©

SIGGRAPY

Streaming Geometric
Computations on the GPU

Shankar Krishnan
AT&T Labs - Research

2003

Two Converging o)
Trends in Computing ... "™

The accelerated development of
graphics cards

— developing faster than CPUs

— GPUs are cheap and ubiquitous

Increasing need for streaming
computations

— original motivation from dealing with large
data sets

— also interesting for multimedia applications,
image processing, visualization etc.

®

SIGGRAFE

What is a Stream?

An ordered list of data items

Each data item has the same type
— like a tuple or record

Length of stream is potentially very
large

Examples

— data records in database applications

— vertex information in computer graphics

— points, lines etc. in computational
geometry

2003

®

SIGGRAPH 2003

Streaming Model

Input presented as a sequence
Algorithm works in a single pass
—allowed one sequential scan over input

— not permitted to move backwards mid-scan
Workspace

— typically o(n)

— arbitrary computation allowed

Algorithm efficiency

—size of workspace and computation time

Streaming: Data driven (@
to Performance driven "

Primary motivation is computing over

transient data (data driven)

— data over a network, sensor data, router
data etc.

Computing over large, disk-resident

data which are expensive to access

(data and performance driven)

To improve algorithm performance

Von Neumann (©)
Bottleneck L

Bus

Memor
CPU %

Control
Unit
[1

Instructions

Cache
Data

Von Neumann (@)
Bottleneck L

Memory bottleneck

— CPU processing faster than memory
bandwidth

— discrepancy getting worse

—large caches and sophisticated prefetching
strategies alleviate bottleneck to some
extent

— caches occupy large portions of real estate
in modern ship design

)

SIGGRAPH 2003

Cache Real Estate

Die photograph
of the Intel/HP

1A-64 processor
(Itanium2 chip)

=
©
S
S
<
(9]
=
3]
o]
O
(W}
i

Von Neumann (@)
Bottleneck SIGGRAPH 2003

Memory bottleneck

— CPU processing faster than memory
bandwidth

—discrepancy getting worse
—large caches and sophisticated prefetching

! ©)
Proposed Solutions msgp. 2003

Systolic Arrays (Kung-Leiserson '78)

— computational units arranged in specific
topology (like grid or line)

— data flows from one computational unit to
its neighbors

strategies alleviate bottleneck to some W O
extent
— caches occupy large portions of real estate
in modern ship design
Unacceptable for computationally
intensive applications
: ©) ')
Proposed Solutions SIGGRAPY 2003 Proposed Solutions SIGGRAPY 2003

Systolic Arrays (Kung-Leiserson '78)

— computational units arranged in specific
topology (like grid or line)

— data flows from one computational unit to
its neighbors

— early graphics processor design based on
systolic arrays

Systolic Arrays (Kung-Leiserson '78)

SIMD Architectures

—single set of instructions executed by
different processors

—multiple data streams fed to each
processing unit
Vector architectures

— vector registers and vector processing units
improve bandwidth

)

Stream Architectures

SIGGRAPH 2003

All input in the form of streams
Stream processed by a specialized
computational unit called kernel
Kernel performs the same operations
on each stream element

Data

—

kernel

-
|—> kernel =

)

Stream Architectures SIGGRAPY: 2003
Items processed in a FIFO fashion

Reduced memory latency and cache
requirements

Simplified control flow
Data-level parallelism
Greater computational efficiency

Examples

— CHEOPS [Rixner et. al. '98] and Imagine
[Kapasi et. al. '02]

— high performance media applications

Graphics Pipeline: @)
Rendering View SI6GRAPH 2003

Host N N
Primitive Display List Pixel
___| Operations || Operations ||
Geometry Imaging Data
Engine
_______ I g (g Spp
Raster Rasterization
Manager Texture Memory
Per-Fragment
Operations
Frame Buffer

Vertices Vertices
—-—)
Transfol

Graphics Hardware (@)
Pipeline SIGGRAPH 2003

Vertex Connectivity

Transformed

Colored
Pixel Fragments

Positions

Programmable ©)
Graphics Pipeline

3D API
3D Commands 3
Open! _ Appli
Direx Or Gi

Assembled
Primitives

SIGGRAPH 2003

CPU-GPU Boundary

Pixel

3 Pixel
Location

Updates

weans ereq
7 puBLIWOD
Nndo I
=<
@
ERS

S20MIBA
PpaLLIOjSURII-I
Transformed
Vertices
sjuawbelq

PpauLIOjSURI-DI
Transformed
Fragments

GPU: A Streaming ©)
Pipelined Architecture SIGGRAPH 2003

Inputs presented in streaming fashion

— processed data items pass to next phase
(1D systolic array?) and does not return

Data-level parallelism

Limited local storage

—data items essentially carry their own state
Pipelining: each item processed
identically

Not quite general purpose yet, but
getting there

Standard Streaming ®)
MOdel SIGGRAPH 2003

'B@
Memory . @“
i | Stream Algorithm ' ﬂ&
[l

What's the difference?

