
1

Streaming Geometric
Computations on the GPU

Streaming Geometric
Computations on the GPU

Shankar Krishnan
AT&T Labs - Research

Two Converging
Trends in Computing …
Two Converging
Trends in Computing …

• The accelerated development of
graphics cards
– developing faster than CPUs
– GPUs are cheap and ubiquitous

• Increasing need for streaming
computations
– original motivation from dealing with large

data sets
– also interesting for multimedia applications,

image processing, visualization etc.

What is a Stream?What is a Stream?

• An ordered list of data items
• Each data item has the same type

– like a tuple or record

• Length of stream is potentially very
large

• Examples
– data records in database applications
– vertex information in computer graphics
– points, lines etc. in computational

geometry

Streaming ModelStreaming Model

• Input presented as a sequence
• Algorithm works in a single pass

– allowed one sequential scan over input
– not permitted to move backwards mid-scan

• Workspace
– typically o(n)
– arbitrary computation allowed

• Algorithm efficiency
– size of workspace and computation time

2

Streaming: Data driven
to Performance driven
Streaming: Data driven
to Performance driven

• Primary motivation is computing over
transient data (data driven)
– data over a network, sensor data, router

data etc.

• Computing over large, disk-resident
data which are expensive to access
(data and performance driven)

• To improve algorithm performance

How does streaming help performance?

Von Neumann
Bottleneck
Von Neumann
Bottleneck

Cache

ALU

Control
Unit

Instructions

Data

Memory
CPU

Bus

Von Neumann
Bottleneck
Von Neumann
Bottleneck

• Memory bottleneck
– CPU processing faster than memory

bandwidth
– discrepancy getting worse
– large caches and sophisticated prefetching

strategies alleviate bottleneck to some
extent

– caches occupy large portions of real estate
in modern ship design

Cache Real EstateCache Real Estate

Die photograph
of the Intel/HP
IA-64 processor
(Itanium2 chip)

L3 Cache
Array L3 Cache

Array

L
3

 C
a
ch

e
 A

rr
a
y

3

• Unacceptable for computationally
intensive applications

Von Neumann
Bottleneck
Von Neumann
Bottleneck

• Memory bottleneck
– CPU processing faster than memory

bandwidth
– discrepancy getting worse
– large caches and sophisticated prefetching

strategies alleviate bottleneck to some
extent

– caches occupy large portions of real estate
in modern ship design

Proposed SolutionsProposed Solutions

• Systolic Arrays (Kung-Leiserson ’78)
– computational units arranged in specific

topology (like grid or line)
– data flows from one computational unit to

its neighbors

.2 4 1

output

Proposed SolutionsProposed Solutions

• Systolic Arrays (Kung-Leiserson ’78)
– computational units arranged in specific

topology (like grid or line)
– data flows from one computational unit to

its neighbors
– early graphics processor design based on

systolic arrays

Proposed SolutionsProposed Solutions

• Systolic Arrays (Kung-Leiserson ’78)
• SIMD Architectures

– single set of instructions executed by
different processors

– multiple data streams fed to each
processing unit

• Vector architectures
– vector registers and vector processing units

improve bandwidth

4

Stream ArchitecturesStream Architectures

• All input in the form of streams
• Stream processed by a specialized

computational unit called kernel
• Kernel performs the same operations

on each stream element

kernelkernel
kernelkernel

kernelkernel

Data

Stream

Stream ArchitecturesStream Architectures

• Items processed in a FIFO fashion
• Reduced memory latency and cache

requirements
• Simplified control flow
• Data-level parallelism
• Greater computational efficiency
• Examples

– CHEOPS [Rixner et. al. ’98] and Imagine
[Kapasi et. al. ’02]

– high performance media applications

Graphics Pipeline:
Rendering View
Graphics Pipeline:
Rendering View

Pixel
Operations

Pixel
Operations

Primitive
Operations
Primitive

Operations
Display ListDisplay List

CommandsCommands

Imaging DataImaging Data

Texture MemoryTexture Memory

Frame BufferFrame Buffer

RasterizationRasterization

Per-Fragment
Operations

Per-Fragment
Operations

Geometry
Engine

Host

Raster
Manager

Graphics Hardware
Pipeline
Graphics Hardware
Pipeline

Vertex Connectivity

Vertices
Transformed

Vertices
Fragments

Pixel
Updates

Pixel
Positions

Colored
Fragments

Vertex
Transformation

Primitive
Assembly and
Rasterization

Fragment
Texturing and

Coloring

Raster
Operations

Courtesy: The Cg Tutorial [Fernando and Kilgard]

