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Abstract—Accurate sound rendering can add significant realism to complement visual display in interactive applications, as well as
facilitate acoustic predictions for many engineering applications, like accurate acoustic analysis for architectural design [27]. Nu-
merical simulation can provide this realism most naturally by modeling the underlying physics of wave propagation. However, wave
simulation has traditionally posed a tough computational challenge. In this paper, we present a technique which relies on an adaptive
rectangular decomposition of 3D scenes to enable efficient and accurate simulation of sound propagation in complex virtual environ-
ments. It exploits the known analytical solution of the Wave Equation in rectangular domains, and utilizes efficient implementation of
Discrete Cosine Transform on the GPU to achieve at least a hundred-fold performance gain compared to a standard Finite Difference
Time Domain (FDTD) implementation with comparable accuracy, while also being an order of magnitude more memory-efficient.
Consequently, we are able to perform accurate numerical acoustic simulation on large, complex scenes in the kilohertz range. To the
best of our knowledge, it was not previously possible to perform such simulations on a desktop computer. Our work thus enables
acoustic analysis on large scenes and auditory display for complex virtual environments on commaodity hardware.

1 INTRODUCTION

Sound rendering, or auditory display, was first introduced to computer
graphics more than a decade ago by Takala and Hahn [44], who in-
vestigated the integration of sound with interactive graphics applica-
tions. Their work was motivated by the observation that accurate au-
ditory display can augment graphical rendering and enhance human-
computer interaction. There have been studies showing that such sys-
tems provide the user with an enhanced spatial sense of presence [14].
Auditory display typically consists of two main components: sound
synthesis that deals with how sound is produced [6, 13,29, 33, 49]
and sound propagation that is concerned with how sound travels in a
scene. In this paper we address the problem of sound propagation, also
referred to as computational acoustics.

The input to an acoustic simulator is the geometry of the scene,
along with the reflective properties of different parts of the boundary
and the locations of the sound sources and listener. The goal is to
auralize — predict the sound the listener would hear. Computational
acoustics has a very diverse range of applications, from noise control
and underwater acoustics [21] to architectural acoustics and acoustics
for virtual environments (VEs) and games. Although each applica-
tion has its own unique requirements from the simulation technique,
all applications require physical accuracy. For noise control, accuracy
translates directly into the loudness of the perceived noise, for archi-
tectural acoustics, accuracy has implications on predicting how much
an orchestra theater enhances (or degrades) the quality of music. For
interactive applications like VEs and games, physical accuracy directly
affects the perceived realism and immersion of the scene. This is be-
cause we are used to observing many physical wave effects in reality
and their presence in the scene helps to convince us that the computer-
generated environment is indeed real. For example, we observe every
day that when a sound source is occluded from the listener, the sound
becomes “muffled” in reality. For light, the source would become in-
visible, casting a shadow, which doesn’t happen for sound because it
bends, or diffracts, around the occluder. In fact, this is one of the ma-
jor reasons that sound compliments sight, both in reality and in virtual
environments — it conveys information in places where light cannot.
Our simulation technique naturally captures these subtle phenomena
occurring in nature.

For most acoustic simulation techniques, the process of auralization
can be further broken down into roughly two parts: (a) pre-processing;

Fig. 1. Sound simulation on a Cathedral. The dimensions of this scene
are 35m x 15m x 26m. We are able to perform numerical sound simula-
tion on this complex scene on a desktop computer and pre-compute
a 1 second long impulse response in about 29 minutes, taking less
than 1 GB of memory. A commonly used approach that we compare
against, Finite Difference Time Domain (FDTD), would take 1 week of
computation and 25GB of memory for this scene to achieve competitive
accuracy. The auralization, or sound rendering at runtime consists of
convolution of the calculated impulse responses with arbitrary source
signals, that can be computed efficiently.
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and (b) (acoustic) sound rendering. During pre-processing, an acous-
tic simulator does computations on the environment to estimate its
acoustical properties, which facilitate fast rendering of the sound at
runtime. The exact pre-computation depends on the specific approach
being used. For our approach, the pre-processing consists of running
a simulation from the source location, which yields the impulse re-
sponses at all points in the scene in one simulation. The rendering at
runtime can then be performed by convolving the source signal with
the calculated impulse response at the listener’s location, which is a
very fast operation as it can be performed through an FFT. The main
focus of this paper is on the pre-processing phase of acoustic predic-
tion. We present a novel and fast numerical approach that enables
efficient and accurate acoustic simulations on large scenes on a desk-
top system in minutes, which would have otherwise taken many days
of computation on a small cluster. An example is shown in Figure 1.

The problem of acoustic simulation is challenging mainly due to
some specific properties of sound. The wavelength of audible sound
falls exactly in the range of the dimensions of common objects, in the
order of a few centimeters to a few meters. Consequently, unlike light,
sound bends (diffracts) appreciably around most objects, especially at
lower frequencies. This means that unlike light, sound doesn’t ex-
hibit any abrupt shadow edges. As discussed earlier, from a perceptual
point of view, capturing correct sound diffraction is critical. In addi-
tion, the speed of sound is small enough that the temporal sequence
of multiple sound reflections in a room is easily perceptible and dis-
tinguishable by humans. As a result, a steady state solution, like in
light simulation, is insufficient for sound — a full transient solution is
required. For example, speech intelligibility is greatly reduced in a
room with very high wall reflectivity, since all the echoes mix into the
direct sound with varying delays. Therefore, the combination of low
speed and large wavelength makes sound simulation a computational
problem with its own unique challenges. Numerical approaches for
sound propagation attempt to directly solve the Acoustic Wave Equa-
tion, which governs all linear sound propagation phenomena, and are
thus capable of performing a full transient solution which correctly ac-
counts for all wave phenomena, including diffraction, elegantly in one
framework. Since we use a numerical approach, our implementation
inherits all these advantages. This is also the chief benefit our method
offers over geometric techniques, which we will discuss in detail in
the next section.

Applicability: Most interactive applications today, such as games,
use reverb filters (or equivalently, impulse responses) that are not
physically-based and roughly correspond to acoustical spaces with dif-
ferent sizes. In reality, the acoustics of a space exhibits perceptibly
large variations depending on the wall material, room size and geom-
etry, along with many other factors [24]. A handful of reverb filters
common to all scenes cannot possibly capture all the different acous-
tical effects which we routinely observe in real life and thus, such a
method at best provides a crude approximation of the actual acoustics
of the scene. Moreover, an artist has to assign these reverb filters to
different parts of the environment manually, which requires a consid-
erable amount of time and effort.

