
1

Streaming Geometric 
Computations on the GPU

Streaming Geometric 
Computations on the GPU

Shankar Krishnan
AT&T Labs - Research

Two Converging 
Trends in Computing …
Two Converging 
Trends in Computing …

• The accelerated development of 
graphics cards
– developing faster than CPUs 
– GPUs are cheap and ubiquitous

• Increasing need for streaming 
computations
– original motivation from dealing with large 

data sets
– also interesting for multimedia applications, 

image processing, visualization etc. 

What is a Stream?What is a Stream?

• An ordered list of data items
• Each data item has the same type

– like a tuple or record

• Length of stream is potentially very 
large

• Examples
– data records in database applications
– vertex information in computer graphics
– points, lines etc. in computational 

geometry

Streaming ModelStreaming Model

• Input presented as a sequence
• Algorithm works in a single pass

– allowed one sequential scan over input
– not permitted to move backwards mid-scan

• Workspace
– typically o(n)
– arbitrary computation allowed

• Algorithm efficiency
– size of workspace and computation time
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Streaming: Data driven 
to Performance driven
Streaming: Data driven 
to Performance driven

• Primary motivation is computing over 
transient data (data driven)
– data over a network, sensor data, router 

data etc.

• Computing over large, disk-resident 
data which are expensive to access 
(data and performance driven)

• To improve algorithm performance

How does streaming help performance?

Von Neumann 
Bottleneck
Von Neumann 
Bottleneck
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Von Neumann 
Bottleneck
Von Neumann 
Bottleneck

• Memory bottleneck
– CPU processing faster than memory 

bandwidth
– discrepancy getting worse
– large caches and sophisticated prefetching

strategies alleviate bottleneck to some 
extent

– caches occupy large portions of real estate 
in modern ship design
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• Unacceptable for computationally 
intensive applications 

Von Neumann 
Bottleneck
Von Neumann 
Bottleneck

• Memory bottleneck
– CPU processing faster than memory 

bandwidth
– discrepancy getting worse
– large caches and sophisticated prefetching

strategies alleviate bottleneck to some 
extent

– caches occupy large portions of real estate 
in modern ship design

Proposed SolutionsProposed Solutions

• Systolic Arrays (Kung-Leiserson ’78)
– computational units arranged in specific 

topology (like grid or line)
– data flows from one computational unit to 

its neighbors
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Proposed SolutionsProposed Solutions

• Systolic Arrays (Kung-Leiserson ’78)
– computational units arranged in specific 

topology (like grid or line)
– data flows from one computational unit to 

its neighbors
– early graphics processor design based on 

systolic arrays

Proposed SolutionsProposed Solutions

• Systolic Arrays (Kung-Leiserson ’78)
• SIMD Architectures

– single set of instructions executed by 
different processors

– multiple data streams fed to each 
processing unit

• Vector architectures
– vector registers and vector processing units 

improve bandwidth
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Stream ArchitecturesStream Architectures

• All input in the form of streams
• Stream processed by a specialized 

computational unit called kernel
• Kernel performs the same operations 

on each stream element

kernelkernel
kernelkernel

kernelkernel

Data

Stream

Stream ArchitecturesStream Architectures

• Items processed in a FIFO fashion
• Reduced memory latency and cache 

requirements
• Simplified control flow
• Data-level parallelism
• Greater computational efficiency
• Examples

– CHEOPS [Rixner et. al. ’98] and Imagine 
[Kapasi et. al. ’02]

– high performance media applications

Graphics Pipeline: 
Rendering View
Graphics Pipeline: 
Rendering View
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Courtesy: The Cg Tutorial [Fernando and Kilgard]
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Programmable 
Graphics Pipeline
Programmable 
Graphics Pipeline

Vertex
Index

Stream

3D API
Commands

Assembled
Primitives

Pixel
Updates

Pixel
Location
Stream

Programmable
Fragment
Processor

Programmable
Fragment
Processor

T
ra

n
sf

o
rm

ed
V
er

ti
ce

s

Programmable
Vertex

Processor

Programmable
Vertex

Processor

GPU
Front End

GPU
Front End

Primitive
Assembly

Primitive
Assembly

Frame 
Buffer

Frame 
Buffer

Raster
Operations

Rasterization
and

Interpolation
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Courtesy: Cg Book [Fernando and Kilgard]

GPU: A Streaming 
Pipelined Architecture
GPU: A Streaming 
Pipelined Architecture
• Inputs presented in streaming fashion

– processed data items pass to next phase 
(1D systolic array?) and does not return

• Data-level parallelism
• Limited local storage

– data items essentially carry their own state

• Pipelining: each item processed 
identically

• Not quite general purpose yet, but 
getting there

Standard Streaming 
Model
Standard Streaming 
Model

• What’s the difference?
– local memory (constant vs. polylog n)
– pipelining restriction 
– multi-pass potential

Stream Algorithm
Memory
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GPU CapabilitiesGPU Capabilities

• Large instruction set for general 
purpose scalar and vector arithmetic

• General purpose memory access 
through textures

• Limited pointer indirection through 
dependent textures

• High level language support
– Cg, HLSL
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Diverse ApplicationsDiverse Applications

