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Abstract

We present an efficient and accurate algorithm for self-collision detection in deformable models. Our approach can perform
discrete and continuous collision queries on triangulated meshes. We present a simple and linear time algorithm to perform the
normal cone test using the unprojected 3D vertices, which reduces to a sequence point-plane classification tests. Moreover, we
present a hierarchical traversal scheme that can significantly reduce the number of normal cone tests and the memory overhead
using front-based normal cone culling. The overall algorithm can reliably detect all (self) collisions in models composed of
hundred of thousands of triangles. We observe considerable performance improvement over prior CCD algorithms.

1. Introduction

Fast and accurate collision detection is important for generating
realistic deformations. At a broad level, prior work can be classified
into discrete (DCD) methods that check for collisions at an instant
of time, and continuous (CCD) techniques that check for colliding
regions within a time interval. The latter are used to avoid missing
any collisions and to perform reliable simulations by maintaining
intersection-free meshes.

Complex mesh models composed of hundreds of thousands of
triangle primitives are frequently used in cloth or FEM simula-
tion. Collision detection is regarded as one of the major bottle-
necks in these applications and it is important to accurately check
for collisions between all the primitives [BFA02, BEB12, Wan14,
TTWM14].

Some of the commonly used algorithms use bounding volume
hierarchies (BVHs) to accelerate collision detection. These tech-
niques work well in terms of inter-object collision detection. How-
ever, self-collision checking in deformable models can be challeng-
ing as many adjacent or nearby primitives of a deforming mesh are
in close proximity and not culled by bounding volume tests. Even
if a mesh is intersection-free, checking all the primitives for self-
collisions can be expensive.

The most commonly used methods for self-collisions are based
on normal cones for DCD [VT94, Pro97, SPO10]. However, the
computational overhead of normal cone tests during BVH traversal
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Figure 1: Improved collision culling: We demonstrate the bene-
fits of our self-collision algorithm on the Funnel benchmark (64K
triangles). The three curves highlight the culling efficiencies of var-
ious algorithms. These include prior schemes that do not perform
self-collision culling (i.e. AABB-only) vs. two variants of our algo-
rithm. Our novel CCD algorithm can significantly reduce the num-
ber of false positives.

can be high. This approach has been extended to CCD [TCYM09],
but the additional cost of performing continuous normal cone
culling slows down the overall CCD algorithm due to the quadratic
complexity of the continuous contour test. Other techniques include
energy-based methods [BJ10, ZJ12] and radial-based CCD culling
for skeletal models [WLH∗13]. However, self-collision culling
continues to remains a bottleneck, especially for CCD between ar-
bitrary deformable models.

Main Results: We present a fast and accurate approach for self-
collision detection in triangulated models. Our formulation is based
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on normal cones and is applicable to DCD as well as CCD. In order
to reduce the overhead of normal cone tests during BVH traversal,
we present two novel algorithms:

1. Linear time normal cone test using unprojected contours:
We present a novel contour test algorithm that can directly per-
form the queries on the 3D vertices without computing any
projections on a plane. Our formulation reduces to performing
point-plane orientation tests on the 3D vertices. The resulting
computation is simple and accurate, and reduces to evaluating
the sign of algebraic expressions for DCD as well as CCD (Sec-
tion 3).

2. Front-based normal cone culling: We present an incremen-
tal BVH traversal algorithm that combines the normal cone test
with the BVTT (bounding volume test tree) front computation.
This reduces the hierarchy traversal overhead based on spatial
and temporal coherence, and also the memory overhead (Sec-
tion 4).

The resulting algorithms are simple to implement and can ac-
curately detect all the collisions. It has no preprocessing overhead
and can perform fast collision queries on complex benchmarks on
a single CPU core (Section 5). We observe an order of magnitude
improvement in the performance of the normal cone tests over prior
approaches. We also highlight the overall speedups in cloth simu-
lation due to our novel CCD algorithm.

2. Related Work

In this section, we give a brief overview of prior work on colli-
sion detection between deformable models. The simplest culling
algorithms use BVHs (bounding volume hierarchies) that are based
on k-DOPs or AABBs. These can be combined with self-collision
culling techniques [Pro97, MKE03, TCYM09, SPO10, ZJ12].

Low level culling: Many low-level culling techniques have been
proposed to reduce the number of elementary tests between the
triangle pairs for CCD, such as removing redundant elementary
tests [GKJ∗05,CTM08,WB06,TMT10a,TMY∗11] or using bound-
ing volumes of the primitives [HF07]. Our approach can be com-
bined with these low-level acceleration techniques.

Clustering: Many mesh decomposition and clustering strategies
have been proposed to compute tighter fitting hierarchies to im-
prove the culling efficiency. Most of these techniques are used as
a preprocess [EL01,WB14]. Schvartzman et al. [SPO10] presented
a self-collision test tree (SCTT) that is precomputed to accelerate
the self-collision queries for general deformable models. By exe-
cuting hierarchically, their cost can be reduced to O(1). Wong et
al. [WLH∗13] presented a continuous self-collision detection algo-
rithm for skeletal models and extended it to check for collisions
between a deformable surface and a simple solid model [WC14].
He et al. [HOEM15] presented a dynamic clustering algorithm for
topology changing models. Our approach can be easily combined
with these methods to obtain the fastest CCD query performance.

