evolution, focusing on the
key differences with CPUs. A large body of work is available in
the graphics community about GPU architecture and for additional
detail we refer the reader to [12, 13].

2.1. The graphics pipeline and GPU architecture

Graphics hardware has a specific dataflow computational model.
Its architecture is originally targeted at manipulating 3D primitives
such as points, lines or polygons, performing some raster graphics
operations and rendering the result to the screen. Primitives fol-
low a sequence of operations before being processed to the screen.
Figure 2 shows the essential steps of the pipeline.

Application

Geometry

Compute 3D geometry
Make calls to graphics API

Transform geometry from 3D
to 2D (screen) in parallel

Transform 2D geometry 
into fragments in parallel

Combine fragments into pixels 

GPU

CPU

rendered image

Rasterization

Composite

Figure 2: High-level overview of the graphics pipeline. In mod-
ern GPUs both the geometry and rasterization step contain user-
programmable components called shaders.

The application transmits vertices of the primitives to the ge-
ometry stage. The vertex is a structure containing 3D position
and texture coordinates, color and normal vector. The vertex pro-
cessor applies any mathematical operation to each vertex includ-
ing transformations from world space to screen space (i.e., camera
projection). In the second step, vertices are assembled to form the
geometric primitives (generally triangles). In this step, culling is
computed to discard invisible surfaces according to their normal
and the view direction. Next, clipping to the view frustum is ap-
plied before the rasterization. The view frustum is a set of planes
which defines the field of view of the camera.

The second step of the pipeline rasterizes the transformed prim-
itives. Rasterization determines which fragment of the screen buffer
is covered by a primitive. The term fragment is employed instead
of pixel since additional operations are still required to determine
its final color. A fragment also carries additional characteristics
such as color, normals or textures coordinates. These characteris-
tics are interpolated for all fragments across the transformed ver-
tices of the primitive. At this stage additional operations can be
done to determine the final color of the fragment, e.g. local illumi-
nation models, cast shadows, etc. On recent hardware the fragment
shading stage is fully programmable. Textures can also be applied
to the fragments by sampling specific image buffers at non-integer
coordinates. Several texture re-sampling schemes are provided by
the hardware such as linear or bi-linear interpolation but any other
scheme can be applied via the programming features of more re-
cent GPUs.

Finally, the aim of the compositing stage is to perform ad-
ditional tests before writing the final fragment values (i.e.,color)
to the corresponding pixels of the frame buffer. Tests includes
depth testing, used to remove hidden pixels and alpha test to han-
dle transparency blending.

2.2. From fixed shading to general programming

Before the year 2000, most GPUs were fixed function and only
available in high-end workstations (e.g., Silicon Graphics) for pro-
duction or CAD-CAM applications. Starting in 2000, hardware ac-
celerated graphics underwent a dramatic evolution in performance,
features and commoditization. This evolution can be roughly split
into three phases.

First, the fixed function pipeline became configurable allowing
several textures to be combined and supporting off-screen render-
ing to a texture for multi-pass techniques. The ability to render
into a texture and re-use the result for a subsequent rendering pass
is one of the foundations of programmable graphics.

In 2002, programmable shading was introduced and allowed
the programmer to write custom programs to transform vertices
and compute the final appearance of a fragment (see Figure 3 top).
Each program is executed by a large number of concurrent pro-
cessors. The G70 family of Nvidia GPUs contained 24 parallel
fragment pipelines. The power of the GPU comes from this data
parallel architecture. Circa 2003-2004, another key element was
the apparition of floating point support in the graphics pipeline in
part motivated by the need for high-dynamic range rendering in
computer graphics. This was key in evolving the GPU into a more
general purpose processor.

Today, the separated programmable shading stages have been
unified into a single model where a large number of small-footprint
processing threads are executed by a global set of parallel process-
ing cores (see Figure 3 bottom). The nVidia G80 GPUs, released
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Figure 3: Evolution of GPU architecture. Top: architecture of a
nVidia GeForce 6800 GPU, showing the separate vertex, fragment
and compositing stages. Each stage is data-parallel and contains
a large number of concurrent processing units. Bottom: Unified
architecture on recent GeForce 8800 GPUs and beyond. Thread
processors are dynamically allocated to vertex or fragment opera-
tions. Courtesy of Nick Triantos and Ian Buck, nVidia.

in 2007, contains 128 such stream processors which, in the case of
graphics rendering, are automatically attributed to vertex or frag-
ment processing. The latest GeForce GTX 295 features two on-
board GPUs and a total of 480 processing cores. The latest hard-
ware also supports an additional stage after the vertex shader, the
geometry shader which can be used to create new geometry. It can
also operate on primitives, as opposed to the vertex shader where
vertex adjacency information is unknown.