• Visibility, shadow computation
• Occlusion culling
• Motion planning, collision detection
• Physically-based modeling
• Image processing, FFT, wavelet 

analysis
• Radiosity, radiance, ray tracing
• Linear algebra, differential equations
• Computational geometry, solid 

modeling
• A lot more …

Streaming Geometric 
Computations on the GPU

Streaming Geometric 
Computations on the GPU

Shankar Krishnan
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Geometric Algorithms 
in Hardware
Geometric Algorithms 
in Hardware

• Large speedups
• Circumvent problems of geometric 

complexity
• For some problems, CPU-bound 

solutions are hard
• Can handle other geometric settings 

(dynamic/kinetic)

Use computational power of the GPU 
to implement geometric algorithms

Issues of ErrorIssues of Error

• Geometric input is continuous
• Computation and output are on 

finite-precision grid
• Error determined by grid resolution 

and rasterization process
• Approximation algorithms
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Example: 
Voronoi Diagrams
Example: 
Voronoi Diagrams

Hoff et. al. 
Siggraph 99

CSG Rendering on GPUsCSG Rendering on GPUs

Solid Modeling using CSGSolid Modeling using CSG

• Constructive Solid Geometry (CSG)
– way to model general solids

• Solid represented as Boolean combination 
of simple primitives

A B C

Å

Solid Modeling using CSGSolid Modeling using CSG
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Solid Modeling using CSGSolid Modeling using CSG

• Constructive Solid Geometry (CSG)
– way to model general solids

• Solid represented as Boolean combination 
of simple primitives

• Two possibilities to render these objects
– compute boundary representation using 

sophisticated geometric algorithms
• expensive, robustness is an issue

– directly render them implicitly
• no mesh representation
• effective for quick feedback during design process

Tree NormalizationTree Normalization

• CSG expression
– general expression with unions, 

intersections and differences

• Can be modified to canonical sum-of-
products form
– algorithm provided by Goldfeather et. al.

• Assumed as input in the rest of talk

Example: Bradley Fighting 
Vehicle
Example: Bradley Fighting 
Vehicle

Courtesy: Army Research Lab

Bradley Fighting VehicleBradley Fighting Vehicle

• Over 8000 primitive objects
– polyhedra
– ellipsoids, generalized quadrics
– tori
– surfaces of revolution

• Over 5000 CSG operations totally
– individual trees vary from 10s to 100s of 

CSG operations
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Previous WorkPrevious Work

• Goldfeather et. al. [’85, ’89]
– use of parity

• Epstein et. al. ’88, Rossignac & Wu ’92
– trickle algorithm
– depth-interval buffers

• Weigand ’95
– implementation of Goldfeather on standard 

graphics pipeline

• Stewart et. al. [’98, ’00, ’02]
– improvements on Goldfeather

Parity and Depth TestParity and Depth Test

• Idea introduced by Goldfeather et. al. [’85, ’89] 

• Requires n2 rendering passes to compute 
intersection of n objects (single product)

Main ResultsMain Results

• Use two-sided depth test to sweep 
an arrangement of objects

• Perform CSG rendering in O(n) fewer 
passes (Guha et. al. – I3D ’03)
–optimal, no readbacks

• Extract arbitrary layer of a scene in 
logarithmic instead of linear passes

• First known lower bound results for 
algorithms on the GPU

Two-Sided Depth TestTwo-Sided Depth Test

• Conceptualized by Mammen ’89
• Implemented on current GPUs

– shadow mapping hardware [Bastos, 
Everitt] on nVidia cards

– simple fragment program

• Depth peeling applications 
– order-independent transparency
– opacity light field mapping [Vlasik et. al. 

03]
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Algorithm 
(Single Product)
Algorithm 
(Single Product)

• Compute first level of arrangement
• Determine portions of level contained 

in intersection

– depthmask = FALSE, depthtest = ·

– Σ front faces – Σ back faces = n

– use two-sided stencil test

• Advance to next level using depth 
peeling

ExampleExample

Algorithm:
Union of Products
Algorithm:
Union of Products

• Compute each product as before
• Merge depth and color field of current 

product with that of prefix sum
– prefix depth stored in second depth texture
– two pass merge step

• Rendering passes
– single product: linear in product size

– sum of products: sum of depth complexity

Example: HelixExample: Helix

Cyl1 – (Helix1 U Helix2 U Cyl2)
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Example: HelixExample: Helix

Cyl1 – (Helix1 U Helix2 U Cyl2)

Example: HelixExample: Helix

Cyl1 – (Helix1 U Helix2 U Cyl2)

Helix: First LayerHelix: First Layer

Layer of Arrangement Resulting Depth Field

Helix: Second LayerHelix: Second Layer

Layer of Arrangement Merged Depth Field
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Helix: And So On …Helix: And So On …

Layer of Arrangement Merged Depth Field

Helix: And So On …Helix: And So On …

Layer of Arrangement Merged Depth Field

Helix: And So On …Helix: And So On …

Layer of Arrangement Final Depth Field

HelixHelix

Number of primitives: 4
Sum of Product Size: 3

Frame Rate: 38
Machine: 1.8 GHz PC with GeForce4
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Bradley: 25 mm GunBradley: 25 mm Gun