One way to obtain realistic filters would be to do actual measure-
ments on a scene. Not only is it difficult and time-consuming for real
scenes, but for virtual environments and games, one would need to
physically construct scale physical prototypes which would be pro-
hibitively expensive. This is even more impractical considering that
most games today encourage users to author their own scenes. Nu-
merical approaches offer a cheap and effective alternative to alleviate
all of these problems by computing the filters at different points in
the scene directly from simulation and are thus capable of at once au-
tomating the procedure, as well as providing much more realistic and
immersive acoustics which account for all perceptually-important au-
ditory effects, including diffraction. However, this realism comes at a
very high computational cost and large memory requirements. In this
paper, we offer a highly accelerated numerical technique that works on
a desktop system and can be used to pre-compute high-quality reverb
filters for arbitrary scenes without any human intervention. These fil-
ters can then be employed as-is in interactive applications for real-time

auralization. For example, given that the artist specifies a few salient
locations where the acoustics must be captured, one just needs to store
the reverb filters obtained from simulation at those locations. Current
game engines already use techniques to associate reverb filters with
physical locations [2]. Our technique would provide the actual values
in the reverb filters, the audio pipeline need not change at all. The
artist would thus be relieved from the burden of figuring out and ex-
perimenting exactly what kind of reverb captures the acoustics of the
particular space he/she has modeled. Another advantage of our ap-
proach is that since we are solving for the complete sound field in a
scene, a sound designer can visualize how the sound propagates in the
scene over time, to help him/her make guided decisions about what
changes need to be made to the scene to counter any perceived acous-
tic deficiencies. Please refer to the accompanying video for examples
of such visualizations.

Main Results: Our technique takes at least an order of magnitude
less memory and two orders of magnitude less computation compared
to a standard numerical implementation, while achieving competitive
accuracy at the same time. It relies on an adaptive rectangular de-
composition of the free space of the scene. This approach has many
advantages:

1. The analytical solution to the wave equation within a rectangular
domain is known. This enables high numerical accuracy, even on
grids approaching the Nyquist limit, that are much coarser than
those required by most numerical techniques. Exploiting these
analytical solutions is one of the key reasons for the significant
reduction in compute and memory requirements.

2. Owing to the rectangular shape of the domain partitions, the so-
lution in their interior can be expressed in terms of the Discrete
Cosine Transform (DCT). It is well-known that DCTs can be
efficiently calculated through an FFT. We use a fast implemen-
tation of FFT on the GPU [17], that effectively maps the FFT to
the highly parallel architecture of the GPU to gain considerable
speedups over CPU-based libraries. This implementation drasti-
cally reduces the computation time for our overall approach.

3. The rectangular decomposition can be seamlessly coupled with
other simulation techniques running in different parts of the sim-
ulation domain.

We have also implemented the Perfectly Matched Layer (PML) Ab-
sorber to model partially absorbing surfaces, as well as open scenes.
We demonstrate our algorithm on several scenarios with high com-
plexity and validate the results against FDTD, a standard Finite Dif-
ference technique. We show that our approach is able to achieve the
same level of accuracy with at least two orders of magnitude reduc-
tion in computation time and an order of magnitude less memory re-
quirements. Consequently, we are able to perform accurate numerical
acoustic simulation on large scenes in the kilohertz range which, to the
best of our knowledge, have not been previously possible on a desktop
computer.

Organization: The rest of the paper is organized as follows. In
Section 2, we review related work in the field. Section 3 presents the
mathematical background, which motivates our approach described in
Section 4. We show and discuss our results in Section 5.

2 PREVIOUS WORK

Since its inception [36], computational acoustics has been a very
active area of research due to its widespread practical applications.
Depending on how wave propagation is approximated, techniques for
simulating acoustics may be broadly classified into Geometric Acous-
tics (GA) and Numerical Acoustics (NA). For a general introduction
to room acoustics, the reader may refer to [21, 24] or a more current
survey [26].

Geometric Acoustics: All GA approaches are based on the basic
assumption of rectilinear propagation of sound waves, just like light.
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Historically, the first GA approaches that were investigated were Ray
Tracing and the Image Source Method [3, 23]. Most room acoustics
software use a combination of these techniques to this day [35]. An-
other efficient geometric approach that has been proposed in litera-
ture, with emphasis on interactive graphics applications, is Beam Trac-
ing [4, 16]. On the lines of Photon Mapping, there has been work on
Phonon Tracing [5, 12] in acoustics. Also, researchers have proposed
applying hierarchical radiosity to acoustical energy transfer [18, 46].
All GA approaches assume that sound propagates rectilinearly in rays,
which results in unphysical sharp shadows and some techniques must
be applied to ameliorate the resulting artifacts and include diffraction
into the simulation, especially at lower frequencies. Most of such ap-
proaches rely on the Geometrical Theory of Diffraction [48] and more
recently, the Biot-Tolstoy-Medwin model of diffraction [10] which re-
sult in improved simulations. However, accurately capturing diffrac-
tion still remains a challenge for GA approaches and is an active area
of research. In the context of interactive systems, most acoustic tech-
niques explored to date are based on GA, simply because although
numerical approaches typically achieve better quality results, the com-
putational demands were out of the reach of most systems.

Numerical Acoustics: Numerical approaches, in contrast to GA,
solve the Wave Equation numerically to obtain the exact behavior of
wave propagation in a domain. Based on how the spatial discretization
is performed, numerical approaches for acoustics may be roughly clas-
sified into: Finite Element Method (FEM), Boundary Element Method
(BEM), Digital Waveguide Mesh (DWM), Finite Difterence Time Do-
main (FDTD) and Functional Transform Method (FTM). In the fol-
lowing, we briefly review each of these methods in turn.

FEM and BEM have traditionally been employed mainly for the
steady-state frequency domain response, as opposed to a full time-
domain solution, with FEM applied mainly to interior and BEM to
exterior scattering problems [22]. FEM and BEM approaches are gen-
eral methods applicable to any Partial Differential Equation, the Wave
Equation being one of them. DWM approaches [50], on the other
hand, use discrete waveguide elements, each of which is assumed to
carry waves along its length along a single dimension [20,28,40].