Alongside with hardware evolution, programming tools have
appeared to help developers leverage the capabilities of GPUs.
Traditionally, graphics programming is achieved through two ma-
jor APIs: OpenGL and Direct 3D [12]. It is now possible to pro-
gram the GPU with high level C-like languages (e.g., Cg, GLSL,
HLSL) [14, 15, 16] integrated within these APIs. The primary ap-
plication of such tools is to create complex appearance models for
surfaces, including shading and lighting operators.

However, for GP-GPU applications, other languages have re-
cently been developed such as CUDA and recently openCL and
the upcoming DirectX 11 compute shaders [17], that let the devel-
oper access the GPU as a stream processor without going through
a graphics-oriented rendering pipeline. The stream programming
model exposes the parallelism and communication patterns inher-
ent in the application by structuring data into streams and express-
ing computation as arithmetic kernels that operate on streams [18,
19, 2, 20]. CUDA also includes fast Fourier transform (FFT) and

linear algebra libraries optimized for nVidia GPUs (see also [21,
22]). CUDA has generated a lot of applications for GP-GPU pro-
gramming [17], e.g. GPUMat, a library accelerating MATLAB
code on the GPU and available as a freeware [23]. GPUFFTW
also provides an FFT routine 4× faster than the Intel Math Kernel
Library on high-end Quad cores [24, 25, 26] (see Figure 6 bottom).

2.3. Differences between CPUs and modern GPUs

A major difference between CPUs and GPUs is that CPUs are op-
timized for high performance on sequential code so many of their
transistors are dedicated to supporting non-computational tasks
like branch prediction and caching. The highly parallel nature of
graphics rendering enables GPUs to use additional transistors for
computation achieving higher arithmetic intensity with the same
transistor count. As a result, GPU threads are lighter but less ef-
ficient than CPU threads and require lots of parallelism and com-
pute intensive tasks for performance. However, the computational
throughput of GPUs also comes with limitations. While GPU
shaders/kernels can gather data (e.g., they can access textures),
they cannot easily write/scatter data to different memory loca-
tions1 Hence, GPUs are better suited for programs that ideally
have no data dependency allowing independent cores to process
the data in parallel. Another implication is that GPUs are good at
traversing data structures but very bad at building them.
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Figure 4: Processing audio with graphics APIs. In this example
each pixel encodes a time-domain sample. Color channels are used
to encode different frequency subbands. Audio samples are pro-
cessed by drawing textured lines. Color modulation and texture
resampling are used for equalization and pitch-shifting.

3. USING THE GPU FOR AUDIO SIGNAL PROCESSING

In this section, we review several applications of GPUs to audio
processing and synthesis.

3.1. 3D audio processing and filtering

A first use of the GPU for auralization is to perform digital sig-
nal processing and filtering. Audio signal processing can be im-
plemented through standard graphics APIs [27, 28] or in a more

1 although this is somewhat possible at the level of the vertex and ge-
ometry shaders since their output can affect where the fragments will even-
tually be rendered.
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straightforward manner using the recent general purpose APIs, de-
scribed in Section 2.2. Several commercial sound processing plu-
gins leveraging GPU processing are already available [29, 30, 31].
The latest release of Adobe Flash also provides integrated pro-
gramming tools for GPU accelerated graphics and audio though
the Pixel Bender API [32].