# primitives: 64
SOP Size: 15

Frame Rate: 14

Bradley: IdlerwheelBradley: Idlerwheel

# primitives: 51
SOP Size: 10

Frame Rate: 12

Bradley: DrivewheelBradley: Drivewheel

# primitives: 72
SOP Size: 30

Frame Rate: 2

DiscussionDiscussion

• Two-sided depth test
–Novel algorithm for rendering CSG trees 

of general (but simple) closed shapes
• optimal with respect to methods based on 

parity/counting

–Arbitrary layer extraction from a scene
• O(log n) rendering passes
• planning under infeasible constraints
• geometric optimization problems
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Geometric Optimization
on GPUs
Geometric Optimization
on GPUs

What is Geometric 
Optimization?
What is Geometric 
Optimization?

• Computing statistical measures and 
approximate representations to 
geometric data
– given a set of points, what is its diameter?
– given a collection of triangles, find the 

smallest enclosing OBB?
– given two intersecting convex polytopes, 

find the smallest translation vector of one 
to separate them – penetration depth?

– given a collection of 2D shapes, pack them 
into smallest axis-aligned rectangle –
polygon compaction?

Geometric  
Optimization
Geometric  
Optimization
• Solving exactly is computationally 

expensive
– best fit OBB: O(n3)
– each problem needs specialized solution

• Still interesting from a streaming 
point of view
– can we design algorithms that are efficient, 

yet provably approximate?

• Can GPUs be used to solve these 
problems?

Problem CharacteristicsProblem Characteristics

• Objective functions are (piecewise) 
algebraic
– mostly linear

• Can be formulated as
– lower/upper envelopes
– overlay of multiple envelopes

• Hardware provides unified solutions to 
most of these problems
– provably approximate solutions
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Point-Hyperplane DualityPoint-Hyperplane Duality
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• Points in primal map to lines in dual
– and vice versa

• Convex hull of points in primal 
– upper and lower envelope in dual

• Direction vector in primal
– maps to point in the dual domain
– central projection

Central ProjectionCentral Projection

u

u’

Gaussian
sphere

z = 1

Bounded DualBounded Dual

u
u’

Gaussian
sphere

• Cover space of directions with bounded
cube
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3D Diameter3D Diameter

• Diameter pair realized in the convex 
hull

• Dualize all the points
– RGB space encodes point coordinates

• Upper and lower envelope determines 
antipodal pairs

• Two rendering passes to determine 
diameter

• Frame buffer resolution decides 
approximation factor

List of Problems SolvedList of Problems Solved

• Extent measures
– 2D and 3D Width and Diameter
– 2D and 3D Oriented Bounding Box
– 1-Median, 1-Center and Closest pair

• Shape Matching/Fitting
– Hausdorff and Summed-Hausdorff metrics 

under translation
– best-fit line and circle

• Layered Manufacturing
• Path Planning (translation and rotation)

Penetration DepthPenetration Depth

• Given two objects A and B, find 
smallest translation vector t such that 
(A + t) is disjoint from B

• Equivalent to minimum distance from 
origin to (A © -B), the Minkowski sum

• Minkowski sum 
– quadratic complexity even for convex 

objects

Minkowski SumMinkowski Sum

M = A © B = {a+b | a 2 A and b 2 B}

© =
A

B

M
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Penetration DepthPenetration Depth
t

A

B

PD for Convex ObjectsPD for Convex Objects

• Convex objects are closed under 
Minkowski sums 

• Let M = A © -B

• Dualize all vertices of A and B
• Two observations

– lower envelope of M’s dual is sum of lower 
envelopes of A and B’s dual

– min. dist. from point p to M = min. dist. 
from p to all planes tangential to M

PD AlgorithmPD Algorithm

• Compute lower and upper envelope 
of dual planes to A and –B

• Sum corresponding envelopes
• Compute minimum
• Location of minimum in dual gives 

translation vector

PD ResultsPD Results

Original Position After Separation



18

PD ResultsPD Results

Original Position After Separation

DiscussionDiscussion

• Problem reformulation can lead to 
pipelined, streaming algorithms

• For many applications, back-end fast
geometric computations are needed

• Resulting algorithms are very 
efficient 
– comparable, if not faster than 

sophisticated software techniques

• Current techniques restricted to 2D 
and 3D

Pipelined Streaming: 
Conclusions
Pipelined Streaming: 
Conclusions

• Stream architectures
– alternate model for high-performance 

computing
– GPU is readily accessible, easy-to-use 

platform for working with streams
• numerous applications with demonstrable 

performance gain

– strictly weaker than general streaming
• probably stronger than circuit models

Open IssuesOpen Issues

• Can we extend standard theoretical 
model of streaming to this somewhat 
restricted notion?
– implications of multi-pass potential?

• What are limitation of stream 
architectures?
– problems that can/cannot be addressed in 

this framework
• Issues of programming language 

design, compilers, OS and hardware 
design
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Questions?Questions?

Contact

krishnas@research.att.com


