
Proc. of the EAA Symposium on Auralization, Espoo, Finland, 15-17 June 2009

EFFICIENT NUMERICAL ACOUSTIC SIMULATION ON GRAPHICS PROCESSORS
USING ADAPTIVE RECTANGULAR DECOMPOSITION

Nikunj Raghuvanshi,∗

Dept. of Computer Science, UNC Chapel Hill, USA
Brandon Lloyd,†

Microsoft Corporation

Naga K. Govindaraju,‡

Microsoft Corporation
Ming C.Lin,§

Dept. of Computer Science, UNC Chapel Hill, USA

ABSTRACT

Accurate acoustic simulation can enable realistic auralization that
leads to enhanced immersion for visual applications, as well as
facilitates accurate predictions for practical room acoustic scenar-
ios. Numerical simulation provides realistic impulse responses
that properly account for interference and diffraction effects by
modeling the physics of wave propagation. However, it has posed
a tough computational challenge owing to its large computation
and memory requirements. We present a technique which relies
on an adaptive rectangular decomposition of 3D scenes that yields
two key advantages: Firstly, its key computational routine is DCT
which can be efficiently parallelized on Graphics Processors. Sec-
ondly, the analytical solution of the Wave Equation in rectangular
domains is known, which can be exploited to gain in accuracy and
perform simulations on coarse simulation meshes, reducing both
the computation and memory requirements further. Our technique
is able to achieve a gain of at least a hundred-fold in computation
and ten-fold in memory compared to a standard Finite Difference
Time Domain (FDTD) implementation with comparable accuracy.

1. INTRODUCTION

Efficient and accurate acoustic simulation can be used to calcu-
late realistic impulse responses (IRs) without the need of capturing
them on a real scene. In many cases, like virtual acoustics or au-
ditorium design, the scene might not even exist in reality and such
accurate predictions can add to the realism or predictive auraliza-
tions, depending on the application. Numerical Acoustic simula-
tion is a promising way to obtain IRs for arbitrary scenes while
taking into account complex wave-based acoustic phenomena like
interference and diffraction that are required for realistic auraliza-
tion.

The problem of acoustic simulation is challenging because au-
dible sounds have wavelengths that falls in the range of the dimen-
sions of common objects, and consequently sound diffracts appre-
ciably around most objects, especially at frequencies up to around
1 kHz. Capturing diffraction has been a tough challenge for Geo-
metric acoustic techniques. In addition, the speed of sound is small
enough that a complete transient simulation needs to be performed
in time-domain for practical auralization requirements. Computa-
tional acoustics thus has its own unique challenges.

∗ nikunjr@gmail.com
† dalloyd@microsoft.com
‡ nagag@microsoft.com
§ lin@cs.unc.edu

Since numerical approaches attempt to integrate the underly-
ing Linear Wave Equation directly, they are capable of performing
a full transient solution which correctly accounts for all wave phe-
nomena, including diffraction, elegantly in one framework. This
capability is their most attractive feature. But this accuracy comes
at a very high computational cost and large memory requirements
for practical scenes – especially so at medium to high frequencies
above a few hundred Hz. The reason is that typically numerical
simulation running time scales as the fourth power and memory
requirement as the third power of the maximum simulated fre-
quency. Naively reducing the grid resolution leads to unacceptably
large numerical errors.

Main Results: Our technique is at least ten-fold efficient in mem-
ory and hundred-fold efficient in computation compared to a stan-
dard FDTD implementation and achieves competitive accuracy at
the same time. It relies on an adaptive rectangular decomposition
of the free space of the scene. This approach has two key advan-
tages:

1. The solution to the Wave equation in a Rectangular domain
can be be performed efficiently through a Discrete Cosine
Transform (DCT) that can be calculated efficiently through
FFT. We have integrated our simulator with an implemen-
tation of FFT on Graphics Processing Units (GPU) [1], to
gain considerable speedups over CPU-based libraries.