Reliable collision queries: Most earlier methods for DCD and
CCD are implemented using floating point computations and nu-
merical tolerances. However, numerical errors in arithmetic oper-
ations, along with the tolerances, can impact their accuracy, espe-
cially for elementary tests. Recently, many reliable algorithms have

been proposed for elementary tests based on exact arithmetic oper-
ations [BEB12, TTWM14] or conservative float-point computation
with tight bounds [Wan14,WTTM15]. It is also important to ensure
that the self-collision culling tests are reliable.

Front based traversal: BVTT (Bounding Volume Test Tree) front
tracking has been used to accelerate collision detection [LC98].
By performing tests using the BVTT front generated from the last
time step, these methods reduce the runtime overhead and make it
easier to parallelize on CPUs and GPUs [TMLT11, ZK14]. How-
ever, the memory overhead for storing the BVTT front can be high.
We combine our normal cone test with BVTT-based front to signif-
icantly reduce the time and storage complexity.

3. Unprojected Normal Cone Test

In this section, we introduce the notation and present our unpro-
jected normal cone test for self-collision culling.

3.1. Background and Notation

In this paper, we consider discrete (DCD) as well as continu-
ous collision detection (CCD) problems on models represented
as 2-manifold triangle meshes, possibly with boundaries. Our ap-
proach uses the mesh connectivity information to perform colli-
sion culling. DCD deals with checking whether any distinct trian-
gle primitives overlap at a given time instant. On the other hand,
CCD algorithms model the motion of each object or triangle using a
continuous trajectory between the successive instants of a simulator
and check for collisions along the trajectory. Our CCD culling algo-
rithm also uses linearly interpolating trajectories [Pro97, BFA02].

We use the following notation in the rest of the paper: Lower case
letters in normal fonts (e.g., a, b, ai) represent scalar variables and
upper case letters (e.g., L, J(t)) represent scalar functions. Lower
case letters in bold face fonts (e.g., a, bt) represent vector quan-
tities and points, and upper case letters in bold face fonts (e.g.,
L, J(t)) represent vector-valued functions. The operators ’∗’, ’·’,
and ’×’ denote the usual scalar multiplication, dot product, and
cross product, respectively. We use following acronyms in the rest
of the paper: PPC: stands for point-plane classification; BV, BVH,
BVTT: stand for bounding volume, bounding volume hierarchy, and
bounding volume test tree, respectively.

3.2. Normal Cone Test

Some of the widely used algorithms for self-collision detection are
based on the normal cone test [VT94]. Given a continuous sur-
face, S, bounded by a contour, C, a sufficient criterion for no self-
collision is based on the following two conditions:

1. Bounds on the normals: There is a vector, v, such that (N ·v)>
0 for every point of the surface, S, where N(S) is the normal
vector at the point S on the surface.

2. No boundary self-intersections: The projection of the contour
C along the vector v does not have any self-intersections on the
projected plane.

The first condition is called the surface normal test and the sec-
ond condition is also known as the contour test. Provot [Pro97]
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Figure 2: Normal Cone: For an input triangle mesh (a), its con-
tour edges are defined by an order list of vertices v′1,v

′
2, ...,v

′
n (the

red arrows). Its corresponding normal cone CN(α, l) contains all
the normal vectors of the triangles (b), where l is the axis, and α is
the apex angle.

presented an efficient method to evaluate the first condition based
on normal cones, which corresponds to a bound on the Gauss map
of S. The normal cone for a mesh of triangles can be computed
by combining the normal vectors of individual triangles. Given an
input normal cone CN(α, l) bounds all the normal vectors of the tri-
angles of a given triangle patch, where α is the apex angle, and l is
the middle axis of the cone (see Fig. 2). The normal cone test has
been used for DCD [Pro97,SPO10], and has been extended to CCD
by Tang et al. [TCYM09].

Complexity of Contour Tests: In practice, the contour test tends
to be more expensive as compared to surface normal test and can
take up to 60% of the running time [SPO10] for DCD computa-
tions. This test typically involves computing a projection of the
contour of S and checking for self-intersections on the resulting
plane. Recently, Schvartzman et al. [SPO10] used a line-search
star-shaped test to detect star-shaped projection, which guarantees
that there will be no self-intersections. Furthermore, they used a
pre-computed self-collision test tree (SCTT) to accelerate the com-
putation. As a result, the resulting algorithm has linear time com-
plexity in the number of contour edges. However, the projection
computations can be expensive and take up to 37% of total running
time [SPO10]. Furthermore, they are prone to floating-point errors
and can result in accuracy issues during the contour tests. Some
prior self-collision algorithms either omit the contour test computa-
tion for certain cases [VT94] or use some approximations [Pro97].
Heo et al. [HSK∗10] described an approximate scheme to avoid the
projection computation.

Continuous Queries: It is not clear whether the linear time algo-
rithm for contour test in [SPO10] extends to CCD. The resulting
formulation based on kernel tests reduces to checking for overlaps
between intervals, as opposed to line intersections for DCD. In-
stead, the only known algorithm for contour tests for CCD reduces
to performing O(n2) EE elementary tests, where n is the number
of contour edges [TCYM09]. This is based on projecting the con-
tinuously deforming edges to a plane and checking each pair for
overlap by solving a cubic equation. In such cases, the contour test
becomes a major bottleneck in the overall algorithm.

3.3. Contour Test Using Point-Plane Classification

We present a novel algorithm for the contour test that does not in-
volve any projection computations. The resulting contour test can
be performed in O(n) time for DCD as well as CCD, where n is
the number of contour edges in C. Furthermore, our algorithm only
needs to perform sign evaluation in terms of 3D point-plane side
tests, i.e. determining the orientation of a point with respect to a
plane in 3D.