—local memory (constant vs. polylog n)
— pipelining restriction

— multi-pass potential

GPU Capabilities 5:69§:l;03

Large instruction set for general
purpose scalar and vector arithmetic
General purpose memory access
through textures

Limited pointer indirection through
dependent textures

High level language support

—Cg, HLSL

Diverse Applications (@)

SIGGRAPH 2003

Visibility, shadow computation
Occlusion culling

Motion planning, collision detection
Physically-based modeling

Image processing, FFT, wavelet
analysis

Radiosity, radiance, ray tracing
Linear algebra, differential equations

Computational geometry, solid
modeling

A lot more ...

©

SIGGRAPY

Streaming Geometric
Computations on the GPU

Shankar Krishnan
AT&T Labs - Research

2003

Geometric Algorithms (@)
in Hardware L

Large speedups

Circumvent problems of geometric
complexity

For some problems, CPU-bound
solutions are hard

Can handle other geometric settings
(dynamic/kinetic)

©)
Issues of Error e

Geometric input is continuous
Computation and output are on
finite-precision grid

Error determined by grid resolution
and rasterization process
Approximation algorithms

2003

Example:
Voronoi Diagrams

/

SIGGRAPH 2003

Hoff et. al.
Siggraph 99

SIGGRAPH 2003

CSG Rendering on GPUs

Solid Modeling using CSG s:sgggom

Constructive Solid Geometry (CSG)
— way to model general solids

Solid represented as Boolean combination
of simple primitives

A

Solid Modeling using CSG

SIGGRNP 2003

LK K

Solid Modeling using CSG WGQ 2003

Constructive Solid Geometry (CSG)
— way to model general solids

Solid represented as Boolean combination
of simple primitives
Two possibilities to render these objects
— compute boundary representation using
sophisticated geometric algorithms
= expensive, robustness is an issue
— directly render them implicitly

= no mesh representation
= effective for quick feedback during design process

. . (©)
Tree Normalization Saseiel o oos

CSG expression

— general expression with unions,
intersections and differences

Can be modified to canonical sum-of-
products form

— algorithm provided by Goldfeather et. al.
Assumed as input in the rest of talk

Example: Bradley Fighting (@&
Vehicle SIGGRAPH 2003

Courtesy: Army Research Lab

Bradley Fighting Vehicle msﬁ 2008

Over 8000 primitive objects
— polyhedra

—ellipsoids, generalized quadrics
—tori

— surfaces of revolution

Over 5000 CSG operations totally

—individual trees vary from 10s to 100s of
CSG operations

) @)
Previous Work s,ssgp. S

Goldfeather et. al. ['85, '89]

— use of parity

Epstein et. al. '88, Rossignac & Wu ’'92

— trickle algorithm

— depth-interval buffers

Weigand 95

—implementation of Goldfeather on standard
graphics pipeline

Stewart et. al. ['98, '00, ’'02]

— improvements on Goldfeather

Parity and Depth Test .ssﬁ

Idea introduced by Goldfeather et. al. ['85, '89]

T

Requires n? rendering passes to compute
intersection of n objects (single product)

2003

Main Results @)

SIGGRAPH 2003

Use two-sided depth test to sweep
an arrangement of objects

Perform CSG rendering in O(n) fewer
passes (Guha et. al. — 13D ’03)
—optimal, no readbacks

Extract arbitrary layer of a scene in
logarithmic instead of linear passes

First known lower bound results for
algorithms on the GPU

Two-Sided Depth Test .ssﬁ

Conceptualized by Mammen ’'89

Implemented on current GPUs

—shadow mapping hardware [Bastos,
Everitt] on nVidia cards

—simple fragment program
Depth peeling applications
— order-independent transparency

— opacity light field mapping [Vlasik et. al.
03]

2003

Algorithm o)
(Single Product) § L

Compute first level of arrangement
Determine portions of level contained
in intersection

— depthmask = FALSE, depthtest = *

— X front faces — 2 back faces = n
— use two-sided stencil test

Advance to next level using depth
peeling

Example

SIGGRAPH 2003

Algorithm: ©)
Union of Products SRR

Compute each product as before

Merge depth and color field of current
product with that of prefix sum

— prefix depth stored in second depth texture
—two pass merge step

Rendering passes
—single product: linear in product size
—sum of products: sum of depth complexity

Example: Helix

SIGGRAPH 2003

U

U Cyl2)

10

Example: Helix SIGaRAPH 2008

Cyll — (Helix1 U Helix2 U Cyl2)

Example: Helix SIGaRAPH 2008

Cyll — (Helix1 U Helix2 U Cyl2)

Helix: First Layer SIGaRAPH 2008

Helix: Second Layer m@m

Layer of Arrangement Resulting Depth Field

Layer of Arrangement Merged Depth Field

11

Helix: And So On ... SIGaRAPH 2008

Helix: And So On ... s.m%}pm

Layer of Arrangement

Merged Depth Field

Layer of Arrangement Merged Depth Field

Helix: And So On ... m@m

Layer of Arrangement

Final Depth Field

Helix

Number of primitives: 4
Sum of Product Size: 3
Frame Rate: 38
Machine: 1.8 GHz PC with GeForce4