Graphics APIs being more standardized than GP-GPU APIs,
using a graphics-oriented API ensures better compatibility among
different hardware vendors. Processing audio through a graphics
APIs involves converting the audio signal into textures and pro-
cessing lines or polygons textured with the audio data. A variety
of strategies has been used to store the audio data as textures. For
instance, each pixel’s color component can represent a single time-
domain sample. RGBA components can also be used to store mul-
tiple subbands for efficient multi-band processing at the expense
of more memory. Effects such as equalization or pitch-shifting
can then be efficiently implemented through the use of acceler-
ated vector instructions, e.g. dot-products, and texture resampling
(Figures 4). Mixing can be achieved through floating-point blend-
ing in the compositing stage. Figure 5 illustrates an application
to spatial audio rendering where the equalization coefficients are
derived from Head Related Transfer Functions (HRTFs) to pro-
duce 3D sound over headphones [33, 10]. As can be seen in Fig-
ure 6 (top), this problem maps well on the GPU. With all audio
samples pre-stored in graphics memory, the massive parallel ar-
chitecture and fast memory bandwidth of modern GPUs delivers
a 3-fold speedup over an SSE optimized implementation, in itself
20× faster than the original C code [28].

sound sources

HRTF texture (left ear) HRTF texture (right ear)

queried texels

Figure 5: An illustration of a sphere of sounding particles aural-
ized with the GPU. The input audio signals are equalized using an
azimuth-elevation HRTF map. The intensity color of the RGBA
components correspond to the attenuation for four different fre-
quency subbands. The HRTF map is stored as a texture in graph-
ics memory and can be efficiently queried using dedicated instruc-
tions. Queried samples in the maps are highlighted as red dots.

Alternatively, several contributions make use of GP-GPU APIs
to perform fast finite impulse response (FIR) convolution, e.g. for
reverberation effects. In that case, the GPU can process time-
domain or frequency domain samples, performing the required
multiply-accumulate instructions in parallel. As mentioned pre-
viously, the frequency domain transforms can also be directly im-
plemented on the GPU [24, 21]. In [34], the authors report that

the GPU outperforms an optimized SSE implementation for long
FIR convolutions (more than 60000 taps) but fails for short fil-
ters. However, GPU implementations appear to bring significant
speedups when compared to unoptimized CPU implementations [34,
35, 36]. With our own CUDA implementation of a Modified Co-
sine Transform (MDCT)-based reverberation engine, we observed
a 6-fold speedup running on a Quadro FX3700 compared to a C++
version running on an Intel Core2 Extreme @3GHz.

Other algorithms such as infinite impulse response (recursive)
filtering cannot be efficiently implemented on the GPU since past
values are usually unavailable when rendering a given pixel in
fragment programs. As suggested in [19], including persistent
registers to accumulate results across fragments would solve this
problem. Recently, Trebien and Oliveira have proposed a solu-
tion to implement general filtering on the GPU, including recur-
sive feedback coefficients [37]. However, while the GPU has been
shown to speed-up feedforward filters, they do not provide explicit
timing comparisons between GPU and CPU for recursive filters.

An issue affecting performance for all signal processing ap-
plications on the GPU is the need for real-time streaming of data
to the graphics memory. At audio sampling rates, streaming large
numbers of audio streams will have a significant impact on the per-
formance of the application due to the slow interconnects between
GPU and main memory( 8Gb/sec. on a PCI-E 16× bus vs. a typ-
ical 30Gb/sec. and up to 100Gb/sec. between GPU and graphics
memory). As a result, speed-ups of 20× to 60× when processing
data resident into graphics memory will tend to be reduced to 5×
or 6× when audio has to be streamed.

3.2. Sound synthesis

A number of papers have also tackled the problem of synthesizing
sound on the GPU, either by generating simple combinations of
basic waveforms [38] or for physically-based synthesis, e.g. using
modal models [37, 39, 40]. It should be noted that modal synthe-
sis approaches are often implemented through recursive filtering
and are likely to be less suited to a GPU implementation. Zhang
et al., however, still reported 5× speed-ups compared to a CPU
implementation in their experiments [39]. In the case of synthesis,
no streaming to the graphics memory is required and approaches
using little or no recursive filtering will tend to be more efficient,
assuming that a large number of sounds are synthesized and mixed
before being read-back to main memory.