2. The analytical solution to the wave equation within a rect-
angular domain is known. This enables highly reduced nu-
merical dispersion errors, even on grids approaching the
Nyquist limit with only two to four spatial samples per wave-
length (compared to about ten samples per wavelength re-
quired by other numerical techniques like FDTD). This leads
to significant gains in both computation and memory re-
quirements.

For practical auralizations, it is required to numerically model par-
tially absorbing surfaces as well as fully absorbing surfaces cor-
responding to open space, such as open doors and windows. We
have implemented the Perfectly Matched Layer (PML) Absorbing
Boundary Condition to handle such cases. We demonstrate our al-
gorithm and resulting auralization on practical scenarios with high
complexity and validate the results against FDTD. Owing to the
computational efficiency of our approach, to the best of our knowl-
edge, our work is the first to show accurate time-domain numerical
acoustic simulation on such large, complex 3D scenes for all fre-
quencies up to 1kHz on a high-end desktop computer.

Organization: The rest of the paper is organized as follows: In
section 2, we review related work in the field. Section 3 presents

1

http://www.cs.unc.edu
http://www.cs.unc.edu
mailto:nikunjr@gmail.com
mailto:dalloyd@microsoft.com
mailto:nagag@microsoft.com
mailto:lin@cs.unc.edu

Proc. of the EAA Symposium on Auralization, Espoo, Finland, 15-17 June 2009

some mathematical background, which motivates our approach de-
scribed in Section 4. We discuss results obtained with our tech-
nique in Section 5.

2. PREVIOUS WORK

The ever-increasing computational power of desktop comput-
ers has enabled more and more accurate acoustic simulation and
auralization on realistic scenes. The fundamental equation govern-
ing wave propagation for most practical cases is the Linear Wave
Equation. Depending on how wave propagation is approximated,
techniques for simulating acoustics may be broadly classified into
Geometrical Acoustics (GA) and Numerical Acoustics (NA). We
briefly survey work in both these areas.
Geometric Acoustics: GA approaches are derived using asymp-
totic approximations of the Wave Equation in the infinite frequency
limit. Their basic assumption is that sound propagates in linear
paths, like light. The first GA approaches to be investigated were
the Image Source Method and Ray Tracing [2, 3]. Most room
acoustics software use a combination of these techniques to this
day [4]. Another efficient geometric approach proposed in liter-
ature is Beam Tracing [5, 6] or alternatively, Frustum Tracing [7]
that assume continuous bundles of sound rays, instead of infinitely-
thin rays. There has been work on Phonon Tracing [8] that assumes
linearly-propagating packets of energy, called Phonons. Also, re-
searchers have proposed applying hierarchical radiosity to acous-
tical energy transfer [9, 10]. Since all GA approaches inherently
lack diffraction, it has to be accounted for explicitly. Most of such
approaches rely on the Geometric Theory of Diffraction [11, 12,
13]. Diffraction remains a challenge for GA approaches and is an
active area of research.
Numerical Acoustics: Numerical approaches differ in how they
discretize and approximate the Wave Equation. Based on this, they
may be classified into: Finite Element Method (FEM), Boundary
Element Method (BEM), Digital Waveguide Mesh (DWM), Fi-
nite Difference Time Domain (FDTD) and Functional Transform
Method (FTM). In the following, we briefly review each of these
methods in turn.

FEM and BEM have traditionally been employed mainly for
the steady-state frequency domain response, as opposed to a full
time-domain solution, with FEM applied mainly to interior and
BEM to exterior scattering problems [14]. DWM approaches [15],
on the other hand, use discrete waveguide elements forming a 3D
cartesian mesh. Each waveguide is assumed to carry waves along
its length in a single dimension. [16, 17, 18].

The FDTD method, owing to its simplicity and versatility, has
been an active area of research in room acoustics for more than
a decade [19]. FDTD works on a uniform grid and solves for the
field values at each cell over time. Initial investigations into FDTD
were hampered by the lack of computational power and memory,
limiting its application to mostly small scenes in 2D for low fre-
quencies. It is only recently that the possibility of applying FDTD
to medium sized scenes in 3D has been explored [20, 21]. Even
then, the compute and memory requirements for FDTD are beyond
the capability of most desktop systems today [21], requiring days
of computation on a small cluster for medium-sized 3D scenes for
simulating frequencies up to 1 kHz.

