C

7ZVIDIA.

Implementing a GPU-Efficient FFT

John Spitzer

Why Fast Fourier Transform?

. “Classic” algorithm
- Computationally intensive

« Useful
- Imaging
- Signal analysis
< Procedural texturing

NVIDIA Corporation <
BVIDIA.
What is a FFT? Discrete Forms for Series of Samples
S 5 VAN ANYA - S 5
- Fourier transform ? .E.H « Discrete Fourier transform
. Transforn'.l function 02 o ‘u" - OH, = _ SN hy e2miknn
from spatial- to frequency- . LU
domain . .
r e I - Inverse discrete Fourier transform
SH(f) =) h(t)ezmiftdt)
) » hk =1/N "=OZN'1 H" e2mikn/N
< Inverse Fourier transform £
: h(t)=_J H(f) e 2mitt gf I ,Oj, 05 1 15 2 25 3 35 4 45
2
< <
AVIDIA. HVIDIA.

Solving Fourier Transforms

< As matrix equation:
- N-1 k
; |:|n_k=oz W™ h,
“H=W-h
- O(N?) operations

- Recursive (Fast Fourier Transform):

- N-1 orrijkiN
OF = 2" "e f

Fast Fourier Transform Implementations

- [Numerical Recipes in C]
- Loop over elements for bit-reversal

- Loop log N times to recombine
neighbors

- Weights are computed iteratively

~ Fastest Fourier Transform in the West

- http://fftw.org
- Optimized for current CPU
architectures

=it WEFS Adapts itself t t CPU cach
- - apts Itselr to curren cache
< O(N log N) operations CC_:’)_ sizersJ CC_‘,‘{.
BVIDIA. BYIDIA.
Application Example: SETI@home GPU FFT Feasibility
~ SETI@home Pulse Search ~ 2048 element FFT requires
- Search for dispersed pulses of intrinsically short -~ ~8 * 2048 * log(2048) = ~180 KFlops
duration, e.g., pulsars 22048 * 8 = 16KB of data
i - Computational limits for GeForceFX 5900 (NV35)
~ Computation task at hand: ~ Vertex: .450 GHz * 3 units * 4 FLOPS/vector = 5.4 GFLOPS
- Have ~2.5 years of data 2 Pixel: .450 GHz * 4 units * 12 FLOPS/unit = 21.6 GFLOPS
< Need to exz:lmir?e every ..8ms of that data Total: 27 GFLOPS
- Each exan.1|nat|on requires ~0.34 GFlops _ Theoretical times for GPU
< mostly in the form of FFTs
> ~33,507,000,000 GFlops computation - Download: 16k @ 2.0 GB/s =8 us (AGP 8X)
(fo - Computation: 180KFlop @ 27 GFLOPS = ~7 us (C"f.)-

- Needs every help it can get

HVIDIA.

< Upload: 16k @ 0.18 GB/s =90 us (PCI) MVEHM

FFT Algorithm Overview

P Pass 0: Bit Reversal

Pass 1: combine 1-neighbors

Pass 2: combine 2-neighbors

Pass log N: combine N/2-neighbors

Mapping Data-Structures to GPU

[ITTTTTT=TTTTTT] 1D texture (from AGP)

LITTITT = TTTTITT] 1D floattexture (render target)

[TTTTTT=TTTTTT] 1D floattexture (render target)

[TITTTT—=TIIJITT] 1D floattexture (render target)

[TTTTTT-—TTTTTT] 1D float texture (render target
to be read back to system memory)

< <
BVIDIA. BYIDIA.
GPU Algorithm Overview GPU Algorithm Overview (cont.)
- Download FFT data to GPU as a 1D texture - Log N combination passes
< 2k by 1 texels big < Fragment(x) = tex(index0(x)) +
w(index1(x)) * tex(index1(x))
<" Render quad into float texture render-target - w(), index0(), and index1() are textures
< Quad is 2k pixels wide and 1 pixel high - Different for every pass
< Use x pixel position to index texture = Pre-computed
_ Bit-Reversal done as: - Read final render-target back into system memory
- Pass address of pixel as texture coordinate
- Fragment(x) = tex(bitreversal(x))
- Bitreversal() is simply texture look-up @i @ﬂ
BVIDIA. BVIDIA.

Red Flags for GPU Performance

- 1+ log N passes
- All data stays on GPU (good)
< Per-vertex computations trivial (good)
< Lots of API calls for CPU to instruct GPU what to do
< GPU has to finish each pass before next one starts

< Only 1D textures
- GPUs highly optimized for 2D textures

- Complex number computations
- Complex numbers are 2D

Batching Many FFT Transforms

- Download 2D texture of coefficients
- Compute hundreds of FFTs per pass
- Cuts driver calls by hundreds of times
< Fully utilizes multi-pipe fragment processing hardware

- Basically uses the same fragment programs
- Only differ in needing a 2" texture coordinate

bers are < <
- But hardware is optimized for 4-vectors il T
BVIDIA. BYIDIA.
Using Vector Operations Real World Performance
- Store 2 complex numbers per texture -~ CPU
< (t0.r, t0.g) is first number < FFTW algorithm
- (t0.b, t0.a) is second number < 3.0 GHz Intel Pentium 4
- 2048 FFT takes 12 us
. Store 4 complex numbers in 2 textures ~1.5 GLOPS
- (t0.r, t0.g, t0.b, t0.a) are real parts
- (t1.r, t1.g, t1.b, t1.a) are imaginary parts - GPU
- Code is more symmetric 2 Algorithm outlined here
- But more temporaries are used 2 NVIDIA GeForceFX 5900 Ultra (NV35 @ 450 MHz)
- ~ 2048 FFT takes 16 us (32 us with readback over PC)). .
< >1.1 GLOPS (.6 GFLOPS with readback) =]
BVIDIA. BVIDIA.

Optimization Possibilities

- Range and precision of computation and results
- Is 16-bit floating point sufficient for registers?
- Conversion to lower precision has double benefit:
- Faster to compute
- Faster to transfer back to CPU
- If range and precision of input is limited
- Don’t compute results, but rather...
- Replace N passes with table look-up
- Tap into over 5 GLOPS of unused vertex processing

RVIDIA.

Conclusions

- GPU useful now as co-processor to CPU

- Keep the faith!

< Faster access to (and particularly from) graphics
subsystem is critical, but coming soon

< GPU parallelism outstripping that of CPUs

- GPUs will continue to enjoy an advantage over CPUs
in dedicated memory bandwidth

<

RVIDIA.

Future Work

- Integrate more of the Pulse Search problem

- Straightforward power computations and
thresholding after FFT

- Thresholding translates to rejecting a fragment
- Potentially saves memory bandwidth

< Use occlusion queries to determine if read-back is
unnecessary

<

HVIDIA.

Thanks to...

- Dinesh Manocha for organizing this course
< Matthias Wloka for preparing this material

- Jeremy Zelsnack for implementing the GPU FFT

<

BVIDIA.

Questions, Comments, Feedback?

- John Spitzer, spit@nvidia.com

< http://developer.nvidia.com

<

RVIDIA.