12

Bradley: 25 mm Gun S.G_G_Qm

primitives: 64
SOP Size: 15
Frame Rate: 14

Bradley: ldlerwheel S.G_G_Qm

primitives: 51
SOP Size: 10
Frame Rate: 12

Bradley: Drivewheel S.GQQW

primitives: 72
SOP Size: 30
Frame Rate: 2

Discussion Sapitaos

Two-sided depth test
—Novel algorithm for rendering CSG trees
of general (but simple) closed shapes
= optimal with respect to methods based on
parity/counting
—Arbitrary layer extraction from a scene
« O(log n) rendering passes
= planning under infeasible constraints
= geometric optimization problems

13

(@)

SIGGRAPH 2003

Geometric Optimization
on GPUs

What is Geometric (@)
Optimization? SIGERATH 2003

Computing statistical measures and
approxmjate representations to
geometric data

—given a set of points, what is its diameter?

—given a collection of triangles, find the
smallest enclosing OBB?

— given two intersecting convex polytopes,
find the smallest translation vector of one
to separate them — penetration depth?

—given a collection of 2D shapes, pack them
into smallest axis-aligned rectangle —
polygon compaction?

Geometric)
Optlmizat|on SIGGRAPH 2003

Solving exactly is computationally
expensive

— best fit OBB: O(n3)

—each problem needs specialized solution
Still interesting from a streaming

point of view

—can we design algorithms that are efficient,
yet provably approximate?

Can GPUs be used to solve these

problems?

. (@)
Problem Characteristics e

Objective functions are (piecewise)
algebraic

— mostly linear

Can be formulated as

—lower/upper envelopes

—overlay of multiple envelopes

Hardware provides unified solutions to
most of these problems

— provably approximate solutions

14

Point-Hyperplane Duality ©)

SIGGRAPH 2003

Primal plane

Dual plane

)

=

Duality

(@)

SIGGRAPH 2003

Points in primal map to lines in dual

—and vice versa

Convex hull of points in primal
— upper and lower envelope in dual
Direction vector in primal
—maps to point in the dual domain

— central projection

Central Projection

@

SIGGRAPH 2003

)

Gaussian
sphere

Bounded Dual

Cover space of directions with bounded

cube

SIGGRAPH 2003

(@)

15

3D Diameter srcs@ S

Diameter pair realized in the convex
hull

Dualize all the points

— RGB space encodes point coordinates
Upper and lower envelope determines
antipodal pairs

Two rendering passes to determine
diameter

Frame buffer resolution decides
approximation factor

List of Problems Solved s.cm@. S

Extent measures

— 2D and 3D Width and Diameter

— 2D and 3D Oriented Bounding Box
— 1-Median, 1-Center and Closest pair
Shape Matching/Fitting

— Hausdorff and Summed-Hausdorff metrics
under translation

— best-fit line and circle
Layered Manufacturing
Path Planning (translation and rotation)

Penetration Depth s.cm@. 2008

Given two objects A and B, find
smallest translation vector t such that
(A + t) is disjoint from B

Equivalent to minimum distance from
origin to (A © -B), the Minkowski sum
Minkowski sum

— quadratic complexity even for convex
objects

Minkowski Sum s.cm@. S

M=AOB={a+b|a2Aandb 2B}

16

Penetration Depth S.GGQ 2003

PD for Convex Objects S.GGQ 2003

Convex objects are closed under
Minkowski sums

LetM=AO© -B
Dualize all vertices of A and B

Two observations

— lower envelope of M’s dual is sum of lower
envelopes of A and B’s dual

—min. dist. from point p to M = min. dist.
from p to all planes tangential to M

PD Algorithm S.GGQ 2008

Compute lower and upper envelope
of dual planes to A and —B

Sum corresponding envelopes
Compute minimum

Location of minimum in dual gives
translation vector

PD Results S.GGQ S

Original Position

After Separation

17

@)
PD Results s.csgp-. S

After Separation

Original Position

Discussion SooRiEi 00

Problem reformulation can lead to

pipelined, streaming algorithms

For many applications, back-end fast

geometric computations are needed

Resulting algorithms are very

efficient

— comparable, if not faster than
sophisticated software techniques

Current techniques restricted to 2D

and 3D

Pipelined Streaming: (@)
Conclusions e

Stream architectures

— alternate model for high-performance
computing

— GPU is readily accessible, easy-to-use
platform for working with streams

= numerous applications with demonstrable
performance gain

— strictly weaker than general streaming
= probably stronger than circuit models

Open Issues SIGORAPH 2003

Can we extend standard theoretical

model of streaming to this somewhat

restricted notion?

— implications of multi-pass potential?

What are limitation of stream

architectures?

— problems that can/cannot be addressed in
this framework

Issues of programming language

design, compilers, OS and hardware

design

18

Questions?

Contact

krishnas@research.att.com

SIGGRAPH

2003

19