The Functional Transform Method (FTM) [22] is closely re-
lated to our technique. Although the mathematical frameworks of
the two techniques are very different there are some similarities,
like using a rectangular decomposition although the mathematical

motivation is different. Our technique has the advantage of being
very simple to formulate and works directly on the second order
Wave Equation without casting it as a first order system which
leads to gains in efficiency. Also, our technique requires just one
mathematical transform, the DCT.

3. MATHEMATICAL BACKGROUND
We briefly discuss the mathematical background for our technique,
as well as some details of the FDTD technique we compare against.

3.1. The Wave Equation

The input to an acoustics simulator is a scene in 3D, along with the
boundary conditions and the locations of the sound source. The re-
sult is the entire sound field on a volumetric grid over time, which
can be used to compute the impulse response at all possible listener
locations in the scene.

The propagation of sound in a domain is governed by the Lin-
ear Acoustic Wave Equation,

∂2p

∂t2
− c2∇2p = F (x, t) , (1)

Sound is represented as a time-varying spatial pressure field p (x, t).
The speed of sound is kept as c = 340ms−1 and F (x, t) is the
forcing term that models sound sources present in the scene. The
operator∇2 = ∂2

∂x2 + ∂2

∂y2
+ ∂2

∂z2
is the Laplacian in 3D.

3.2. Reference FDTD Scheme

FDTD works on a uniform axis-aligned grid with spatial spacing
h. To capture the propagation of a prescribed maximum frequency
νmax, the Nyquist theorem requires that h ≤ λmax

2
= c

2νmax
.

The Laplacian operator is then replaced with a discrete approxi-
mation of sixth order accuracy with the following numerical dif-
ferentiation formula:

d2pi
dx2

≈ 1

180h2
(2pi−3 − 27pi−2 + 270pi−1 − 490pi

+270pi+1 − 27pi+2 + 2pi+3) +O(h6), (2)

where pi is the ith grid cell in the corresponding dimension. The
above expression can be compactly expressed in terms of the Dis-
crete Laplacian Matrix, K and vectors P and F containing the
pressures and source terms respectively, for all grid cells. Dis-
cretize Eqn. (1) in space as above and then in time at some time-
step ∆t, which is restricted by the CFL (Courant-Friedrich-Levy)
condition ∆t < h

c
√

3
. Using the second-order Leapfrog integrator

in time, the complete update rule is as follows:

Pn+1 = 2Pn − Pn−1 +

(
c∆t

h

)2

KPn +O
(
∆t2

)
+O

(
h6) .

Controlling numerical errors in FDTD typically requires not 2
(Nyquist) but 8-10 samples per wavelength [23]. This makes the
method about 54 = 625 times slower than if it had been running
on a Nyquist mesh. The numerical errors lead to Numerical Dis-
persion – Waves with different frequenceis travel with different
speeds. Reducing cell size increases accuracy, but is prohibitive as
reducing the cell size by r times results in an increase in memory
requirement by a factor of r3 and total compute time by r4.

2

Proc. of the EAA Symposium on Auralization, Espoo, Finland, 15-17 June 2009

4. TECHNIQUE

In this section, we briefly describe our technique to perform acous-
tic simulation on arbitrary domains.

4.1. Wave Equation and DCT

Consider a rectangular space in 3D, with solid diagonal extending
from (0, 0, 0) to (lx, ly, lz), with perfectly reflective walls. Any
pressure field p (x, y, z, t) in this space can be represented as

p (x, y, z, t) =
∑

i=(ix,iy,iz)

mi (t) Φi (x, y, z) , (3)

where mi are the time-varying mode coefficients and Φi are the
eigenfunctions of the Laplacian for a rectangular domain, given
by –

Φi (x, y, z) = cos

(
πix
lx
x

)
cos

(
πiy
ly
y

)
cos

(
πiz
lz
z

)
.