4. USING THE GPU FOR NUMERICAL ACOUSTICS

GPUs can also be used to accelerate numerical acoustics, e.g. to
solve finite elements, boundary elements or finite differences prob-
lems [41, 42, 43]. Röber et al. [41] implemented a room acoustic
modeling tool on the GPU using digital waveguide meshes and
report speed-ups of 4.5 to 69-fold in the 2D case, depending on
the resolution of the lattice. For 3D simulations, they report more
limited speed-ups which they attribute to the lack of 3D texture
re-sampling in their test hardware. Current generation GPUs do
offer 3D texture re-sampling and should provide speedups more
in line with the 2D case. Recently, Raghuvanshi et al. [43] have
introduced an efficient frequency-domain approach for large 3D
environments by exploiting an adaptive rectangular decomposition
of the domain. The approach heavily relies on the discrete cosine
transform (DCT) which can be very efficiently computed on the
GPU. This approach brings enormous speed-up from 90 to 300×
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Figure 6: Performance comparison between GPU and CPU im-
plementations. Top: A simple binaural renderer including 4-band
equalization and a variable delay line [28]. Bottom: Massive 1D
FFTs with GPUFFTW (from [24]).

when compared to an alternative finite difference time-domain ap-
proach running on the CPU.

Another popular numerical simulation technique, radiosity, com–
putes radiant exchanges between surface patches and has been
widely used in both computer graphics and acoustics. As far as we
are aware, no solution has been proposed that leverages GPU pro-
cessing to simulate acoustic radiant exchanges. However, in [44],
the GPU is used in conjunction with the CPU to auralize the re-
sults of an acoustic radiance transfer simulation. In that case, the
GPU is used to compute the accumulated response of all the sur-
face patches in the environment and the final audio processing is
performed on the CPU. Several approaches have been recently in-
troduced in computer graphics to solve global illumination prob-
lems on the GPU that could certainly be adapted to sound propaga-
tion [45, 46, 47]. For instance, the antiradiance approach of [46],
where visibility between surfaces is implicitly taken into account
by propagating negative energy from backfacing surfaces shares
many similarities with an acoustical boundary element approach.

5. GEOMETRY PROCESSING AND RASTERIZATION
FOR AURALIZATION

Interactive auralization generally requires significant geometry pro-
cessing, for instance to compute dynamic room acoustics or sound
occlusion and scattering. Geometry processing typically includes
sound source visibility queries and estimation of early sound re-
flections and diffraction.

5.1. Ray-casting for room acoustics

Ray-casting has been one of the earliest applications for program–
mable GPUs [48], demonstrating their ability to traverse data struc-
tures, such as trees, and bring significant speed-ups. GPU-accele–
rated ray-tracing has been used for auralization [49, 50] with sig-
nificant 10-fold speedups reported. However, it is currently un-
clear how GPU approaches would compare against the latest ad-
vances in ray or beam-tracing [51], that leverage multiple CPU
cores and vector instructions for ray intersections.

5.2. Occlusion and scattering

Several approaches have been proposed for determining sound oc-
clusion and diffraction based on GPUs, even before graphics pipe–
lines became programmable. These approaches share similarities
with the shadow mapping techniques used in graphics to com-
pute cast shadows. In 1997, Tsingos and Gascuel proposed to
compute a qualitative sound occlusion factor by evaluating the
amount of geometry blocking the first Fresnel ellipsoids defined
by a source and listening points [52] using the GPU. At the time,
the GPU could render the necessary occlusion map for a single
source/listener pair at around 1 Hz. A similar recent approach [53]
reports update rates reaching 2000 Hz.

Figure 7: Using graphics hardware for “sound visibility" calcu-
lations. (a) 3D view showing microphone, source, occluders and
Fresnel zones for 400 and 4000 Hz. (b) Visibility map from micro-
phone at 400Hz. (c) Visibility map from microphone at 4000Hz.

Another approach using the more physically grounded Kir-
choff approximation (KA) was proposed in 1998 [54] and extended
to support first-order reflections in 2007 [55]. This Kirchoff inte-
gral maps very well to direct rasterization by the graphics hard-
ware, leading to a very efficient implementation. The approach
renders all visible surfaces from the source(see Figure 8), simi-
lar to the reflective shadow-map algorithm of [56]. A complex
fragment program computes the integrand for each pixel and hier-
archical image averaging (mip-mapping) is used, in a second pass,
to compute the final integral. Repeated rendering passes are used
for different frequencies. A DirectX implementation can compute
occlusions and first order reflections for two sources and 10 fre-
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Figure 8: Left: Surfaces are sampled using hardware rendering
from the point of view of the sound source. We evaluate the scat-
tering terms at each pixel before global integration through mip-
mapping. In this figure, S and R denote the source resp. receiver.
Right: Visualization of the scattering terms on all surfaces visible
from a sound source (here, the engine of a car).

quency subbands and also perform visual rendering at 100 Hz on
a single GeForce FX8800.