We initially present our contour test for DCD, and later extend it
to CCD computations. We first describe the notion of a PPC (point-
plane classification) based contour test on a 2D projection plane,
then extend it to the unprojected 3D contour points.

(a) Star-shaped Test
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Figure 3: Star-shaped Test: The projection plane is defined by a
point p and a normal vector l. A star-shaped contour polygon in
the plane {p, l} has: (1) at least one kernel point o located inside
the half-spaces of all the contour edges; (2) any ray starting from
o along the direction r can intersect the boundary only once. Both
these conditions can be tested by computing the orientation of a
point with respect to different lines.

Given a contour, we first project the points onto a projection
plane, which is defined by a point p and a normal vector l and
represented as {p, l} (see Fig. 3 (a)). If the projected contour is
a star-shaped polygon, it guarantees no self-intersections [SPO10].
The star-shaped test is performed in two steps:

1. Kernel Test: There is at least one kernel point (e.g., point o )
located at the inside of the half-spaces of all the contour edges
(Fig. 3 (b)).

2. Intersection Test: A ray starting from the kernel point in the
direction r can intersect the boundary only once (Fig. 3 (c)).

We assume that all the contour edges are oriented in a clockwise or
counter-clockwise direction, with respect to l.

We define a scalar function Side(a,b,c, l) and a sign evaluation
function SideSign(a,b,c, l), where a,b,c are three points that lie
on the projection plane {p, l}:

Side(a,b,c, l) = ((a− c)× (b− c)) · l

c© 2017 The Author(s)
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Figure 4: Intersection Test: The two different cases (a) and (b), in
which there is an intersection between the ray {o,r} and a contour
edge {v1,v2}, can be tested by computing the orientations of points
with respect to different lines.

SideSign(a,b,c, l) =


1, Side(a,b,c, l)> 0,
−1, Side(a,b,c, l)< 0,
0, Side(a,b,c, l) = 0.

Note that the choice of p does not affect the values of Side() and
SideSign().

The kernel test on the projected plane is performed using PPC
between o and all the projected contour edges. For an edge defined
by the two vertices v1 and v2, the orientation between them is com-
puted using SideSign(o,v1,v2, l). Therefore, the kernel test can be
expressed as checking the signs of n algebraic expressions†:

SideSign(o,v1,v2, l) == SideSign(o,v2,v3, l)
== ... == SideSign(o,vn,v1, l),

where v1,v2, ...,vn are the projected vertices of the contour.

The intersection test is also performed using sign evaluations.
Let us consider the cases (a) and (b) (Figure 4), in which there is
an intersection. For both cases, v1 and v2 lie on the different sides
of the ray {o,r}, and side of o with respect to−−→v1v2 is the same side
of v2 with respect to the ray. We can check for these conditions
based on evaluating the following expressions:

SideSign(o,v1,v2, l) = SideSign(v2,o,o+ r, l) and

SideSign(v1,o,o+ r, l) 6= SideSign(v2,o,o+ r, l)

Only when both conditions are fulfilled, we count an intersection
between the ray and the contour edge. The idea behind the two
equations is that, the first equation is to ensure there is an intersec-
tion between a line (defined by o and r) and a line segment (defined
by v1 and v2). The second equation is to ensure the intersection is
on the right side of the line (i.e. on the ray).

We compute the intersection number between the ray and each
contour edge. The intersection test holds only when the intersection
number equals to 1. For the case that the intersection number is
greater than 1, the test can directly return a false answer.

† We ignore the case that SideSign(...) = 0, as the test returns an answer
of false.

Overall, the kernel test and the intersection test are reduced to
computing dot and cross products, and these tests perform PPC us-
ing SideSign() functions.

3.4. Unprojected Contour Test

The contour test for the 2D projected vertices can be extended to di-
rectly operate on the unprojected 3D contour vertices, i.e., the orig-
inal vertices of the input mesh contours. Let a′,b′,c′ be the original
(unprojected) 3D contour vertices, and a,b,c be the corresponding
projections on the projection plane {p, l}. We use the following the-
orem to perform conservative contour tests on the original vertices:

Unprojected Orientation Test Theorem: Given three 3D
points a′,b′,c′, and a projection direction l. Let their projections

Algorithm 1 UnprojectedContourTest(CN ): Perform unprojected
contour test on the boundary contour of a given normal cone CN .
Input: A normal cone CN(α, l), where α is the apex angle, and l
is the axis of the cone, and its boundary contour is defined by an
ordered list of vertices, i.e., v′1,v

′
2, ...,v

′
n.

Output: true for no self-intersection on the projected contour,
false otherwise.

1: // Prepare parameters for kernel test and intersection test.

2: o = ∑
n
1 v′i
n ; l is middle axis of input normal cone CN

3: if l parallel to vector {0,1,0} then
4: r = {1,0,0}
5: else
6: r = l×{0,1,0}
7: end if
8: // Initialize intersection number to zero.
9: intsNum = 0

10: // Get side sign at the first contour segment.
11: s0 = SideSign(o,v′1,v

′
2, l)

12: if s0 == 0 then
13: return false;
14: end if
15: // Perform kernel test and intersection test on each contour segment.
16: for each edge v′i ,v

′
i+1 do

17: // Perform side test.
18: if s0 6= SideSign(o,v′i ,v

′
i+1, l) then

19: return false;
20: end if
21: // Perform intersection test.
22: s1 = SideSign(v′i ,o,o+ r, l)
23: s2 = SideSign(v′i+1,o,o+ r, l)
24: if s1 == 0 or s2 == 0 then
25: return false; // Can’t determine the intersection.
26: end if
27: if s2 = s0 and s1 6= s2 then
28: intsNum++
29: if intsNum > 1 then
30: return false; // More than one intersection.
31: end if
32: end if
33: end for
34: return true;
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on a plane perpendicular to l be a,b,c, respectively. In this case,
SideSign(a′,b′,c′, l) = SideSign(a,b,c, l).