In the discrete interpretation, Eqn. (3) is simply an inverse Dis-
crete Cosine Transform (iDCT) in 3D, with Φi being the Cosine
basis vectors for the given lengths. Therefore, we may efficiently
transform from mode coefficient vector (M) to pressure vector (P)
as –

P (t) = iDCT (M (t)) . (4)

The DCT and iDCT operations can be performed in Θ (n logn)
time and Θ (n) memory using the Fast Fourier Transform algo-
rithm [24]. Re-interpreting Eqn. (1) in a discrete-space setting,
substituting P from the expression above and re-arranging, we get,

∂2mi
∂t2

+ c2k2
imi = iDCT (F (t)) ,

k2
i = π2

(
i2x
l2x

+
i2y
l2y

+
i2z
l2z

)
. (5)

In the absence of any forcing term, the above equation describes a
set of independent simple harmonic oscillators, with each one vi-
brating with its own characteristic frequency, ωi = cki. Assuming
that F (t) is constant over a time-step ∆t, it may be transformed
to mode-space as –

F̃ (t) ≡ DCT (F (t)) (6)

and one may derive the following update rule –

Mn+1
i = 2Mn

i cos (ωi∆t)−Mn−1
i +

2F̃n

ω2
i

(1− cos (ωi∆t)) .

(7)
This update rule is obtained by using the closed form solution of
a simple harmonic oscillator over a time-step. Thus, the complete
pressure field in a rectangular space can be updated in time by
successive applications of Eqns. (6), (7) and (4), in that order,
while incurring no numerical error except that inherent in DCT
and errors in F .

4.2. Computing DCT on Graphics Processors (GPUs)

We now provide a brief summary of GPU-based DCT and its in-
tegration with our simulator. The details of this technique can be

Figure 1: Numerical errors due to interface handling and PML
absorber.

found in [1]. The GPU consists of a large number of scalar, in-
order processors that can execute the same program in parallel us-
ing threads. Scalar processors are grouped together into multipro-
cessors. The GPU memory hierarchy is designed for high band-
width to the global memory that is visible to all multiprocessors.
The shared memory has low latency and is organized into several
banks to provide higher bandwidth. At a high-level, computation
on the GPU proceeds as follows: The user allocates memory on the
GPU, copies data to the GPU, specifies a GPU program that exe-
cutes on the multiprocessors and after execution, copies the data
back to the host.

The forward Discrete Fourier Transforms (DFT) of a real se-
quence x = x0, . . . , xN−1 is an N -point complex sequence that
is conjugate symmetric, X = X0, . . . , XN−1, where

Xk =

N−1∑
j=0

xje
−2πijk/N , XN−1−i = Xi

∗. (8)

The inverse DFT is defined as

xk =
1

N

N−1∑
j=0

Xje
2πijk/N . (9)

FFT algorithms compute the DFT in O(N logN) operations. Us-
ing symmetries in the FFT of real data, the operation count can be
reduced by half. A detailed overview of FFT algorithms can found
in Van Loan [24].

The DCT can be computed using the FFT. The elements of a
sequence are first permuted and then each element is scaled by an
appropriate factor. Suppose that the length of the sequence isN =
2p. The sequence is permuted by placing the p even elements first
in the new sequence before the odd elements, which appear in re-
verse order. Each element xk is multiplied byRe(e−2πik/(4N)) =
cos(−2πik/(4N)). The resulting sequence is transformed using
the real FFT, yielding the DCT. The inverse DCT is computed us-
ing a similar process. See Van Loan [24] for details. For 3D DCTs
as required in the discussion above, we perform the permutations
simultaneously for all three dimensions.

We now describe the integration of our simulator with GPU-
DCT. The simulator spawns two threads, one for the CPU and an-
other for GPU processing. At each time-step, for each partition,
the following operations are performed. In the GPU thread, the
forcing coefficients are sent to the GPU and DCT invoked, as in
Eqn. (6). Mode update performed as in Eqn. (7), and an inverse
DCT performed as in Eqn. (4) to recover the pressure field in the
partition. Meanwhile, the pressure field in each absorber partition
is updated on the CPU thread in parallel. The details of absorber

3

Proc. of the EAA Symposium on Auralization, Espoo, Finland, 15-17 June 2009

Figure 2: Numerical dispersion error in our method is comparable
to that of the reference, while FDTD on the same mesh exhibits
large error.

partitions will be discussed shortly. This serves to hide the cost of
partially reflecting surfaces in the cost of propagation in the inte-
rior, using the GPU as an effective co-processor. After this, both
threads are synchronized and interface handling performed on the
CPU, which takes negligible time compared to the GPU process-
ing.