The FDTD method, owing to its simplicity and versatility, has
been an active area of research in room acoustics for more than a
decade [7, 8]. Originally proposed for electromagnetic simulations
[41], FDTD works on a uniform grid and solves for the field values
at each cell over time. Initial investigations into FDTD were ham-
pered by the lack of computational power and memory, limiting its
application to mostly small scenes in 2D. It is only recently that the
possibility of applying FDTD to medium sized scenes in 3D has been
explored [37-39]. Even then, the computational and memory require-
ments for FDTD are beyond the capability of most desktop systems to-
day [39], requiring days of computation on a small cluster for medium-
sized 3D scenes for simulating frequencies up to 1 kHz.

Another aspect of our work is that we divide the domain into many
partitions. Such approaches, called Domain Decomposition Methods
(DDM) have widespread applications in all areas where numerical so-
lution to partial differential equations is required and it would be hard
to list all areas of numerical simulation where they have been applied.
For a brief history of DDM and its applications we refer the reader to
the survey [11]. For an in-depth discussion of DDM, the reader is re-
ferred to the books [31,45]. Also, the website [1] has many references
to current work in the area. It is interesting to note that the main mo-
tivation of DDM when it was conceptualized more than a century ago
was to divide the domain into simpler partitions which could be ana-
lyzed more easily [11], much like in our work. However, in nearly all
Domain Decomposition approaches today, specifically for wave prop-
agation, the principal goal is to divide and parallelize the workload
across multiple processors. Therefore, the chief requirement in such
cases is that the partitions be of equal size and have minimal interface
area, since that corresponds to balancing the computation and mini-
mizing the communication cost.

The motivation of our approach for partitioning the domain is dif-
ferent — we want to ensure that the partitions have a particular rect-
angular shape even if that implies partitions with highly varying sizes

since it yields many algorithmic improvements in terms of computa-
tion and numerical accuracy for simulation within the partitions. Our
approach leads to improvements even in sequential performance by
exploiting the analytical solution within a rectangular domain. In con-
trast to prior work in high-performance computing, parallelization is
not the driving priority in our work. Decomposing the domain into
partitions and performing interface handling between them are very
well-known techniques and by themselves are not the main contribu-
tion of this work. Of course, it is still possible to parallelize our ap-
proach by allocating the partitions to different cores or machines, and
doing interface handling between them, and would be the way to scale
our approach to very large scenes with billions of cells.

Another method which is related to our work, although in a dif-
ferent mathematical framework, is the Functional Transform Method
(FTM) [30,32]. Our technique has the advantage of being very simple
to formulate and works directly on the second order Wave Equation,
instead of casting it as a first order system as in the FTM and just
requires one mathematical transformation, the Discrete Cosine Trans-
form. Also, we demonstrate our results on general scenes in 3D, along
with detailed error analysis.

Spectral techniques are a class of very high order numerical
schemes in which the complete field is expressed in terms of global
basis functions. Typically, the basis set is chosen to be the Fourier
or Chebyshev polynomials [9] as fast, memory efficient transforms
are available to transform to these bases from physical space and vice
versa. Our method may also be regarded as a spectral method. How-
ever, there are some important differences which we discuss later in
the paper.

It is interesting to note here that GA and NA approaches may be
regarded as complimentary with regard to the range of frequencies
they can simulate efficiently — With geometric approaches it is hard
to simulate low-frequency wave phenomena like diffraction because
they assume that sound travels in straight lines like light, while with
numerical approaches, simulating high frequencies above a few kilo-
hertz becomes prohibitive due to the excessively fine volume mesh that
must be created.

We wish to emphasize at this point that it is possible to integrate
more elaborate techniques for modeling the surface properties and
scattering [47] characteristics of the scene boundary into our tech-
nique. Also, we assume all sound sources to be monopole, or point
source, but complex emission patterns resulting from many monopole
and dipole sources [19] can also be easily integrated in our framework.

3 MATHEMATICAL BACKGROUND

In this section, we first briefly present the FDTD method. We do this
for two reasons: Firstly, this is the simulator we use as a reference to
compare against and its details serve to illustrate the underlying math-
ematical framework used throughout this paper. Secondly, this discus-
sion illustrates numerical dispersion errors in FDTD and motivates our
technique which uses the analytical solution to the Wave Equation on
rectangular domains to remove numerical dispersion errors.

3.1 Basic Formulation

The input to an acoustics simulator is a scene in 3D, along with the
boundary conditions and the locations of the sound sources and lis-
tener. The propagation of sound in a domain is governed by the Acous-
tic Wave Equation,
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This equation captures the complete wave nature of sound, which is
treated as a time-varying pressure field p (x,7) in space. The speed of
sound is ¢ = 340ms~! and F (x,?) is the forcing term corresponding to
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is the Laplacian in 3D. The Wave Equation succinctly explains wave
phenomena such as interference and diffraction that are observed in
reality. We briefly mention a few physical quantities and their rela-
tions, which will be used throughout the paper. For a wave traveling in
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sound sources present in the scene. The operator V2 = % + 8972 +
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free space, the frequency, v and wavelength, A are related by ¢ = VA.
It is also common to use the angular counterparts of these quantities:
angular frequency, @ = 27v and wavenumber, k = 27” Because fre-
quency and wavenumber are directly proportional to each other, we
will be using the two terms interchangeably throughout the paper.

In the next sub-section, we briefly discuss the Finite Difference
Time Domain (FDTD) method for numerically solving the Wave
Equation. To avoid confusion, we note here that while the term FDTD
is sometimes used to specifically refer to the original algorithm pro-
posed by Yee [51] for Electromagnetic simulation, it is common to re-
fer to any Finite Difference-based approach which computes the com-
plete sound field in time domain as an FDTD method. In this paper,
we use the latter definition.

3.2 A(2,6) FDTD Scheme

FDTD works on a uniform grid with spacing 4. To capture the propa-
gation of a prescribed maximum frequency Vyqx, the Nyquist theorem
requires that i < % = ZVfW. Once the spatial discretization is per-
formed, the continuum Laplacian operator is replaced with a discrete
approximation of desired order of accuracy. Throughout this paper,
we consider the sixth order accurate approximation to the Laplacian,
which approximates the second order differential in each dimension
with the following stencil:

d2pi 1
2~ Taom (2pi—3 —27pi—2+270p;_1 —490p;

+270pi1 = 2Tpi2 +2piv3) + O(R°), )
where p; is the i grid cell in the corresponding dimension. Thus,
the Laplacian operator at each cell can be represented as a Discrete
Laplacian Matrix, K and equation (1) becomes,
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where P is a long vector listing the pressure values at all the grid cells
and F is the forcing term at each cell. Hard-walls may be modeled with

the Neumann Boundary Condition — % =0, where 7 is the normal to
the boundary.