Proof By the definition of a,b,c, we have:

a = a′+u∗ l; b = b′+ v∗ l; c = c′+w∗ l.

where u,v,and w are three scalars. By substituting them into the
definition of Side(a,b,c, l), we obtain:

Side(a,b,c, l)
= ((a− c)× (b− c)) · l
= (((a′− c′)+(u−w)∗ l)
× ((b′− c′)+(v−w)∗ l)) · l
= ((a′− c′)× (b′− c′)) · l
= Side(a′,b′,c′, l)

Based on this theorem, the kernel test and intersection test, which
are based on Side(), can be directly evaluated using the original
3D coordinates of the contour vertices. As a result, there is no need
to perform projection computations for the conservative star-shape
based contour test.

The pseudo-code for the unprojected contour test is given in Al-
gorithm 1. Given an input normal cone CN(α, l) bounds all the nor-
mal vectors of the triangles of a given triangle patch, where α is
the apex angle, and l is the middle axis of the cone. The bound-
ary contour of CN(α, l) is defined by a ordered list of vertices, i.e.,
v′1,v

′
2, ...,v

′
n. Our algorithm for the contour test will return true if

there are no self-intersections on the projected contour, but will re-
turn false otherwise. We first define the parameters to perform the
kernel test and intersection test (Line 1-9, Algorithm 1).

• Projection Direction l: We use the axis l of the input normal
cone as the projection direction.
• Kernel Point o: We use the average of the input contour vertices

as the kernel point, i.e., o = ∑
n
1 v′i
n .

• Ray Direction r: In theory, it can be any vector perpendicular to
l. In practice, we choose it to be l×{0,1,0} if l is not parallel
to vector {0,1,0}, otherwise, we set r to be {1,0,0} (Lines 3-7,
Algorithm 1).

After specifying all the parameters, we perform the kernel tests
and intersection tests over all the contour edges (Line 9-34). The in-
tersection test is performed at Lines 21-32. If the intersection num-
ber exceeds 1, the algorithm returns false. The contour test returns
true only if the kernel test and the intersection test return true.

Query Performance: The worst case for the unprojected contour
tests occurs when it returns a true answer and there is no early exit.
In that case, it perform 3n SideSign() evaluations for DCD, where
n is the number of contour edges. Each SideSign() evaluation re-
quires one cross product and one dot product computation between
two 3D vectors. So the total operation count is bounded by 3n cross
products and 3n dot products for each contour test.

Algorithm 2 SelfCollide(N): Normal Cone Culling using Unpro-
jected Contour Test (NC). By traversing the BVH recursively,
meshes that satisfy normal cone test are culled.
Input: A node N on the BVH. CN is the normal cone associated
with N.
Output: No return value.

1: if IsLeaf(N) then
2: return; // Traversal terminated.
3: end if
4:
5: if ApexAngle(CN ) < π then
6: if UnprojectedContourTest(CN ) = true then
7: return; // The corresponding mesh has no self-collisions.
8: end if
9: end if

10: // Check the descendants.
11: SelfCollide(N→ LeftChild)
12: SelfCollide(N→ RightChild)
13: Collide(N→ LeftChild, N→ RightChild)

3.5. Normal Cone Culling

Based on Algorithm 1, the overall algorithm for normal cone
culling is shown in Algorithm 2. Our algorithm involves no pre-
computation and updates a BVH to perform hierarchical compu-
tations. The self-collision checking starts at the root node of the
BVH, and traverses in a top-down manner. For a node N of the
BVH, and its associated normal cone CN , we check whether the
apex angle of CN is less than π and also perform the unprojected
contour test. If these two tests are satisfied, then we do not need to
traverse to the children of N to check for self-collisions.

3.6. Normal Cone Culling for CCD

The contour test and normal cone culling algorithms described
above can be extended to CCD. One of the main issues is to com-
pute a bound on the surface normals that varies during the time
interval based on linearly interpolating triangle vertices. Moreover,
we need to perform the unprojected contour test on the continu-
ously varying vertices of the contour. We compute a conservative
normal bound for each deforming triangle, and merge these bounds
in a bottom-up manner on the BVH to update the apex angles of all
normal cones. In order to perform a continuous unprojected con-
tour test, we assume that a vertex pi is moving with the constant
velocity vi during a given time interval [0,1].

We first define the function CSide1() as:

CSide1(a,b,c, l) = ((a− c)× (b− c)) · l

where b = b0 +vb ∗ t, c = c0 +vc ∗ t. However, a and l are un-
changed during the time interval [0,1]. b0 and c0 are the position of
two vertices at t = 0. vb and vc are their moving velocities during
the time interval (t ∈ [0,1]). Therefore:

CSide1(a,b,c, l)
= ((b0 +vb ∗ t−a)× (c0 +vc ∗ t−a)) · l
= k0 ∗B2

0(t)+ k1 ∗B2
1(t)+ k2 ∗B2

2(t),

c© 2017 The Author(s)
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where B2
i (t)
′s are second order polynomials in Bernstein basis.