5

Programmable
Graphics Pipeline
Programmable
Graphics Pipeline

Vertex
Index

Stream

3D API
Commands

Assembled
Primitives

Pixel
Updates

Pixel
Location
Stream

Programmable
Fragment
Processor

Programmable
Fragment
Processor

T
ra

n
sf

o
rm

ed
V
er

ti
ce

s

Programmable
Vertex

Processor

Programmable
Vertex

Processor

GPU
Front End

GPU
Front End

Primitive
Assembly

Primitive
Assembly

Frame
Buffer

Frame
Buffer

Raster
Operations

Rasterization
and

Interpolation

3D API:
OpenGL or
Direct3D

3D API:
OpenGL or
Direct3D

3D
Application

Or Game

3D
Application

Or Game

Pre-tran
sfo

rm
ed

V
ertices

Pre-tran
sfo

rm
ed

Frag
m

en
ts

T
ra

n
sf

o
rm

ed
Fr

ag
m

en
ts

G
PU

C
om

m
an

d
 &

D
ata S

tream

CPU-GPU Boundary

Courtesy: Cg Book [Fernando and Kilgard]

GPU: A Streaming
Pipelined Architecture
GPU: A Streaming
Pipelined Architecture
• Inputs presented in streaming fashion

– processed data items pass to next phase
(1D systolic array?) and does not return

• Data-level parallelism
• Limited local storage

– data items essentially carry their own state

• Pipelining: each item processed
identically

• Not quite general purpose yet, but
getting there

Standard Streaming
Model
Standard Streaming
Model

• What’s the difference?
– local memory (constant vs. polylog n)
– pipelining restriction
– multi-pass potential

Stream Algorithm
Memory

5 3
8

1

1
3

5
8

GPU CapabilitiesGPU Capabilities

• Large instruction set for general
purpose scalar and vector arithmetic

• General purpose memory access
through textures

• Limited pointer indirection through
dependent textures

• High level language support
– Cg, HLSL

6

Diverse ApplicationsDiverse Applications

• Visibility, shadow computation
• Occlusion culling
• Motion planning, collision detection
• Physically-based modeling
• Image processing, FFT, wavelet

analysis
• Radiosity, radiance, ray tracing
• Linear algebra, differential equations
• Computational geometry, solid

modeling
• A lot more …

Streaming Geometric
Computations on the GPU

Streaming Geometric
Computations on the GPU

Shankar Krishnan
AT&T Labs - Research

Geometric Algorithms
in Hardware
Geometric Algorithms
in Hardware

• Large speedups
• Circumvent problems of geometric

complexity
• For some problems, CPU-bound

solutions are hard
• Can handle other geometric settings

(dynamic/kinetic)

Use computational power of the GPU
to implement geometric algorithms

Issues of ErrorIssues of Error

• Geometric input is continuous
• Computation and output are on

finite-precision grid
• Error determined by grid resolution

and rasterization process
• Approximation algorithms

7

Example:
Voronoi Diagrams
Example:
Voronoi Diagrams

Hoff et. al.
Siggraph 99

CSG Rendering on GPUsCSG Rendering on GPUs

Solid Modeling using CSGSolid Modeling using CSG

• Constructive Solid Geometry (CSG)
– way to model general solids

• Solid represented as Boolean combination
of simple primitives

A B C

Å

Solid Modeling using CSGSolid Modeling using CSG

A B C

Å

8

Solid Modeling using CSGSolid Modeling using CSG

• Constructive Solid Geometry (CSG)
– way to model general solids

• Solid represented as Boolean combination
of simple primitives

• Two possibilities to render these objects
– compute boundary representation using

sophisticated geometric algorithms
• expensive, robustness is an issue

– directly render them implicitly
• no mesh representation
• effective for quick feedback during design process

Tree NormalizationTree Normalization

• CSG expression
– general expression with unions,

intersections and differences

• Can be modified to canonical sum-of-
products form
– algorithm provided by Goldfeather et. al.