The next step is to discretize equation (3) in time at some time-step
At, which is restricted by the CFL condition Ar < % Using the

Leapfrog integrator in time, the complete update rule is as follows.
1 1 cAr)? 2 6
Pt —opt—prly (S5 kP'o (&) +0 (k).

Since the temporal and spatial errors are second and sixth order re-
spectively, this is a (2,6) FDTD scheme. In the next sub-section, we
discuss the nature of the numerical errors in FDTD schemes and the
resulting performance issues.

3.3 Numerical Dispersion in FDTD and Efficiency Consid-
erations

As was previously discussed, the spatial cell size, i for FDTD is cho-
sen depending on the maximum simulated frequency, V4, and is lim-
ited by the Nyquist sampling theorem. However, due to numerical
errors arising from spatial and temporal discretization, accurate simu-
lation with FDTD typically requires not 2 but 8-10 samples per wave-
length [43]. These errors manifest themselves in the form of Numer-
ical Dispersion — Waves with different wavenumbers (or equivalently,
different frequencies) do not travel with the same speed in the sim-
ulation. This error may be quantified by finding the wavenumber-
dependent numerical speed, ¢’ (k), where k is the wavenumber. This
speed is then normalized by dividing with the ideal wave speed, c,
yielding the dispersion coefficient, y (k). Ideally, the dispersion coeffi-
cient should be as close to 1 as possible, for all wavenumbers. Figure 2
shows a plot of the dispersion coefficient for FDTD against frequency
on a 3D grid and compares the error for different cell sizes. Observe
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Fig. 2. Numerical dispersion with a (2,6) FDTD scheme for different
mesh resolutions. Increasing the sampling reduces the numerical dis-
persion errors. Our method suffers from no dispersion errors in the inte-
rior of rectangular partitions, while FDTD accumulates errors over each
cell a signal propagates across. Reducing these errors with FDTD re-
quires a very fine grid.

that at 1000 Hz, the dispersion coefficient for FDTD is about .0lc,
while for FDTD running on a 2.5x refined mesh the error is about
.001c. This is because the spatial sampling increases from 4 samples
per wavelength to 10 samples per wavelength.

Consider a short-time signal containing many frequencies, for ex-
ample, a spoken consonant. Due to Numerical Dispersion, each of the
frequencies in the consonant will travel with a slightly different speed.
As soon as the phase relations between different frequencies are lost,
the signal is effectively destroyed and the result is a muffled sound.
From the above values of the dispersion coefficient, it can be shown
that with FDTD a signal would have lost phase coherence after travel-
ing just 17m, which is comparable to the diameter of most scenes.

To increase accuracy, we need to increase the mesh resolution, but
that greatly increases the compute and memory requirements of FDTD
— Refining the mesh r times implies an increase on memory by a factor
of 3 and the total compute time for a given interval of time by r*.
In practice, memory can be a much tighter constraint because if the
method runs out of main memory, it will effectively fail to produce
any results.

3.4 Wave Equation on a Rectangular Domain

A lot of work has been done in the field of Spectral/Pseudo-spectral
methods [25] to allow for accurate simulations with 2-4 samples per
wavelength while still allowing for accurate simulations. Such meth-
ods typically represent the whole field in terms of global basis func-
tions, as opposed to local basis functions used in Finite Difference or
Finite Element methods. With a suitable choice of the spectral ba-
sis (typically Chebyshev polynomials), the differentiation represented
by the Laplacian operator can be approximated to a very high degree
of accuracy, leading to very accurate simulations. However, spectral
methods still use discrete integration in time which introduces tempo-
ral numerical errors. In this paper, we use a different approach and
instead exploit the well-known analytical solution to the Wave Equa-
tion on rectangular domains [24], which enables error-free propaga-
tion within the domain. It is important to note here that we are able to
do this because we assume that the speed of sound is constant in the
medium, which is a reasonable assumption for architectural acoustics
and virtual environments.

Consider a rectangular domain in 3D, with its solid diagonal ex-
tending from the (0,0,0) to (Iy,ly,l;), with perfectly rigid, reflective
walls. It can be shown that any pressure field p (x,y,z,7) in this domain
may be represented as

p(x,y,z,t): Z
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where m; are the time-varying mode coefficients and ®; are the eigen-
functions of the Laplacian for a rectangular domain, given by —

i Tiy .
®; (x,y,z) = cos %) cos ly cos iz .
I, I, I,

Given that we want to simulate signals band-limited up to a prescribed
smallest wavelength, the above continuum relation may be interpreted
on a discrete uniform grid with the highest wavenumber eigenfunc-
tions being spatially sampled at the Nyquist rate. Note that as long
as the simulated signal is properly band-limited and all the modes are
used in the calculation, this discretization introduces no numerical er-
rors. This is the reason it becomes possible to have very coarse grids
with only 2-4 samples per wavelength and still do accurate wave prop-
agation simulations. In the discrete interpretation, equation (4) is sim-
ply an inverse Discrete Cosine Transform (iDCT) in 3D, with ®; being
the Cosine basis vectors for the given dimensions. Therefore, we may
efficiently transform from mode coefficients (M) to pressure values (P)
as —

P(t)=iDCT (M (1)). 5)

This is the main advantage of choosing a rectangular shape — because
the eigenfunctions of a rectangle are Cosines, the transformation ma-
trix corresponds to applying the DCT, which can be performed in
O (nlogn) time and © (n) memory using the Fast Fourier Transform
algorithm [15], where n is the number of cells in the rectangle, which
is proportional to its volume. For general shapes, we would get arbi-
trary basis functions, and these requirements would increase to @ (nz)
in compute and memory, which quickly becomes prohibitive for large
scenes, with n ranging in millions. Re-interpreting equation (1) in a
discrete-space setting, substituting P from the expression above and
re-arranging, we get,

IM: 4 2IM; = DCT (F (1)),

P ) (6)
K =n? <;?+%+%)

In the absence of any forcing term, the above equation describes a set
of independent simple harmonic oscillators, with each one vibrating
with its own characteristic frequency, @; = ck;. The above analysis
may be equivalently regarded as Modal Analysis applied to a rectan-
gular domain. However, our overall approach is different from Modal
Analysis because the latter is typically applied to a domain as a whole,
yielding arbitrary basis functions which do not yield to efficient trans-
forms, and extracting all the modes is typically intractable for domains
with millions of cells.