The detailed derivation of ki is as follows:

k0 = ((b0−a)× (c0−a)) · l,

k1 =
((vb× (c0−a)+(b0−a)×vc) · l

2
+ ((b0−a)× (c0−a)) · l,

k2 = ((b0−a)× (c0−a)) · l
+ (vb× (c0−a)+vc× (b0−a)) · l
+ (vb×vc) · l.

With this representation, the value of CSide is bounded based on
the coefficients k0, k1, and k2 for 0≤ t ≤ 1. Based on the formula-
tion of CSide1(), we define:

CSideSign1(a,b,c, l) =


1, k0 > 0,k1 > 0,k2 > 0,
−1, k0 < 0,k1 < 0,k2 < 0,
0, otherwise.

This formulation is conservative, but provides a sufficient condition
to perform the kernel and intersection tests for CCD.

For the case a that is moving under constant velocity, i.e.,
a = a0 +va ∗ t, and b,c are unchanged during the time interval, we
define the function:

CSide2(a,b,c, l)
= ((a0 +va ∗ t− c)× (b− c)) · l

Similarly, the value of CSide2(a,b,c, l) is bounded by two con-
stants for all t ∈ [0,1]:

k′0 = ((a0− c)× (b− c)) · l
k′1 = ((a0 +va− c)× (b− c)) · l

So we define:

CSideSign2(a,b,c, l) =


1, k′0 > 0,k′1 > 0,
−1, k′0 < 0,k′1 < 0,
0, otherwise.

By replacing the functions SideSign() in Algorithm 1 with new
sign functions CSideSign1() (Line 12,19) and CSideSign2() (Line
23, 24), respectively, the contour test algorithm for DCD can be
easily extended to perform conservative contour tests during the
time interval [0,1] for CCD (as shown in Algorithm 3).

Query Performance: In the worst case, the unprojected contour
test for CCD performs n CSideSign1() and 2n CSideSign2()
evaluations, where n is the number of contour edges. Each
CSideSign1() evaluation requires 8 cross products and 6 dot prod-
ucts computation between two 3D vectors. Each CSideSign2()
evaluation requires 2 cross products and 2 dot products. So the to-
tally operation count is bounded by 12n cross products and 10n dot
products for each contour test.

4. Front-Based Normal Cone Culling

The hierarchical traversal algorithm based on normal cone tests
presented above can accelerate the performance of each normal

Algorithm 3 UnprojectedContourTestForCCD(CN ): Perform un-
projected contour test on the boundary contour of a given normal
cone CN .
Input: A normal cone CN(α, l) where α is the apex angle, and l is
the axis of the cone, and its boundary contour which is defined by
a ordered list of vertices, i.e., v′1,v

′
2, ...,v

′
n.

Output: true for no self-intersection on the projected contour,
false for undeterminable.

1: // Prepare parameters for kernel test and intersection test.

2: o =
∑

n
1 v′i t=0

n
3: l is middle axis of input normal cone CN
4: if l parallel to vector {0,1,0} then
5: r = {1,0,0}
6: else
7: r = l×{0,1,0}
8: end if
9: // Initialize the intersection number to zero.

10: intsNum = 0
11: // Get side sign at the first contour segment.
12: s0 = CSideSign1(o,v′1,v

′
2, l)

13: if s0 == 0 then
14: return false;
15: end if
16: // Perform kernel test and intersection test on each contour segment.
17: for each edge v′i ,v

′
i+1 do

18: // Perform side test.
19: if s0 6= CSideSign1(o,v′i ,v

′
i+1, l) then

20: return false;
21: end if
22: // Perform intersection test.
23: s1 = CSideSign2(v′i ,o,o+ r, l)
24: s2 = CSideSign2(v′i+1,o,o+ r, l)
25: if s1 == 0 or s2 == 0 then
26: return false; // Can’t determine the intersection.
27: end if
28: if s2 = s0 and s1 6= s2 then
29: intsNum++
30: if intsNum > 1 then
31: return false; // More than one intersection.
32: end if
33: end if
34: end for
35: return true;
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cone test during the hierarchical traversal. However, the resulting
algorithm may perform a large number of normal cone tests while
handling complex benchmarks represented using hundreds of thou-
sands of triangles. In this section, we present a novel front-based
normal cone culling algorithm that can significantly reduce the
number of normal cone tests and traversal overhead. Furthermore,
it reduces the memory requirements of storing the front.

The basic idea behind our algorithm is shown in Fig. 5. For a
scene with deformable objects, we compute its BVH as shown in
the upper right corner of Fig. 5. The self-collision detection al-
gorithm corresponds to the traversal of its BVTT (Bounding vol-
ume test tree), as shown in Fig. 5. The main goal of using BVTT
is to compute the front during the traversal from the previous
frame [TMT10b, TMLT11]. By starting the traversal of the current
frame directly from the BVTT front, we exploit the spatial and tem-
poral coherence to reduce the traversal cost. However, the memory
overhead of this front can be high. For example, for a mesh with 4
K triangles, it takes about 17 MB memory to store the BVTT front
between successive frames [TMLT11].

A node A∗B in the BVTT represents collision checking between
the nodes A and B of the given BVH. In the worst case, the BVTT
can have O(m2) nodes, where m is the number of nodes in the BVH.
The front-based algorithms keep track of a subset of BVTT that
corresponds to overlapping nodes during the current frame. Instead
of storing a global BVTT front (i.e. the thick line in Fig. 5), we
decompose it into many sub-segments, as shown by the thin line in
Fig. 5. Each sub-segment of the BVTT is associated with a X ∗X
node, which corresponds to checking for self-collisions among all
the nodes beneath the internal node X of BVH. Instead of traversing
the children of this node hierarchically, we use our normal cone
culling algorithm to check for self-collisions. This is shown as the
segmented areas in Fig. 5. In particular, we associate each BVTT
front sub-segment for X ∗X with the internal node X on the BVH.

