
1

Implementing a GPU-Efficient FFTImplementing a GPU-Efficient FFT

John Spitzer
NVIDIA Corporation

Why Fast Fourier Transform?

“Classic” algorithm

Computationally intensive

Useful
Imaging
Signal analysis
Procedural texturing

What is a FFT?

Fourier transform
Transform function
from spatial- to frequency-
domain

H(f) = -∞∫
∞
h(t) e2π i f t dt

Inverse Fourier transform

h(t) = -∞∫
∞
H(f) e-2π i f t df

-1

-0.5

0

0.5

1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

t

si
n(

t)

-1

-0.5

0

0.5

1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

f/2

FT
si

n(
f)

Discrete Forms for Series of Samples

Discrete Fourier transform

Hn =
k=0
∑N-1 hk e2π i k n/N

Inverse discrete Fourier transform

hk = 1/N
n=0
∑N-1 Hn e-2π i k n/N

2

Solving Fourier Transforms

As matrix equation:

Hn =
k=0
∑N-1 Wnk hk

Ĥ = W·ĥ
O(N2) operations

Recursive (Fast Fourier Transform):

Fk =
j=0
∑N-1 e2π i j k/N fj

= Fk
e + Wk Fk

o

O(N log N) operations

Fast Fourier Transform Implementations

[Numerical Recipes in C]
Loop over elements for bit-reversal
Loop log N times to recombine
neighbors
Weights are computed iteratively

Fastest Fourier Transform in the West
http://fftw.org
Optimized for current CPU
architectures
Adapts itself to current CPU cache
sizes

Application Example: SETI@home

SETI@home Pulse Search
Search for dispersed pulses of intrinsically short
duration, e.g., pulsars

Computation task at hand:
Have ~2.5 years of data
Need to examine every .8ms of that data
Each examination requires ~0.34 GFlops

mostly in the form of FFTs
~33,507,000,000 ~33,507,000,000 GFlopsGFlops computationcomputation

Needs every help it can get

GPU FFT Feasibility

2048 element FFT requires
~8 * 2048 * log(2048) = ~180 KFlops
2048 * 8 = 16KB of data

Computational limits for GeForceFX 5900 (NV35)
Vertex: .450 GHz * 3 units * 4 FLOPS/vector = 5.4 GFLOPS
Pixel: .450 GHz * 4 units * 12 FLOPS/unit = 21.6 GFLOPS
Total: 27 GFLOPS

Theoretical times for GPU
Download: 16k @ 2.0 GB/s = 8 us (AGP 8X)
Computation: 180KFlop @ 27 GFLOPS = ~7 us
Upload: 16k @ 0.18 GB/s = 90 us (PCI)

3

FFT Algorithm Overview

Pass 0: Bit Reversal

Pass 1: combine 1-neighbors

Pass 2: combine 2Pass 2: combine 2--neighborsneighbors

Pass log N: combine N/2Pass log N: combine N/2--neighborsneighbors

Mapping Data-Structures to GPU

1D texture (from AGP)

1D float texture (render target)

1D float texture (render target)

1D float texture (render target)

1D float texture (render target
to be read back to system memory)

GPU Algorithm Overview

Download FFT data to GPU as a 1D texture
2k by 1 texels big

Render quad into float texture render-target
Quad is 2k pixels wide and 1 pixel high
Use x pixel position to index texture

Bit-Reversal done as:
Pass address of pixel as texture coordinate
Fragment(x) = tex(bitreversal(x))
Bitreversal() is simply texture look-up

GPU Algorithm Overview (cont.)

Log N combination passes
Fragment(x) = tex(index0(x)) +

w(index1(x)) * tex(index1(x))
w(), index0(), and index1() are textures

Different for every pass
Pre-computed

Read final render-target back into system memory

4

Red Flags for GPU Performance

1 + log N passes
All data stays on GPU (good)
Per-vertex computations trivial (good)
Lots of API calls for CPU to instruct GPU what to do
GPU has to finish each pass before next one starts

Only 1D textures
GPUs highly optimized for 2D textures

Complex number computations
Complex numbers are 2D
But hardware is optimized for 4-vectors

Batching Many FFT Transforms

Download 2D texture of coefficients
Compute hundreds of FFTs per pass
Cuts driver calls by hundreds of times
Fully utilizes multi-pipe fragment processing hardware

Basically uses the same fragment programs
Only differ in needing a 2nd texture coordinate

Using Vector Operations

Store 2 complex numbers per texture
(t0.r, t0.g) is first number
(t0.b, t0.a) is second number

Store 4 complex numbers in 2 textures
(t0.r, t0.g, t0.b, t0.a) are real parts
(t1.r, t1.g, t1.b, t1.a) are imaginary parts
Code is more symmetric
But more temporaries are used

Real World Performance

CPU
FFTW algorithm
3.0 GHz Intel Pentium 4
2048 FFT takes 12 us
1.5 GLOPS

GPU
Algorithm outlined here
NVIDIA GeForceFX 5900 Ultra (NV35 @ 450 MHz)
2048 FFT takes 16 us (32 us with readback over PCI)
1.1 GLOPS (.6 GFLOPS with readback)

5

Optimization Possibilities

Range and precision of computation and results
Is 16-bit floating point sufficient for registers?
Conversion to lower precision has double benefit:

Faster to compute
Faster to transfer back to CPU

If range and precision of input is limited
Don’t compute results, but rather…
Replace N passes with table look-up

Tap into over 5 GLOPS of unused vertex processing

Conclusions

GPU useful now as co-processor to CPU

Keep the faith!
Faster access to (and particularly from) graphics
subsystem is critical, but coming soon
GPU parallelism outstripping that of CPUs
GPUs will continue to enjoy an advantage over CPUs
in dedicated memory bandwidth

Future Work

Integrate more of the Pulse Search problem

Straightforward power computations and
thresholding after FFT

Thresholding translates to rejecting a fragment
Potentially saves memory bandwidth
Use occlusion queries to determine if read-back is
unnecessary

Thanks to...

Dinesh Manocha for organizing this course

Matthias Wloka for preparing this material

Jeremy Zelsnack for implementing the GPU FFT

6

Questions, Comments, Feedback?

John Spitzer, spit@nvidia.com

http://developer.nvidia.com