We model arbitrary forcing functions, for example, due to a volume
sound sources as follows. Assuming that the forcing function, F () is
constant over a time-step At, it may be transformed to mode-space as

F(t)=DCT (F (1)) (7)
and one may derive the following update rule —
2F™"

2
;

Mi’”rl = 2M cos (w;At) — Ml-"f1 + (1 —cos(wAr)). (8)
This update rule is obtained by using the closed form solution of a
simple harmonic oscillator over a time-step. Since it is a second-order
equation, we need to specify one more initial condition, which we
choose to be that the function computed over the time-step evaluates
correctly to the value at the previous time-step, M"~!. This leads to
a time-stepping scheme which has no numerical errors for propaga-
tion in the interior of the rectangle, since we are directly using the
closed-form solution for a simple harmonic oscillator. The only error
introduced is in assuming that the forcing term is constant over a time-
step. This is not a problem for input source sounds, as the time-step
is necessarily below the sampling rate of the input signal. However,
the communication of sound between two rectangular domains is en-
sured through forcing terms on their interface and this approximation
introduces numerical errors at the interface. We discuss these issues in
detail in the next section.
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Fig. 3. Overview of our approach. The scene is first voxelized at a
prescribed cell size depending on the highest simulated frequency. A
rectangular decomposition is then performed and impulse response cal-
culations then carried out on the resulting partitions. Each step is domi-
nated by DCT and inverse DCT calculations withing partitions, followed
by interface handling to communicate sound between partitions.

4 TECHNIQUE

In the previous section, we discussed the errors and efficiency issues
of the FDTD method and discussed a method to carry out numerical
solution of the Wave Equation accurately and efficiently on rectan-
gular domains. In this section, we discuss our technique which ex-
ploits these observations to perform acoustic simulation on arbitrary
domains by decomposing them into rectangular partitions. We end
with a discussion of the numerical errors in our approach.

4.1 Rectangular Decomposition

Most scenes of interest for the purpose of acoustic simulation nec-
essarily have large empty spaces in their interior. Consider a large
scene like, for example, a 30m high cathedral in which an impulse is
triggered near the floor. With FDTD, this impulse would travel up-
wards and would accumulate numerical dispersion error at each cell
it crosses. Given that the spatial step size is comparable to the wave-
length of the impulse, which is typically a few centimeters, the impulse
accumulates a lot of error, crossing hundreds to thousands of cells. In
the previous section, we discussed that wave propagation on a rectan-
gular domain can be performed very efficiently while introducing no
numerical errors. If we fit a rectangle in the scene extending from the
bottom to the top, the impulse would have no propagation error. This is
the chief motivation for Rectangular Decomposition — Since there are
large empty spaces in typical scenes, a decomposition of the space into
rectangular partitions would yield many partitions with large volume
and exact propagation could be performed in the interior of each.

We perform the rectangular decomposition by first voxelizing the
scene. The cell size is chosen based on the maximum frequency to
be simulated, as discussed previously. Next, the rectangular decom-
position is performed using a greedy heuristic, which tries to find the
largest rectangle it can grow from a random seed cell until all free
cells are exhausted. We note here that the correctness of our technique
does not depend on the optimality of the rectangular decomposition.
A slightly sub-optimal partitioning with larger interface area affects
the performance only slightly, as the interface area is roughly propor-
tional to the surface area of the domain, while the runtime performance
is dominated by the cost of DCT, which is performed on input propor-
tional to the volume of the domain.

4.2 Interface Handling

Once the domain of interest has been decomposed into many rectan-
gles, propagation simulation can be carried out inside each rectangle
as described in Section 3.4. However, since every rectangle is assumed
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to have perfectly reflecting walls, sound will not propagate across rect-
angles. We next discuss how this communication is performed using
a Finite Difference approximation. Without loss of generality, lets as-
sume that two rectangular partitions share an interface with normal
along the X-axis. Recall the discussion of FDTD in Section 3.2. As-
sume for the moment that (2,6) FDTD is running in each rectangular
partition, using the stencil given in equation (2) to evaluate ’iﬁ” . Fur-
ther, assume that cell i and i+ 1 are in different partitions and thus
lie on their interface. As mentioned previously, Neumann boundary
condition implies even symmetry of the pressure field about the in-
terface and each partition is processed with this assumption. Thus,
the Finite Difference stencil may also be thought of as a sum of two
parts — The first part assumes that the pressure field has even symmetry
about the interface, namely, p; = piy1,pi—1 = piroand pi_2 = piy3,
and this enforces Neumann boundary conditions. The residual part of
the stencil accounts for deviations from this symmetry, cause by the
pressure in the neighboring partition. Symbolically, representing the
Finite Difference stencil in equation (2) as S—

S; = S? + S}, where
S0 = 5t (2pi3 — 25pi—2 +243p;_1 —220p;)

1

S} = tgom (—2Pi—2 +27pi_1 — 270p; + 270pis1 — 27pisa +2pis3) -

Since S is a residual term not accounted for while evaluating the LHS
of equation (3), it is transferred to the RHS and suitably accounted for
in the forcing term, thus yielding,

F; = ¢S, ©)

Similar relations for the forcing term may be derived for all cells
near the partition boundary which index cells in neighboring parti-
tions. If we were actually using (2,6) FDTD in each partition, this
forcing term would be exact, with the same numerical errors due to
spatial and temporal approximations appearing in the interior as well
as the interface. However, because we are using an exact solution in
the interior, the interface handling described above introduces numeri-
cal errors equivalent to a (2,6) FDTD on the interface. We will discuss
these errors in more detail shortly. We would like to note here that
a sixth-order scheme was chosen as it gives sufficiently low interface
errors, while being reasonably efficient. Lower (second/fourth) order
schemes would be more efficient and much easier to implement, but
as we have experimented, they result in much higher errors, which
results in undesirable, audible high frequency noise. One may use
an even higher order scheme if more accuracy is required for a par-
ticular application, at the expense of computation and implementaion
effort. An interesting point to note at this point is that the interface
handling doesn’t need to know how the field inside each partition is
being updated. Therefore, it is easy to mix different techniques for
wave propagation in different parts of the domain, if so required.