We use the normal cone guided BVTT front tracking algorithm
(Algorithm 4), to significantly reduce the traversal overhead as
well as size of the front. By traversing the BVH recursively, if
a node X satisfies the normal cone test, its sub-segment can be
directly skipped for testing. Without the normal cone tests, we
will need to track the nodes in this sub-segment to perform self-
collision detection. During the BVH tracking, all the visited BVTT
nodes are stored into the sub-segment and reused for subsequent
frames [TMLT11].

Based on the front-based normal cone algorithm, we obtain the
benefits of BVTT front based culling as well as normal cone based
culling. With BVTT front tracking, we can perform collision de-
tection in an efficient manner by utilizing temporal and spatial co-
herence. Furthermore, we combine them with the normal cone test,
and this can significantly reduce the size of the BVTT front, as
we do not need to store the BVTT front segments for the areas
that are culled by our normal cone tests. Figure 6 highlights the
reduced size of the normal cone guided BVTT front for the bench-
mark FlowingCloth. In this case, the size of our normal cone guided
BVTT front (the upper curve) is only about 8% of the conventional
BVTT front in [TMLT11] (the lower curve).

C*C

f*g

A*A

B*C

d*f d*g

B*B

d*E E*E

d*i h*id*h

E*gE*f

h*f i*f h*g i*g

BVTT
A

B C

d E f g

h i

BVH

BVTT Front

Segmented BVTT 
Front

Figure 5: Normal cone guided BVTT front tracking: We asso-
ciate each BVTT front sub-segment for X ∗X with the internal node
X on the BVH. In order to perform self-collision culling, we use
a front-based normal cone traversal approach that uses the BVTT
front (Algorithm 4). By traversing the BVH recursively, if a node X
passes the normal cone test, its associated BVTT front sub-segment
is culled. Our approach can reduce the traversal overhead and run-
time memory footprint.

Algorithm 4 SelfCollideWithGuidedFrontTracking(N): a normal
cone guided BVTT front tracking algorithm for self-collision de-
tection (NC + Front).
Input: A node N on the BVH. CN is the normal cone associated
with N. FrontN is the BVTT front sub-segment associated with
node N.
Output: No return value.

1: if IsLeaf(N) then
2: return; // Traversal terminated.
3: end if
4:
5: if ApexAngle(CN ) < π then
6: if UnprojectedContourTest(CN ) = true then
7: return; // The region is self-collision free.
8: end if
9: end if

10: // Check the descendants.
11: SelfCollide(N→ LeftChild)
12: SelfCollide(N→ RightChild)
13: FrontTracking(FrontN )

4.1. Reliable Computation

Our overall collision detection algorithm has three main steps: (1)
update BVs and normal cones; (2) perform front-based BVH traver-
sal and normal cone culling (Algorithm 4); (3) perform elemen-
tary tests between triangle pairs and may use lower level culling
methods for acceleration. For stage (1), we compute a conservative
bound on the normal cones during the merging step. Stage (2) of
our algorithm only needs to evaluate the sign of algebraic expres-
sions corresponding to dot products and cross products, as well as
other expressions; Stage (3) can be performed with geometric ex-
act elementary test algorithms [BEB12,TTWM14], or conservative
CCD algorithms [Wan14, WTTM15], and these computations can
be accelerated using floating-point filters. As a result, the overall
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Figure 6: Front-based normal cone culling: We highlight the size
of our NCT guided BVTT front (the lower curve), which is about
8% of the conventional BVTT front in [Tang et al. 2011] (the upper
curve) for the benchmark FlowingCloth. Our algorithm can save
considerable memory and runtime overhead.

collision detection algorithm is accurate and not susceptible to er-
rors.

5. Implementation and Results

In this section, we describe our implementation and highlight the
performance of our algorithm on several benchmarks.

5.1. Implementation

We have implemented our algorithms on a standard PC (Intel i7-
3770K CPU @3.5GHz, 4GB RAM, 64-bits Window 7 OS) with
C++ and all the results are generated using a single CPU core. The
various components of our overall collision detection system are
shown in Fig. 7.

Our current implementation is limited to deformable models
without topology changes. We first construct a bounding volume
hierarchy for the entire scene in a top-down manner [TCYM09].
During each time step, we update the bounding volumes and nor-
mal cones, and perform high level culling based on these data
structures. After these high-level culling operations, we perform
low-level culling operations that reduce the number of primitive
tests using non penetration filters. Finally, we perform triangle-
triangle intersection tests for DCD and exact elementary tests for
CCD [TTWM14].

We use AABBs as the underlying bounding volume in the hi-
erachy. It is possible to use tighter bounding volumes such as k-
DOPs, but that increases the overhead of hierarchy update. Instead,
we use non-penetration filters [TMT10a] along with AABBs and
they provide similar culling efficiency as compared to k-DOPs or
tight fitting bounding volumes.

5.2. Benchmarks

In order to evaluate the performance of our DCD and CCD algo-
rithms, we used seven different benchmarks that came from differ-
ent deformable simulation scenarios and have been used by other
researchers.