4.3. Rectangular Decomposition and Interface Handling

Typical acoustic spaces are not rectangular, but can be always be
partitioned into a set of rectangles touching each other. We per-
form this rectangular decomposition by first voxelizing the scene
with a cell size that is chosen based on the maximum frequency to
be simulated. Rectangles are fit using a randomized greedy heuris-
tic which tries to “grow” the largest rectangle from the current seed
point by successively increasing the length in each dimension by
one. Once this can’t be done further, the rectangle is stored, an-
other random seed chosen and the process repeated until the free
space is exhausted.

Acoustic simulation within each rectangular partition can be
carried out as described above. However, interface operations need
to be performed between partitions to propagate sound between
them. The interface operators are based on a Finite Difference
approximation. Assume two rectangular partitions share an inter-
face with normal along the X-axis. Recall the discussion of FDTD
in Section 3.2. Assuming, that cells i and i + 1 are in different
partitions and thus lie on a partition-partition interface. Using the
the sixth-order Finite Difference stencil in Eqn. (2) the following
interface operator may be derived –

S′i =
−2pi−2 + 27pi−1 − 270pi + 270pi+1 − 27pi+2 + 2pi+3

180h2

(10)
This finite difference operator is accounted for in the forcing term,
thus yielding,

Fi = c2S′i. (11)

Intuitively, the sound between two partitions is communicated us-
ing point sources on their shared interface. The numerical errors
introduced due to interface handling will be discussed in detail
shortly.
Absorbing Surfaces: To model partially reflecting surfaces, we
have used the Perfectly Matched Layer (PML) absorber [25]. PML

Figure 3: Numerical acoustic simulation and auralization on the
Sibenik Cathedral. The dimensions of this cathedral are 35m ×
26m × 15m with a volume of 13,650 m3. The images at the
bottom show an impulse propagating in the scene over time.

applies a thin absorber on the surface patch of interest and models
a highly absorptive Wave Equation in the interior. The interfacing
operator between the PML medium and a partition in our method is
identical to that discussed above. Variable reflectivity is obtained
by multiplying the forcing term calculated for interface handling
by a number between 0 and 1, 0 corresponding to full reflectivity
and 1 corresponding to full absorption.

Further details of this technique may be found in [26, 27].

5. RESULTS AND ANALYSIS

5.1. Numerical Errors

Figure 1 shows the interface error for a simple scene, which appear
as fictitious reflections at the interface. Although the interface er-
rors increase with increasing frequency, they stay near−40dB for
most of the spectrum. The figure also shows the absorption errors
for the PML absorber, which ranges from -20 to -30dB, causing
very slight deviations from the actual reflectivity of the material
being modeled.

Since we employ a rectangular decomposition to approximate
the simulation domain, their are stair-casing errors near the bound-
ary (see Figure 4). The size of the stair-casing is necessarily be-
low the smallest simulated wavelength causing only small errors.
In the worst case, stair-casing makes the sound-field more diffuse
than it should be. If very high boundary accuracy is critical, that
can be achieved by coupling our approach with a fine-mesh simu-
lation near the boundary.
5.2. Auralization

The input to all audio simulations we perform is a Gaussian deriva-
tive impulse with desired bandwidth (typically 1kHz). Auralizing
the sound at a moving listener location is performed as follows. A
simulation is run from the source location, yielding the pressure

4

Proc. of the EAA Symposium on Auralization, Espoo, Finland, 15-17 June 2009

Figure 4: Visualization of rectangular decomposition of the
Sibenik cathedral. Varying the absorptivity of the walls directly
affects the reverberation time, as expected.

signal at all cell centers. We then compute the IRs at all cells lying
close to the listener path by performing a deconvolution by divi-
sion in frequency domain. Next, the sound at the current position
and time is estimated by linearly interpolating the sample values
obtained by convolving the source signal with the IRs at the two
nearest cell centers.