• Assumed as input in the rest of talk

Example: Bradley Fighting
Vehicle
Example: Bradley Fighting
Vehicle

Courtesy: Army Research Lab

Bradley Fighting VehicleBradley Fighting Vehicle

• Over 8000 primitive objects
– polyhedra
– ellipsoids, generalized quadrics
– tori
– surfaces of revolution

• Over 5000 CSG operations totally
– individual trees vary from 10s to 100s of

CSG operations

9

Previous WorkPrevious Work

• Goldfeather et. al. [’85, ’89]
– use of parity

• Epstein et. al. ’88, Rossignac & Wu ’92
– trickle algorithm
– depth-interval buffers

• Weigand ’95
– implementation of Goldfeather on standard

graphics pipeline

• Stewart et. al. [’98, ’00, ’02]
– improvements on Goldfeather

Parity and Depth TestParity and Depth Test

• Idea introduced by Goldfeather et. al. [’85, ’89]

• Requires n2 rendering passes to compute
intersection of n objects (single product)

Main ResultsMain Results

• Use two-sided depth test to sweep
an arrangement of objects

• Perform CSG rendering in O(n) fewer
passes (Guha et. al. – I3D ’03)
–optimal, no readbacks

• Extract arbitrary layer of a scene in
logarithmic instead of linear passes

• First known lower bound results for
algorithms on the GPU

Two-Sided Depth TestTwo-Sided Depth Test

• Conceptualized by Mammen ’89
• Implemented on current GPUs

– shadow mapping hardware [Bastos,
Everitt] on nVidia cards

– simple fragment program

• Depth peeling applications
– order-independent transparency
– opacity light field mapping [Vlasik et. al.

03]

10

Algorithm
(Single Product)
Algorithm
(Single Product)

• Compute first level of arrangement
• Determine portions of level contained

in intersection

– depthmask = FALSE, depthtest = ·

– Σ front faces – Σ back faces = n

– use two-sided stencil test

• Advance to next level using depth
peeling

ExampleExample

Algorithm:
Union of Products
Algorithm:
Union of Products

• Compute each product as before
• Merge depth and color field of current

product with that of prefix sum
– prefix depth stored in second depth texture
– two pass merge step

• Rendering passes
– single product: linear in product size

– sum of products: sum of depth complexity

Example: HelixExample: Helix

Cyl1 – (Helix1 U Helix2 U Cyl2)

11

Example: HelixExample: Helix

Cyl1 – (Helix1 U Helix2 U Cyl2)

Example: HelixExample: Helix

Cyl1 – (Helix1 U Helix2 U Cyl2)

Helix: First LayerHelix: First Layer

Layer of Arrangement Resulting Depth Field

Helix: Second LayerHelix: Second Layer

Layer of Arrangement Merged Depth Field

12

Helix: And So On …Helix: And So On …

Layer of Arrangement Merged Depth Field

Helix: And So On …Helix: And So On …

Layer of Arrangement Merged Depth Field

Helix: And So On …Helix: And So On …

Layer of Arrangement Final Depth Field

HelixHelix

Number of primitives: 4
Sum of Product Size: 3

Frame Rate: 38
Machine: 1.8 GHz PC with GeForce4

13

Bradley: 25 mm GunBradley: 25 mm Gun

primitives: 64
SOP Size: 15

Frame Rate: 14

Bradley: IdlerwheelBradley: Idlerwheel

primitives: 51
SOP Size: 10

Frame Rate: 12

Bradley: DrivewheelBradley: Drivewheel

primitives: 72
SOP Size: 30

Frame Rate: 2

DiscussionDiscussion

• Two-sided depth test
–Novel algorithm for rendering CSG trees

of general (but simple) closed shapes
• optimal with respect to methods based on

parity/counting

–Arbitrary layer extraction from a scene
• O(log n) rendering passes
• planning under infeasible constraints
• geometric optimization problems

14

Geometric Optimization
on GPUs
Geometric Optimization
on GPUs

What is Geometric
Optimization?
What is Geometric
Optimization?