4.3 Absorbing Boundary Condition

Our discussion till this point has assumed that all scene boundaries
are perfectly reflecting. For modeling real scenes, this is an unreal-
istic assumption. Moreover, since the computation is carried out on
a volumetric grid, it is necessary to truncate the domain and model
emission into free space. It is necessary to have absorbing boundaries
for this purpose. For this work, we have implemented the Perfectly
Matched Layer (PML) absorber [34], which is commonly employed
in most numerical wave propagation simulations due to its high ab-
sorption efficiency. PML works by applying an absorbing layer which
uses coordinate stretching to model wave propagation in an unphysical
medium with very high absorption, while ensuring that the impedance
of the medium matches that of air at the interface to avoid reflection
errors. The interfacing between the PML medium and a partition in
our method is simple to implement — Since PML explicitly maintains
a pressure field in the absorbing medium, the PML medium can also
be treated as a partition and the same technique described above can
be applied for the coupling between PML and other partitions. Vari-
able reflectivity can be easily obtained by multiplying the forcing term
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Fig. 4. Measurements of numerical error due to interface handling
and PML absorbing boundary conditions. The interface handling er-
rors stays near -40 dB for most of the frequency spectrum, which is not
perceptible. The absorption error stays around -25 dB which introduces
very small errors in the reflectivity of different materials.

calculated for interface handling by a number between 0 and 1, O cor-
responding to full reflectivity and 1 corresponding to full absorption.

4.4 Putting everything together

In this subsection, we give a step-by-step description of all the steps
involved in our technique. Figure 3 shows a schematic diagram of the
different steps in our approach, which are as follows —

1. Pre-processing

(a) Voxelize the scene. The cell-size is fixed by the minimum
simulated wavelength and the required number of spatial
samples per wavelength (typically 2-4)

(b) Perform a rectangular decomposition on the resulting vox-
elization, as described in Section 4.1.

(c) Perform any necessary pre-computation for the DCTs to
be performed at runtime. Compute all interfaces and the
partitions that share them.

2. Simulation Loop

(a) Update modes within each partition using equation (8)

(b) Transform all modes to pressure values by applying an
iDCT as given in equation (5)

(c) Compute and accumulate forcing terms for each cell. For
cells on the interface, use equation (9), and for cells with
point sources, use the sample value.

(d) Transform forcing terms back to modal space using a DCT
as given in equation (7).

4.5 Numerical Errors

Numerical errors in our method are introduced mainly through two
sources — boundary approximation and interface errors. Since we em-
ploy a rectangular decomposition to approximate the simulation do-
main, there are stair-casing errors near the boundary (see Figure 7).
These stair-casing errors are identical to those in FDTD because we do
a rectangular decomposition of a uniform grid — there is no additional
geometry-approximation error due to using rectangular partitions. In
most room acoustic software, it iS common practice to approximate
the geometry to varying degrees [42]. The reason for doing this is that
we are not as sensitive to acoustic detail as much as we are to visual
detail. Geometric features comparable or smaller than the wavelength
of sound ( 34 cm at 1kHz) lead to very small variations in the overall
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acoustics of the scene due to the presence of diffraction. In contrast, in
light simulation, all geometric details are visible because of the ultra-
small wavelength of light and thus stair-casing is a much more impor-
tant problem.

The net effect of stair-casing error for numerical simulators is that
for frequencies with wavelengths comparable to the cell size ( 1kHz),
the walls act as diffuse instead of specular reflectors. For frequencies
with large wavelengths (500 Hz and below), the roughness of the sur-
face is effectively ‘invisible’ to the wave, and the boundary errors are
small with near-specular reflections. Therefore, the perceptual impact
of boundary approximation is lesser in acoustic simulation.

However, if very high boundary accuracy is critical for a certain
scene, this can be achieved by coupling our approach with a high-
resolution grid near the boundary, running FDTD at a smaller time-
step. As we had mentioned earlier, as long as the pressure values in
neighboring cells are available, it is easy to couple the simulation in
the rectangular partitions with another simulator running in some other
part of the domain. Of course, this would create extra computational
overhead, so its an efficiency-accuracy tradeoff.

As we discussed theoretically in Section 3.4 and also demonstrate
with experiments in the next section, our technique is able to nearly
eliminate numerical dispersion errors. However, because the inter-
partition interface handling is based on a less accurate (2,6) FDTD
scheme, the coupling is not perfect, which leads to erroneous reflec-
tions at the interface. Figure 4 shows the interface error for a simple
scene. The Nyquist frequency on the mesh is 2000Hz. The table at the
bottom of the figure shows the interface reflection errors for different
frequencies, in terms of sound intensity. Although the interface errors
increase with increasing frequency, it stays ~ —40dB for most of the
spectrum. Roughly, that is the difference in sound intensity between
normal conversation and a large orchestra.

Since most scenes of practical interest have large empty spaces in
their interior, the number of partition interfaces encountered by a wave
traveling the diameter of the scene is quite low. For example, refer to
Figure 7 — a wave traveling the 20 m distance from the source location
to the dome at the top encounters only about 10 interfaces. Also, it is
important to note that this is a worst-case scenario for our approach,
since many rectangles are needed to fit the curved dome at the top.
This is the chief advantage of our approach — numerical dispersion is
removed for traveling this distance and it is traded off for very small
reflection errors which are imperceptible. Please hear the accompa-
nying video for examples of audio rendered on complex scenes with
numerous interfaces.

Figure 4 also shows the absorption errors for the PML Absorbing
Boundary Condition. The absorption errors range from -20 to -30dB,
which works well for most scenes, since this only causes a slight devi-
ation from the actual reflectivity of the material being modeled. How-
ever, if higher accuracy absorption is required, one might increase the
PML thickness. We have used a 5-cell thick PML in all our simula-
tions.