Most of the simulations we have performed are band-limited
to 1-2kHz due to computation and memory constraints. However,
this limitation can be partially removed for the purpose of aural-
ization using a simple technique that we describe next. We first
up-sample the IR obtained from the simulation to 44kHz by 0-
padding in frequency domain and run a simple peak detector on the
resulting IR. The peak detector works by searching for local max-
ima/minima and thus finds out significant reflection/diffraction peaks
in the IR and their times. This IR is similar to that obtained with
GA approaches and is used for frequencies above the maximum
simulated frequency. The approximation introduced in this oper-
ation is that the diffraction at higher frequencies is approximated
since the peak detector doesn’t differentiate between reflection and
diffraction peaks. This means that high frequencies may also diffract
like low frequencies.

The reference solution for comparing our solution is the FDTD
method described in Section 3.2 running on a fine mesh that en-
sures 10 samples per wavelength (FDTD 2.5x). All the simula-
tions were performed on a 2.8GHz Intel Xeon CPU, with 8GB of
RAM. The GPU used was an NVIDIA GeForce GTX 280.

5.3. Numerical Dispersion: Anechoic Corridor

We first demonstrate the reduced numerical dispersion in our scheme.
Refer to Figure 2. The scene is a 20m × 5m × 5m corridor with
6.5 million simulation cells in which the source and listener are
located 15m apart, as shown in the figure. The simulation was
band-limited to 4kHz, and the IR was calculated at the listener and
only the direct sound part of the impulse response was retained. As
Figure 2 shows, our method’s impulse response is almost exactly

Figure 5: Diffraction of sound around edges. Our method repro-
duces the frequency domain low-passing effect of an edge.

the same as the ideal response. FDTD running on the same mesh
undergoes large dispersion errors, while FDTD running on a 2.5x
refined mesh (the reference) gives reasonably good results. Our
method achieves competitive accuracy with the reference while
consuming 12 times less memory and 90 times less computation.

5.4. House Scene

To illustrate that diffraction and the associated gradual variation
in intensity around an edge is actually observed, we modeled a
House scene, shown in Figure 5. Please see the supplementary
video for this auralization. Initially the listener is at the upper-right
corner and the sound source at the lower right corner of the scene.
The source is placed such that initially, diffraction is the dominant
energy path from the source to the listener. As the listener walks
and reaches the door of the living room, the sound intensity grows
gradually. The dimensions of the House are 17m × 15m × 5m,
with 8.8 million simulation cells. The wall reflectivity was set to
50% and the simulation grid supported frequencies up to 4kHz.
The acoustic response was computed for .4 seconds. The total
simulation time on this scene for the reference is about 3.5 days
and about 24 minutes with our technique. The simulation takes
about 700 MB of memory with our technique and nearly 8 GB for
the reference.

To validate the diffraction accuracy of our simulator, we placed
the source and listener as shown in Figure 5, such that the domi-
nant path from the source to the listener is only around the diffract-
ing edge of the door. The middle of the figure shows a compari-
son of the frequency response for the first arriving peak at the lis-
tener location, between the reference and our solution. The two
responses agree in their trend but there’s a slight discrepancy at
higher frequencies. A possible explanation is that there are two
partition interfaces right at the diffraction edge and the correspond-
ing interface errors result in the observed difference.

5

Proc. of the EAA Symposium on Auralization, Espoo, Finland, 15-17 June 2009

5.5. Cathedral Scene

As our largest benchmark, we ran our sound simulator on a the
Sibenik cathedral scene (shown in Figure 3) of size 35m×26m×
15m, with 11.9 million simulation cells. The simulation was car-
ried out till 1kHz on a mesh which supported up to 2kHz for a
duration of 2 seconds. We could not run the reference solution
for this benchmark because it would take approximately 25GB of
memory, which is not available on a desktop systems today, with
a projected 2 weeks of computation for this same scene. With our
technique it the simulation took about 58 minutes, consuming less
than 1 GB of memory. An important point to note is that we are
able to compute even the Late Reverberation phase easily because
numerical techniques are insensitive to the order of reflection.