• Computing statistical measures and
approximate representations to
geometric data
– given a set of points, what is its diameter?
– given a collection of triangles, find the

smallest enclosing OBB?
– given two intersecting convex polytopes,

find the smallest translation vector of one
to separate them – penetration depth?

– given a collection of 2D shapes, pack them
into smallest axis-aligned rectangle –
polygon compaction?

Geometric
Optimization
Geometric
Optimization
• Solving exactly is computationally

expensive
– best fit OBB: O(n3)
– each problem needs specialized solution

• Still interesting from a streaming
point of view
– can we design algorithms that are efficient,

yet provably approximate?

• Can GPUs be used to solve these
problems?

Problem CharacteristicsProblem Characteristics

• Objective functions are (piecewise)
algebraic
– mostly linear

• Can be formulated as
– lower/upper envelopes
– overlay of multiple envelopes

• Hardware provides unified solutions to
most of these problems
– provably approximate solutions

15

Point-Hyperplane DualityPoint-Hyperplane Duality

u

u’

(a,b)

y=ax+b

Primal plane Dual plane

D
ir
ec

ti
on

al
 w

id
th

DualityDuality

• Points in primal map to lines in dual
– and vice versa

• Convex hull of points in primal
– upper and lower envelope in dual

• Direction vector in primal
– maps to point in the dual domain
– central projection

Central ProjectionCentral Projection

u

u’

Gaussian
sphere

z = 1

Bounded DualBounded Dual

u
u’

Gaussian
sphere

• Cover space of directions with bounded
cube

16

3D Diameter3D Diameter

• Diameter pair realized in the convex
hull

• Dualize all the points
– RGB space encodes point coordinates

• Upper and lower envelope determines
antipodal pairs

• Two rendering passes to determine
diameter

• Frame buffer resolution decides
approximation factor

List of Problems SolvedList of Problems Solved

• Extent measures
– 2D and 3D Width and Diameter
– 2D and 3D Oriented Bounding Box
– 1-Median, 1-Center and Closest pair

• Shape Matching/Fitting
– Hausdorff and Summed-Hausdorff metrics

under translation
– best-fit line and circle

• Layered Manufacturing
• Path Planning (translation and rotation)

Penetration DepthPenetration Depth

• Given two objects A and B, find
smallest translation vector t such that
(A + t) is disjoint from B

• Equivalent to minimum distance from
origin to (A © -B), the Minkowski sum

• Minkowski sum
– quadratic complexity even for convex

objects

Minkowski SumMinkowski Sum

M = A © B = {a+b | a 2 A and b 2 B}

© =
A

B

M

17

Penetration DepthPenetration Depth
t

A

B

PD for Convex ObjectsPD for Convex Objects

• Convex objects are closed under
Minkowski sums

• Let M = A © -B

• Dualize all vertices of A and B
• Two observations

– lower envelope of M’s dual is sum of lower
envelopes of A and B’s dual

– min. dist. from point p to M = min. dist.
from p to all planes tangential to M

PD AlgorithmPD Algorithm

• Compute lower and upper envelope
of dual planes to A and –B

• Sum corresponding envelopes
• Compute minimum
• Location of minimum in dual gives

translation vector

PD ResultsPD Results

Original Position After Separation

18

PD ResultsPD Results

Original Position After Separation

DiscussionDiscussion

• Problem reformulation can lead to
pipelined, streaming algorithms

• For many applications, back-end fast
geometric computations are needed

• Resulting algorithms are very
efficient
– comparable, if not faster than

sophisticated software techniques

• Current techniques restricted to 2D
and 3D

Pipelined Streaming:
Conclusions
Pipelined Streaming:
Conclusions

• Stream architectures
– alternate model for high-performance

computing
– GPU is readily accessible, easy-to-use

platform for working with streams
• numerous applications with demonstrable

performance gain

– strictly weaker than general streaming
• probably stronger than circuit models

Open IssuesOpen Issues

• Can we extend standard theoretical
model of streaming to this somewhat
restricted notion?
– implications of multi-pass potential?

• What are limitation of stream
architectures?
– problems that can/cannot be addressed in

this framework
• Issues of programming language

design, compilers, OS and hardware
design

19

Questions?Questions?

Contact

krishnas@research.att.com