5 RESULTS
5.1 Sound Rendering

The input to all audio simulations we perform is a Gaussian-derivative
impulse of unit amplitude. Given the maximum frequency to be sim-
ulated, Vj;4x, we fix the width of the impulse so that its maxima in fre-
quency domain is at V’E‘“ , giving a broadband impulse in the frequency
range of interest. This impulse is triggered at the source location and
simulation performed until the pressure field has dropped off to about
-40 dB, which is roughly the numerical error of the simulation. The
resulting signal is recorded at the listener position(s). Next, decon-
volution is performed using a simple Fourier coefficient division to
obtain the Impulse Response (IR), which is used for sound rendering
at a given location.

Auralizing the sound at a moving listener location is performed as
follows. First, note that running one simulation from a source location
yields the pressure variation at all cell centers because we are solv-
ing for the complete field on a volume grid. For auralizing sound, we
first compute the IRs at all cells lying close to the listener path. Next,
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Fig. 5. Numerical results on the corridor scene, comparing numerical
dispersion errors in FDTD and in our method. The reference FDTD so-
lution has a mesh with s = 10 samples per wavelength. Note that only
the magnitudes of the Fourier coefficients are plotted. Our method suf-
fers from very little numerical dispersion, reproducing the ideal impulse
response very closely, while FDTD suffers from large amounts for nu-
merical dispersion. We take an order of magnitude less memory and
nearly two orders of magnitude less computation time to produce re-
sults with accuracy comparable to the reference solution.

the sound at the current position and time is estimated by linearly in-
terpolating the field values at neighboring cell centers. To obtain the
field value at a given cell center, a convolution of the IR at the corre-
sponding location and the input sound is performed. We would like to
emphasize here that there are more efficient ways of implementing the
auralization but that is not the focus of this paper.

Most of the simulations we have performed are band-limited to 1-
2kHz due to computation and memory constraints. However, this is
not a big limitation. Although audible sounds go up to 22kHz, it is
important to realize that only frequencies up to about SkHz are percep-
tually critical [24] for acoustics simulation. Moreover, the frequency
perception of humans is logarithmic, which reflects in the frequency
doubling between musical octaves. This means that most of the per-
ceptually important frequencies are contained till about 2kHz. For
example, the frequency of a typical 88-key piano goes from about
30Hz to 4kHz, covering 7 octaves, out of which 6 octaves are be-
low 2kHz. However, even though we don’t have accurate perception
of higher frequencies, their complete absence leads to perceptual arti-
facts and therefore, there must be some way of accounting for higher
frequencies, even if approximately. One way of doing that would be to
combine our technique with a Geometrical Acoustic simulator for the
higher frequency range. In this paper, we have used a much simpler
technique that gives good results in practice.

To auralize sounds in the full audible range up to 22kHz, we first up-
sample the IR obtained from the simulation to 44kHz and run a sim-
ple peak detector on the IR which works by searching for local max-
ima/minima. The resulting IR contains peaks with varying amplitudes
and delays, corresponding to incoming impulses. This is exactly the
kind of IR that geometrical approaches compute by tracing paths for
sound and computing the attenuation and delay along different paths.
Each path yields a contribution to the IR. The difference here is that
numerical simulation does not explicitly trace these paths. Instead, we
extract this information from the computed impulse response through
peak detection. We use an IR thus computed for higher frequencies.
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Fig. 6. The House scene demonstrates diffraction of sound around obstacles. All the scene geometry shown was included in the simulation. Our
method is able to reproduce the higher diffraction intensity of sound at lower frequencies, while reducing the memory requirements by about an
order of magnitude and the computational requirements by more than two orders of magnitude. The reference solution is computed on a mesh with

s = 10 samples per wavelength.

The approximation introduced in this operation is that the diffraction
at higher frequencies is approximated since the peak detector doesn’t
differentiate between reflection and diffraction peaks. Intuitively, this
means that high frequencies may also diffract like low frequencies,
which is the approximation introduced by this technique. This IR fil-
ter is then high-passed at the simulation cutoff frequency to yield a
filter to be used exclusively for higher frequencies. As a final step, the
exact low-frequency IR and approximate high-frequency IR are com-
bined in frequency domain to yield the required IR to be applied on
input signals. We must emphasize here that this technique is applied
to obtain an approximate response exclusively in the high-frequency
range and it is ensured that numerical accuracy for lower frequencies
till 1-2kHz is maintained.

The reference solution for comparing our solution is the (2,6) FDTD
method described in Section 3.2 running on a fine mesh that ensures
10 samples per wavelength. Since the main bottleneck of our approach
is DCT, which can be performed through an FFT, we used the GPU-
based FFT implementation described in [17], to exploit the compute
power available on today’s high-end graphics cards. Combining op-
timized transforms with algorithmic improvements described in the
paper is the reason we gain considerable speedups over FDTD. All the
simulations were performed on a 2.8GHz Intel Xeon CPU, with 8GB
of RAM. The FFTs were performed on an NVIDIA GeForce GTX 280
graphics card.

In the following sub-sections, to clearly demarcate the algorithmic
gain of our appoach over FDTD and the speedups obtained due to
using the GPU implementation of FFT, we provide three timings for
each case: the running time for computing the reference solution with
FDTD, the time if we use a serial version of FFTW [15] and the time
with the GPU implementation of FFT. In general, we obtain a ten-fold
performance gain due to algorithmic improvements and another ten-
fold due to using GPU FFT. The ten-fold gain in memory usage is of
course, purely due to algorithmic improvements.

5.2 Numerical Dispersion: Anechoic Corridor

We first demonstrate the lack of numerical dispersion in our scheme.
Refer to Figure 5. The scene is a 20m x Sm x Sm corridor in which
the source and listener are located 15m apart, as shown in the figure.
To measure just the accumulation of numerical dispersion in the direct
sound and isolate any errors due to interface or boundary handling, we
modeled the scene as a single, fully reflective rectangle. The simula-
tion was band-limited to 4kHz, and the IR was calculated at the listener
and only the direct sound part of the impulse response was retained. As
Figure 5 shows, our method’s impulse response is almost exactly the
same as the ideal response. FDTD running on the same mesh under-
goes large dispersion errors, while FDTD running on a refined mesh
with s=10 samples per wavelength, (the reference) gives reasonably
good results. Note that since there is only direct transmission from

the source to the listener, the magnitude of the ideal frequency re-
sponse is constant over all frequencies. This is faithfully observed for
our method and the reference, but FDTD undergoes large errors, espe-
cially for high frequencies. Referring to the video, this is the reason
that with FDTD, the sound is ‘muffled’ and dull, while with the refer-
ence solution and our technique, the consonants are clear and ‘bright’.
Therefore, as clearly demonstrated, our method achieves competitive
accuracy with the reference while consuming 12 times less memory.
The reference solution takes 365 minutes to compute, our technique
with FFTW takes 31 minutes and our technique with GPU FFT takes
about 4 minutes.