Figure 4 shows the rectangular decomposition of this scene.
The bottom of the figure shows the impulse response of the two
simulations with low and high absorptivity in dB against time.
Note how in both cases, the Late Reverberation field decays ex-
ponentially with time, as expected physically.

6. CONCLUSION AND FUTURE WORK

We have presented a computation and memory-efficient technique
for performing accurate numerical acoustic simulations on com-
plex domains enabling auralization containing both diffraction as
well as accurate Late Reverberation. We are actively looking into
the integration of stereo sound in our framework, since numerical
simulation does not provide directionality information explicitly.
Also, we would like to add support for moving sound sources. An-
other direction this work may be extended is to combine it with a
geometric technique for performing the high-frequency part of the
simulation, while our technique simulates frequencies up to 1-2
kHz.

7. REFERENCES

[1] Naga K. Govindaraju, Brandon Lloyd, Yuri Dotsenko, Burton Smith,
and John Manferdelli, “High performance discrete fourier trans-
forms on graphics processors,” in SC ’08: Proceedings of the 2008
ACM/IEEE conference on Supercomputing, Piscataway, NJ, USA,
2008, pp. 1–12, IEEE Press.

[2] U.R. Krockstadt, “Calculating the acoustical room response by the
use of a ray tracing technique,” Journal of Sound Vibration, 1968.

[3] J. B. Allen and D. A. Berkley, “Image method for efficiently simu-
lating small-room acoustics,” J. Acoust. Soc. Am, vol. 65, no. 4, pp.
943–950, 1979.

[4] J. H. Rindel, “The use of computer modeling in room acoustics,”
Journal of Vibroengineering, vol. 3, no. 4, pp. 219–224, 2000.

[5] Thomas Funkhouser, Nicolas Tsingos, Ingrid Carlbom, Gary Elko,
Mohan Sondhi, James E. West, Gopal Pingali, Patrick Min, and Addy
Ngan, “A beam tracing method for interactive architectural acous-
tics,” The Journal of the Acoustical Society of America, vol. 115, no.
2, pp. 739–756, 2004.

[6] F. Antonacci, M. Foco, A. Sarti, and S. Tubaro, “Real time modeling
of acoustic propagation in complex environments,” Proceedings of
7th International Conference on Digital Audio Effects, pp. 274–279,
2004.

[7] Anish Chandak, Christian Lauterbach, Micah Taylor, Zhimin Ren,
and Dinesh Manocha, “Ad-frustum: Adaptive frustum tracing for
interactive sound propagation,” IEEE Transactions on Visualization
and Computer Graphics, vol. 14, no. 6, pp. 1707–1722, 2008.

[8] M. Bertram, E. Deines, J. Mohring, J. Jegorovs, and H. Hagen,
“Phonon tracing for auralization and visualization of sound,” in IEEE
Visualization 2005, 2005.

[9] Nicolas Tsingos, Simulating High Quality Dynamic Virtual Sound
Fields For Interactive Graphics Applications, Ph.D. thesis, Univer-
site Joseph Fourier Grenoble I, December 1998.

[10] Murray Hodgson and Eva M. Nosal, “Experimental evaluation of
radiosity for room sound-field prediction,” The Journal of the Acous-
tical Society of America, vol. 120, no. 2, pp. 808–819, 2006.

[11] Nicolas Tsingos, Thomas Funkhouser, Addy Ngan, , and Ingrid Carl-
bom, “Modeling acoustics in virtual environments using the uniform
theory of diffraction,” in Computer Graphics (SIGGRAPH 2001),
August 2001.

[12] Paul T. Calamia and Peter U. Svensson, “Fast time-domain
edge-diffraction calculations for interactive acoustic simulations,”
EURASIP Journal on Advances in Signal Processing, vol. 2007,
2007.