Using the same formalism, the GPU can be used for comput-
ing higher-resolution scattering filters from very complex geom-
etry, such as highly tessellated CAD-CAM models or those ac-
quired through scanning techniques. Figure 9 and 10 illustrate
scattering filters computed for large-scale real-world situations and
compare the result to corresponding recordings taken in the field 2.

Figure 11 illustrates scattering impulse responses obtained from
different surfaces. Such filters could be convolved along the prop-
agation paths obtained with an image-source/beam-tracing tech-
nique or to model form-factors when obstacles are present between
surface patches in radiosity algorithms.

Figure 9: Left: Visualization of the scattering terms on the sur-
face of a model of the Kukulkan temple, in Chichén Itzá, Mexico,
for a 500Hz wave. The sound source is 15 meters in front of the
stairs. Right: Comparison between spectrograms of a simulation
and an on-site recording for the Kukulkan temple. The simulated
response is convolved by the hand-clap of the original recording
and convincingly captures the chirped echo from the stairs.

5.3. Acoustic reflectance and geometrical simplification

Interactive geometrical acoustics (GA) simulations can be enhanced
by introducing diffraction effects from wedges. However, as all
GA models, the geometrical theory of diffraction (GTD) assumes
edges to be large compared to the wavelength. Increasing geomet-
rical complexity would imply using smaller primitives and even-
tually would fall outside the validity domain of GA. Thus, it is

2Example audio files can be found at: http://www-
sop.inria.fr/reves/projects/InstantScattering.

Figure 10: Left: A 3D model of the scanned façade of the Duomo
in Pisa, Italy and close-ups on surface detail. Time-of-flight laser
scanning was used to obtain this 13 million triangle model to a
2cm resolution. Right: Comparison between spectrograms of a
simulation and an on-site recording. The simulated response is
convolved by the hand-clap of the original recording.

Figure 11: Left: Responses from different 4×4m surface samples.
Each surface is composed of 131072 triangles and generated from
displacement maps. Note the secondary scattering component due
to the finite extent of the flat surface on the top row (green curve)
and the increasingly “diffusing" nature of the surfaces from top
to bottom. Right: Scattering patterns for a detailed surface. The
figure compares sound pressure levels in a plane medial to the sur-
face obtained by BEM and our approximation. Source is 5m di-
rectly above the center of the face and the pressure is plotted at a
distance of 10m.

unclear how classical GA+GTD approaches could apply to more
detailed scenes. Recent works have been devoted to level-of-detail
(LOD) approaches for GA [57, 58, 59] but to our knowledge no
general simplification scheme that preserves the correct scattering
properties has been proposed to date.

Surface integrals and the use of GPUs offer the possibility to
leverage level-of-detail schemes originally developed for appea–
rance-preserving simplification in computer graphics [60, 61]. For
instance, Tsingos et al. [62] proposed a strategy combining nor-
mal mapping with displacement correction to model complex sur-
face detail for acoustic scattering calculations. Displacement sur-
faces [63, 64, 61] use textures to encode fine-grain surface detail
which can be used at rendering time by a software ray-tracer or
with the graphics hardware. Figure 12 shows scattering impulse
responses calculated from a reference geometry and a flat poly-
gon using normal and displacement textures. As can be seen,
changes in the surface normal result in very little difference com-
pared to a flat surface (compare to the top row in Figure 11). This
demonstrates the importance of surface displacement and the re-
sulting interference phenomena which are paramount in model-
ing the proper scattering effect. A displacement-corrected normal
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Figure 12: Comparison of true displaced geometry with a proxy
flat quadrilateral enhanced with normal-map only or combined
normal/displacement maps. Source and receiver are respectively
10 and 20 m directly above the center of the face. Note how the
normal-map alone has little effect on the obtained response. The
amplitude of displacement is 0.5 meters.

mapping results in a much better approximation.
An alternative solution would be to consider a more accurate

edge-diffraction model, such as the Biot-Tolstoy-Medwin (BTM)
model [65]. Contrary to the GTD, the BTM model can accu-
rately model diffraction off finite-length edges. For finely tesse-
lated meshes, a frequency-domain BTM approach [66] could cer-
tainly be accelerated on the GPU.