5.3 House Scene

It is a physically-observed phenomenon that lower frequencies tend
to diffract more around an obstacle than higher frequencies. To illus-
trate that the associated gradual variation in intensity is actually ob-
served with our method, we modeled a House scene, shown in Figure
6. Please listen to the accompanying video to listen to the correspond-
ing sound clip. Initially, the listener is at the upper-right corner of
the figure shown, and the sound source at the lower-left corner of the
scene. The source is placed such that initially, there is no reflected path
from the source to the listener. As the listener walks and reaches the
door of the living room, the sound intensity grows gradually, instead of
undergoing an unrealistic discontinuity as with geometric techniques
which don’t account explicitly for diffraction. This shows qualitatively
that diffraction is captured properly by our simulator.

The dimensions of the House are 17m x 15m x 5m and the simula-
tion was carried out till 2kHz. The wall reflectivity was set to 50%.
The acoustic response was computed for .4 seconds. The total simu-
lation time on this scene for the reference is about 3.5 days, 4.5 hours
with our technique using FFTW and about 24 minutes with our tech-
nique using GPU FFT. The simulation takes about 700 MB of memory
with our technique. This corresponds to speedups of about 18x due to
algorithmic improvements and an additional 11x due to using GPU
FFT.

To validate the diffraction accuracy of our simulator, we placed the
source and listener as shown in Figure 6, such that the dominant path
from the source to the listener is around the diffracting edge of the
door. The middle of the figure shows a comparison of the frequency
response (FFT of the Impulse Response) at the listener location, be-
tween the reference (FDTD on a fine mesh with s=10 samples per
wavelength) and our solution. Note that both responses have a similar
downward trend. This corroborates with the physically observed fact
that lower frequencies diffract more than higher frequencies. Also, the
two responses agree quite well. However, the slight discrepancy at
higher frequencies is explained by the fact that there are two partition
interfaces right at the diffraction edge and the corresponding interface
errors result in the observed difference. Referring to Figure 6, observe
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that our method takes 12x less memory and 200x less computation
than the reference to produce reasonably accurate results.

5.4 Cathedral Scene

As our largest benchmark, we ran our sound simulator on a Cathedral
scene (shown in Figure 1) of size 35m x 26m x 15m. The simula-
tion was carried out till 1kHz. The impulse response was computed
for 2 seconds with absorptivity set to 10% and 40%, consuming less
than 1GB of memory with our technique. We could not run the refer-
ence solution for this benchmark because it would take approximately
25GB of memory, which is not available on a desktop systems today,
with a projected 2 weeks of computation for this same scene. The run-
ning times for this case are: 2 weeks for the reference (projected), 14
hours with our technique using FFTW and 58 minutes with our tech-
nique using GPU FFT. This scenario highlights the memory and com-
putational efficiency of our approach, as well as a challenging case that
the current approaches cannot handle on desktop workstations. Fig-
ure 7 shows the rectangular decomposition of this scene. Observe that
our heuristic is able to fit very large rectangles in the interior of the do-
main. The main advantage of our approach in terms of accuracy is that
propagation over large distances within these rectangles is error-free,
while an FDTD implementation would accumulate dispersion errors
over all cells a signal has to cross. The bottom of the figure shows the
impulse response of the two simulations with low and high absorptiv-
ity in dB. Note that in both cases, the sound field decays exponentially
with time, which is as expected physically. Also, with 40% absorp-
tion, the response decays much faster as compared to 10% absorption,
decaying to -60 dB in 0.5 seconds. Therefore in the corresponding
video, with low absorption, the sound is less coherent and individual
notes are hard to discern, because strong reverberations from the walls
interfere with the direct sound. This is similar to what is observed in
cathedrals in reality.

Also note that we are able to capture high order reflections, corre-
sponding to about 30 reflections in this scene. This late reverberation
phase captures the echoic trail-off of sound in an environment. Ge-
ometric techniques typically have considerable degradation in perfor-
mance with the order of reflections and are therefore usually limited
to a few reflections. We are able to capture such high order reflections
because of two reasons: Firstly, we are using a numerical technique
which works directly with the volumetric sound field and is thus in-
sensitive to the number of reflections. Secondly, as discussed in Sec-
tion 5.2, our technique has very low numerical dispersion and thus
preserves the signal well over long distances. For 30 reflections in the
Cathedral, the signal must travel about 600 meters without much dis-
persion. As discussed earlier, with FDTD running on the same mesh,
the signal would be destroyed in about 20 meters.

6 CONCLUSION AND FUTURE WORK

We have presented a computation- and memory-efficient technique for
performing accurate numerical acoustic simulations on complex do-
mains with millions of cells, for sounds in the kHz range. Our method
exploits the analytical solution to the Wave Equation in rectangular
domains and is at least an order of magnitude more efficient, both
in terms of memory and computation, compared to a reference (2,6)
FDTD scheme. Consequently, we are able to perform physically ac-
curate sound simulation, which yields perceptually convincing results
containing physical effects such as diffraction. With our technique, we
have been able to perform numerical sound simulations on large, com-
plex scenes, which, to the best of our knowledge, was not previously
possible on a desktop computer.

One of the areas where our implementation may be improved is to
add a fine-grid simulation near the boundary to reduce boundary re-
flection errors. Further, we are actively looking into the integration of
stereo sound in our framework, which requires the ability to model dy-
namic objects in the scene. Also, we would like to model both moving
sound sources and listener in the future. Another direction this work
may be extended is to combine it with a geometric technique for per-
forming the high-frequency part of the simulation, while our technique
simulates frequencies up to 1-2 kHz.
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Fig. 7. The voxelization and rectangular decomposition of the Cathedral
scene. Varying the absorptivity of the Cathedral walls directly affects
the reverberation time. Note that we are able to capture all reflections in
the scene, including later reverberation. The impulse responses shown
above correspond to high order reflections, in the range of 30 reflec-
tions, which would be prohibitively expensive to compute accurately for
geometric approaches.
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