Updating BVs and CNs

Low Level CullingTraversal of BVH
&& BV Culling

Front Based Normal 
Cone Culling

Front Based Normal 
Cone Culling

High-level Culling

Exact Elementary Tests 
(BSC)

Updating Vertices

Figure 7: Collision Detection System: For every time step, we up-
date the bounding volumes and normal cones; perform high-level
culling that includes bounding volume culling and front-based nor-
mal cone culling. We perform low-level culling to eliminate du-
plicate elementary tests (for CCD) and reliable primitive tests for
each step.

(b)

(f)

(g)

(a)

(e)

(d)

(c)

Figure 8: Benchmarks: We use seven challenging benchmarks
arising from deformable and cloth simulations. We compare the
performance of our DCD and CCD algorithms with prior methods.

• Twisting: It corresponds to complex cloth simulation with
twists, as the ball rotates. It has 64K triangles. This benchmark
has a high number of self-collisions (Figure 8(a)).

• Funnel: A cloth with 64K triangles falls into a funnel and folds
to fit into the funnel with many self-collisions (Figure 8(b)).

• Bishop: A swing dancer wearing three pieces of cloth (with
124K triangles) with self-collisions (Figure 8(c)).

• Falling: A man wearing a robe (with 172K triangles) falls down
rapidly, that introduces wrinkles and self-collisions in the cloth
(Fig. 8 (d)).

• Flamenco: A fiery Flamenco dancer wearing a colorful skirt
with ruffles. This benchmark (49K triangles) has a high number
of self-collisions (Figure 8(e)).

• SquishyBall: A squishy ball with 820 tentacles and over 1M tri-
angles squishes and bounces on the ground, inducing numerous
small inter-penetrations [ZJ12]. (Figure 8(f)).
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CT Time (DCD) CT Time (CCD)Bench- 
marks Our SCT Our CBC 

Twisting 0.41 1.58 1.09 5.39 

Funnel 0.63 2.29 1.17 7.56 

Falling 17.4 8.07 57.8 55.6 

Bishop 5.12 6.23 10.85 21.53 

Flamenco 5.87 / 11.22 20.49 

SquishyBall 141.1 196.5 454.3 668.5 

FlowingCloth 0.133 0.14 0.8 9.37 

 
 
 
 
 
 

CT Time (DCD) CT Time (CCD)Bench- 
marks Our SCT Our CBC 

Twisting 0.41 1.58 1.09 5.39 

Funnel 0.63 2.29 1.17 7.56 

Falling 1.4 8.07 17.8 55.6 

Bishop 1.12 6.23 5.85 21.53 

Flamenco 1.87 7.53 4.22 20.49 

SquishyBall 141.1 196.5 454.3 668.5 

FlowingCloth 0.033 0.14 0.8 9.37 

 
Figure 9: Performance of Contour Tests: We highlight the aver-
age running time (in ms) of our unprojected contour test algorithm
by comparing with SCT [Schvartzman et al. 2010] and CBC [Tang
et al. 2009]. The contour test can take a significant fraction of the
overall collision query time shown in Fig. 10.

Qry Time (CCD) 
Qry Time (DCD) 

Prior Methods Our Method 
Bench- 
marks 

Our AABB 

Only 

SCT AABB 

Only 

CBC DC NC+ 

Front

NC 

Only 

Speed

-Up 

Twisting 60.15 80.08 56.79 105.55 95.56 1262.45 82.6 92.19 11-17x

Funnel 53.37 78.52 58.76 82.27 79.46 1619.94 61.5 64.96 1.26x

Falling 277.3 278.3 206.2 639.3 590.5 1018.43 783.1 643.1 6-9x 

Bishop 85.24 109.23 90.93 109.58 124.98 719.32 97.76 111.8 7-10x

Flamenco 103.1 102.29 / 215.5 232.18 2552.31 227.4 210.6 16-18x

SquishyBall  2484 1921 1842 5142 5749 22902.6 6553 5609 10-16x

FlowingCloth 24.27 46.64 23.43 55.22 40.1 174.195 27.03 27.01 11-30x
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Qry Time (DCD) 
Prior Methods Our Method

Bench- 
marks 

Our AABB 

Only 

SCT AABB 

Only 

CBC DC NC+ 

Front

NC 

Only

Twisting 56.79 80.08 60.15 105.55 95.56 96.45 82.6 92.19

Funnel 53.37 78.52 58.76 82.27 79.46 75.94 61.5 64.96

Falling 177.3 278.3 206.2 783.1 643.1 702.4 590.5 639.3

Bishop 75.24 109.23 90.93 124.98 111.9 119.32 97.76 109.5

Flamenco 83.1 102.29 95.4 272.18 267.4 252.31 210.6 215.5

SquishyBall  1842 2484 1921 6553 5749 5697 5142 5609

FlowingCloth 21.27 46.64 23.43 55.22 40.1 34.3 25.03 27.01

 

Figure 10: Performance and Comparison: We compare the per-
formance of our algorithm with prior techniques for DCD and CCD
queries. We report the average time taken by these collision queries
(in ms) for each benchmark. Each of these methods performs the
same low-level culling operations and different high-level culling
operations. For our method, we also highlight the relative benefit
of combining BVTT front with normal cone culling (NC). We ob-
serve considerable speedups with (NC + Front) over prior CCD
algorithms.

• FlowingCloth: A flowing cloth with 50K triangles [ZJ12] (Fig-
ure 8(g)) is hanging with two corners fixed.

Four of these benchmarks (Twisting, Bishop, Falling, and Fun-
nel) are generated using a cloth simulation system. The input for
the Flamenco is given as discrete keyframes. We use the linearly
interpolating motion of the vertices between successive key-frames
and check for inter-object and self-collisions. Figure 10 highlights
the performance of our algorithm for DCD and CCD queries on
these benchmarks.

