

Two Converging SIGGRAPH 2003 Trends in Computing ...

0

- The accelerated development of graphics cards
 - developing faster than CPUs
 - GPUs are cheap and ubiquitous
- Increasing need for streaming computations
 - original motivation from dealing with large data sets
 - also interesting for multimedia applications, image processing, visualization etc.

What is a Stream?

- An ordered list of data items
- Each data item has the same type - like a tuple or record
- Length of stream is potentially very large
- Examples
 - data records in database applications
 - vertex information in computer graphics
 - points, lines etc. in computational geometry

\bigcirc **Streaming Model** SIGGRAPH 2003 Input presented as a sequence Algorithm works in a single pass - allowed one sequential scan over input - not permitted to move backwards mid-scan Workspace - typically o(n) - arbitrary computation allowed Algorithm efficiency - size of workspace and computation time

- data which are expensive to access (data and performance driven)
- To improve algorithm performance

How does streaming help performance?

Von Neumann Bottleneck

- Memory bottleneck
 - CPU processing faster than memory bandwidth
 - discrepancy getting worse
 - large caches and sophisticated prefetching strategies alleviate bottleneck to some extent
 - caches occupy large portions of real estate in modern ship design

Von Neumann Bottleneck

 \bigcirc

SIGGRAPH 2003

Memory bottleneck

- CPU processing faster than memory bandwidth
- discrepancy getting worse
- large caches and sophisticated prefetching strategies alleviate bottleneck to some extent
- caches occupy large portions of real estate in modern ship design
- Unacceptable for computationally intensive applications

Proposed Solutions

- computational units arranged in specific topology (like grid or line)
- data flows from one computational unit to its neighbors
- early graphics processor design based on systolic arrays

Diverse Applications

- Visibility, shadow computation
- Occlusion culling
- Motion planning, collision detection

0

SIGGRAPH 2003

0

SIGGRAPH 2003

- Physically-based modeling
- Image processing, FFT, wavelet analysis
- Radiosity, radiance, ray tracing
- Linear algebra, differential equations
- Computational geometry, solid modeling
- A lot more ...

Streaming Geometric Computations on the GPU

SIGGRAPH 2003

Shankar Krishnan AT&T Labs - Research

Geometric Algorithms in Hardware

Use computational power of the GPU to implement geometric algorithms

- Large speedups
- Circumvent problems of geometric complexity
- For some problems, CPU-bound solutions are hard
- Can handle other geometric settings (dynamic/kinetic)

Issues of ErrorGeometric input is continuous Computation and output are on finite-precision grid Error determined by grid resolution and rasterization process Approximation algorithms

- CSG expression
 - general expression with unions, intersections and differences
- Can be modified to canonical sum-ofproducts form
 - algorithm provided by Goldfeather et. al.

0

SIGGRAPH 2003

Assumed as input in the rest of talk

Main Results

- Use two-sided depth test to sweep an arrangement of objects
- Perform CSG rendering in O(n) fewer passes (Guha et. al. – I3D '03)
 – optimal, no readbacks
- Extract arbitrary layer of a scene in *logarithmic* instead of *linear* passes
- First known lower bound results for algorithms on the GPU

Algorithm: Union of Products

- Compute each product as before
- Merge depth and color field of current product with that of prefix sum
 - prefix depth stored in second depth texture
- two pass merge step
- Rendering passes
 - single product: linear in product size
 - sum of products: sum of depth complexity

What is Geometric Optimization?

- Computing statistical measures and approximate representations to geometric data
 - given a set of points, what is its diameter?
 given a collection of triangles, find the

0

SIGGRAPH 2003

- smallest enclosing OBB?
- given two intersecting convex polytopes, find the smallest translation vector of one to separate them – penetration depth?
- given a collection of 2D shapes, pack them into smallest axis-aligned rectangle – polygon compaction?

Geometric Optimization

- Solving exactly is computationally expensive
 - best fit OBB: O(n³)
 - each problem needs specialized solution
- Still interesting from a streaming point of view
 - can we design algorithms that are efficient, yet provably approximate?
- Can GPUs be used to solve these problems?

Problem Characteristics Objective functions are (piecewise) algebraic mostly linear

- Can be formulated as
 - lower/upper envelopes
 - overlay of multiple envelopes
- Hardware provides unified solutions to most of these problems
 - provably approximate solutions

3D Diameter

- Diameter pair realized in the convex hull
- Dualize all the points – RGB space encodes point coordinates
- Upper and lower envelope determines antipodal pairs
- Two rendering passes to determine diameter
- Frame buffer resolution decides approximation factor

List of Problems Solved

Extent measures

- 2D and 3D Width and Diameter
- 2D and 3D Oriented Bounding Box
- 1-Median, 1-Center and Closest pair
- Shape Matching/Fitting
- Hausdorff and Summed-Hausdorff metrics under translation
- best-fit line and circle
- Layered Manufacturing
- Path Planning (translation and rotation)

Penetration Depth

- Given two objects A and B, find smallest translation vector *t* such that (A + *t*) is disjoint from B
- Equivalent to minimum distance from origin to (A © -B), the Minkowski sum
- Minkowski sum
 - quadratic complexity even for convex objects

PD Algorithm

- Compute lower and upper envelope of dual planes to A and –B
- Sum corresponding envelopes
- Compute minimum
- Location of minimum in dual gives translation vector

Pipelined Streaming: Conclusions

- Stream architectures
 - alternate model for high-performance computing
 - GPU is readily accessible, easy-to-use platform for working with streams
 - numerous applications with demonstrable performance gain
 - strictly weaker than general streaming
 probably stronger than circuit models

