

- Interactive Walkthrough of *complex 3D* environments at *high fidelity*
 - Models from CAD, VR
 - High primitive count
 - Heterogeneous geometry
 - Irregular distribution

Commodity Hardware Performance

- Current GPUs have capabilities to render millions of polygons per second
- Require vertex arrays, triangle stripping to achieve these rates
- Issues
 - Large polygon count
 - Memory limitations
- Solution Reduce polygon count

- · An algorithm that works on generic models
- · Image-based culling algorithms
- Current approaches involve frame buffer readbacks [Greene et al. 93, Zhang et al. 97, Baxter et al. 02]

Frame Buffer Readbacks

- GPU growth rate is higher than Moore's law
- Bandwidth growth rate lower than Moore's law
 - Result Frame buffer readbacks are expensive
 - Also readbacks result in graphics pipeline stalls
- Require a solution that
 - Leverages high GPU power
 - Avoids frame buffer readbacks

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

- Parallel algorithm using mulitple GPUs
- · Interactive walkthroughs
- Interactive shadow generation

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

- Parallel image-based culling algorithm
- A novel switching mechanism to eliminate frame-buffer readbacks
- Exploits temporal coherence
 - Occluder selection
 - Lower bandwidth requirements
- Integrates with hierarchical LODs

- Three processes in parallel
 - 1. Occlusion Representation (OR)
 - 2. Hardware Culling (HC)
 - 3. Render Visible Geometry (RVG)

Timing/Data Flow		
HC GPU ₁ Hardware Cull for Frame <i>i</i> OR PVS Render Occluders		
GPU2		
Frame i	The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL	

Timing/Data Flow	
HC GPU, Hardware Cull for Frame <i>i</i> Cam <i>i</i> +1 OR GPU ₂ Render Occluders for Frame <i>i</i> +1	
Frame <i>i</i>	The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

- Pixel Error Metric: Max normal deviation of silhouette in image
- Traverse down scene graph till error satisfied
- Upper Bound: Highly conservative

- Underlying algorithm used for occlusion culling is conservative to image precision
- Exactly same set of LODs is used for both $\ensuremath{\mathsf{OR}}$ and $\ensuremath{\mathsf{HC}}$ stages

Recent Work: Use Single GPU for 3 Processes

- Use vertex arrays
- Perform OR, HC and RVG on the GPU
- Improved support for occlusion queries
- · Lower performance as compared to 3 GPUbased solution
- Fewer latency problems

[July 2003]

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

🚮 Live Demo

Dell M50 laptop, 2.4GHz Pentium IV-M CPU, NVIDIA Quadro4 700GoGL GPU, 1GB memory running Windows XP: Vertex arrays

Powerplant model (13M triangles)

- Use of static LODs leads to popping artifacts
- · Compute a view-dependent simplification
 - Precompute a vertex and cluster hierarchy
 - Runtime: perform occlusion culling using cluster hierarchy
 - Runtime: use the vertex hierarchy to compute the view-dependent simplification

R View-Dependent Rendering

- · Use of static LODs leads to popping artifacts
- Compute a view-dependent simplification
- Precompute a vertex and cluster hierarchy
 - Runtime: perform occlusion culling using cluster hierarchy
- Runtime: use the vertex hierarchy to compute the view-dependent simplification

1 Interactive Shadows

Portions of scene that are occluded from light

Madows: Importance

- Realism
 - Real world scenes have shadows
- Provide a sense of depth to the user
 - Better navigation
 - Enhance user experience in interactive games, VR applications

Utilize multiple GPUs to improve performance

Conclusions

- Interactive display and shadows
- Massive models
- Use multiple GPUs for visibility computations
- Application to complex models

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