5.4. Individualized HRTF modeling

Most advanced auralization pipelines support individualized bin-
aural rendering, using measured or parametric HRTFs in order to
best match individual listeners [33, 67, 68]. Individualized HRTFs
are traditionally obtained either through measurements [69] or nu-
merical simulation [70, 71]. GPU accelerated ray-tracing or sur-
face integrals can provide an efficient solution to individualized
HRTF modeling, at a fraction of the computational cost of full
boundary element simulations. Several approaches have been pro-
posed toward this goal [49, 72] but no comparative study has been
performed to date to evaluate the results.

6. DISCUSSION AND LIMITATIONS

For audio signal processing applications, GPU implementations
generally do bring significant speedups over unoptimized C/C++
implementations. The gain is generally more limited when com-
pared to SSE optimized implementations. although one could ar-
gue that producing optimized SSE assembly code is less straight-
forward than a GPU port using the available high-level APIs. For
a number of key applications, games in particular, a very limited
amount of spare GPU cycles is generally available and game devel-
opers have been reluctant to use the graphics processing resources
for other applications, although most consoles features fast inter-
connections between GPU and CPU ( 20Gb/sec on Xbox360 and
PS3). Other issues, such as inefficient recursive filtering might
also affect the decision of porting audio processing pipelines to
the GPU.

The key factor that currently limits GPU efficiency for audio
processing is certainly the limited communication bandwidth be-
tween GPU and CPU, even with current PCI express buses. This
impacts the efficiency of streaming audio data to graphics memory
and reading-back of the processed streams for output. Approaches
have been proposed to directly output audio data through the VGA
port [73] but this is unlikely to become common practice, even

through the HDMI output now available of most graphics cards.
New interconnections such as PCI Express 3.0 or hypertransport
with higher bandwidth might make GPUs better candidates for off-
loading audio processing tasks in the future.

For geometrical acoustics or occlusion/scattering applications,
the GPU are very compelling alternatives, bringing much greater
speedups and generally requiring slower and more limited asyn-
chronous readbacks.

7. CONCLUSIONS AND FUTURE OPPORTUNITIES

We are certainly at a critical point in time where GPU architectures
have opened the way to widespread parallel programming. With
new processors, such as Intel’s Larrabee [74, 75] and increased
interconnect speeds, GPU and CPU will increasingly be working
together supported by general purpose programming APIs [76]. It
is clear that massively parallel architectures will offer tremendous
benefits to audio and auralization applications.

As discussed in this paper, a variety of audio processing and
computational acoustics algorithms have already been ported suc-
cessfully to such architectures, sometimes twisting the original
problem to recast it in terms of graphics programming. This issue
increasingly disappears with new programming models and APIs
and could lead to more widespread use for wavefield synthesis [77]
or microphone array techniques [78], which require massive paral-
lel processing. For acoustic design, massively parallel computing
could enable fast goal-directed design and optimization of acoustic
spaces or scattering surfaces, by allowing simulation algorithms to
run in an interactive optimization loop [79]. GPUs could also al-
low for efficient audio coding/decoding and integrated transform-
domain processing of a large number of audio streams for remote
audio rendering and voice-chat applications. Beyond auralization,
GPUs are also already used for speech recognition to compute
acoustic likelihoods and hidden Markov models [80, 81, 82] and
could contribute to making speech-driven interfaces more efficient,
robust and widely accepted.

Finally, following the evolution of the rendering hardware,
new algorithms and approaches have been introduced in the graph-
ics community. Even more than before, we believe it is important
to follow the progress of computer graphics approaches, some of
which address problems very close to their acoustical counterparts.
They could lead to significant advances in geometrical acoustic
modeling, for instance for dynamic simplification and geometry
processing or improved scattering models.
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