[13] Micah Taylor, Anish Chandak, Zhimin Ren, Christian Lauterbach,
and Dinesh Manocha, “Interactive edge diffraction for sound propa-
gation in complex virtual environments,” Tech. Rep., Department of
Computer Science, UNC Chapel Hill, 2008.

[14] Mendel Kleiner, Bengt-Inge Dalenbäck, and Peter Svensson, “Aural-
ization - an overview,” JAES, vol. 41, pp. 861–875, 1993.

[15] S. Van Duyne and J. O. Smith, “The 2-d digital waveguide mesh,” in
Applications of Signal Processing to Audio and Acoustics, 1993. Fi-
nal Program and Paper Summaries., 1993 IEEE Workshop on, 1993,
pp. 177–180.

[16] Matti Karjalainen and Cumhur Erkut, “Digital waveguides ver-
sus finite difference structures: equivalence and mixed modeling,”
EURASIP J. Appl. Signal Process., vol. 2004, no. 1, pp. 978–989,
January 2004.

[17] L. Savioja, Modeling Techniques for Virtual Acoustics, Doctoral
thesis, Helsinki University of Technology, Telecommunications Soft-
ware and Multimedia Laboratory, Report TML-A3, 1999.

[18] D. Murphy, A. Kelloniemi, J. Mullen, and S. Shelley, “Acoustic mod-
eling using the digital waveguide mesh,” Signal Processing Maga-
zine, IEEE, vol. 24, no. 2, pp. 55–66, 2007.

[19] D. Botteldooren, “Finite-difference time-domain simulation of low-
frequency room acoustic problems,” Acoustical Society of America
Journal, vol. 98, pp. 3302–3308, December 1995.

[20] Shinichi Sakamoto, Takuma Seimiya, and Hideki Tachibana, “Vi-
sualization of sound reflection and diffraction using finite difference
time domain method,” Acoustical Science and Technology, vol. 23,
no. 1, pp. 34–39, 2002.

[21] S. Sakamoto, T. Yokota, and H. Tachibana, “Numerical sound field
analysis in halls using the finite difference time domain method,” in
RADS 2004, Awaji, Japan, 2004.

[22] R. Rabenstein, S. Petrausch, A. Sarti, G. De Sanctis, C. Erkut, and
M. Karjalainen, “Block-based physical modeling for digital sound
synthesis,” Signal Processing Magazine, IEEE, vol. 24, no. 2, pp.
42–54, 2007.

[23] Allen Taflove and Susan C. Hagness, Computational Electrody-
namics: The Finite-Difference Time-Domain Method, Third Edition,
Artech House Publishers, June 2005.

[24] Charles Van Loan, Computational Frameworks for the Fast Fourier
Transform, Society for Industrial Mathematics, 1992.

[25] Y. S. Rickard, N. K. Georgieva, and Wei-Ping Huang, “Application
and optimization of pml abc for the 3-d wave equation in the time
domain,” Antennas and Propagation, IEEE Transactions on, vol. 51,
no. 2, pp. 286–295, 2003.

[26] Nikunj Raghuvanshi, Nico Galoppo, and Ming C. Lin, “Accelerated
wave-based acoustics simulation,” in SPM ’08: Proceedings of the
2008 ACM symposium on Solid and physical modeling, New York,
NY, USA, 2008, pp. 91–102, ACM.

[27] Nikunj Raghuvanshi, Rahul Narain, and Ming C. Lin, “Efficient and
accurate sound propagation using adaptive rectangular decomposi-
tion,” IEEE Transactions on Visualization and Computer Graphics,
vol. 99, no. 1, 2009.

6

	1 Introduction
	2 Previous Work
	3 Mathematical Background
	3.1 The Wave Equation
	3.2 Reference FDTD Scheme

	4 Technique
	4.1 Wave Equation and DCT
	4.2 Computing DCT on Graphics Processors (GPUs)
	4.3 Rectangular Decomposition and Interface Handling

	5 Results and Analysis
	5.1 Numerical Errors
	5.2 Auralization
	5.3 Numerical Dispersion: Anechoic Corridor
	5.4 House Scene
	5.5 Cathedral Scene

	6 Conclusion and Future Work
	7 References