5.3. Cloth Simulation

We integrated our collision detection algorithm into a cloth sim-
ulation system. The underlying simulator performs implicit inte-
gration and use repulsion forces along with CCD computations to
avoid interpenetrations. We compared the overall performance of
the cloth simulation by using our collision detection algorithm vs.
prior method that is based on AABB-only and performs no self-

Bench
-marks 

Twisting Funnel Falling Bishop Flamenco Squishy-
Ball 

Flowing- 
Cloth 

DCD 34.48% 28.71% 25.5% 37.39% 26.23% 12.21% 8.01% 

CCD 37.10% 31.40% 27.4% 39.50% 29.30% 11.40% 9.20% 

 
 
Figure 11: Reduction in Front Size: We highlight the reduction in
the memory overhead of the BVTT front due to our novel traversal
algorithm based on normal cones (see Section 4). Due to normal
cone culling, the size of the BVTT front reduces by 8−37% in our
benchmarks.

collision culling. We used the simulator to generate the entire sim-
ulations corresponding to these four benchmarks: Funnel, Twist-
ing, Falling, and Bishop. Our faster CCD algorithm results in 1.2X
speedup in the overall performance of the cloth simulator.

6. Comparison and Analysis

6.1. Comparison

We compare the performance of our algorithm with the prior tech-
niques that use hierarchical methods or normal cones for DCD and
CCD.

1. SCT: This corresponds to the implementation of Star-Contours
based normal cone algorithm of [SPO10] for DCD. This is based
on line-search star-shaped contour test and precomputing the self-
collision test tree.

2. AABB-only: These algorithms use AABB as the underlying
bounding volumes and perform no self-collision culling. They use
low-level culling algorithms to eliminate duplicate elementary tests
and perform reliable elementary tests using BSC [TTWM14].

3. CBC: This is the continuous normal cone algorithm for
CCD [TCYM09] along with AABB culling and BSC elementary
tests and performs the O(n2) exact contour test.

4. DC: This corresponds to the dynamic clustering algo-
rithm [HOEM15] for CCD. It computes new clusters at each frame
as the objects deform that is guaranteed to be collision free using
observation point [WLH∗13]. It is combined with the AABB hier-
archy and BSC elementary tests.

5. NPF: The main contribution of the algorithm in [TMT10a] is
the use of a non-penetration filter (NPF), which is a light-weight
filter (or culling scheme) that can remove most of the false posi-
tives before performing exact elementary tests. The use of that filter
resulted in 1.7x-3.5x speedups. In this paper, we also used the NPF
to reduce the number of false positives (as mentioned at the end
of Section 5.1). In other words, the self-collision culling algorithm
presented in this paper is complementary to the use of NPF.

6. VolCCD and BSC: The main contribution of Vol-
CCD [TMY∗11] is in terms of low-level collision culling between
volumetric elements; it is orthogonal to the use of normal cones.
The main contribution of BSC [TTWM14] is related to performing
reliable and exact elementary tests for CCD computations. The im-
proved normal cone algorithm presented in this paper is orthogonal
to these methods and can be combined with them. Some of the al-
gebraic formulations used in our normal cone test is similar to that
used in these prior papers, but the overall goal is different.
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Figure 12: AABB vs. kDOP: We compare the running times (in
seconds) of the Funnel benchmark (64K triangles) by using 24-
DOPs, 18-DOPs, and AABBs as bounding volumes, respectively.
As shown by the figure, the time spent in the intersection computa-
tions is reduced with the use of tighter bounding volumes, but the
updating time increases considerably.

We also compare the running times of the Funnel benchmark
(64K triangles) by using 24-DOPs, 18-DOPs, and AABBs as
bounding volumes, respectively. As shown in Fig. 12, the time
spent in the intersection tests is reduced with tighter bounding vol-
umes, the time to update the hierarchy (updating time) increases
considerably more. Overall, the algorithms based on AABBs pro-
vide the best overall performance on the collision queries.

6.2. Analysis

As compared to the contour test presented in [SPO10], our algo-
rithm is simpler and has lower overhead because we don’t perform
any projection computations. We observe up to 5.8X improvement
in the performance of the contour test for DCD (Fig. 9) and up to
1.2X improvement (Figure 10) in the performance of overall DCD
algorithm, as compared to [SPO10].

We observe considerable performance improvement for CCD
computations, over techniques that either use no self-collisions
(AABB-only) or exact continuous normal cone tests [TCYM09].
This is due to the fact that our normal cone test has linear complex-
ity, whereas prior methods had quadratic complexity with a higher
constant [TCYM09]. As a result, we observe up to 11.7X improve-
ment in the performance of the contour test for CCD (Fig. 9). In
terms of the overall CCD algorithm, the improved normal cone test
(NC) results in up to 2.2X improvement over AABB-only. We ob-
tain higher speedups for CCD as compared to DCD, because the
normal cone tests take a larger fraction of the average frame time.

The combination of front-based culling with our improved nor-
mal cone test leads to considerable speedups. We observe addi-
tional performance improvement by combining front-based culling
with normal cone (Front + NC) over using only normal cone (NC)
in Figure 10. The front-based traversal reduces the cost of hierar-
chy traversal and the number of self-collision tests. It doesn’t re-
duce the number of false positives in terms of elementary tests. As
a result, the relative benefits of normal cone tests and front-based
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Figure 13: CCD accelerations with/without low-level culling: We
compare the acceleration rates for CCD between our method vs.
AABB-only with/without performing low-level culling. We observe
much higher speedups without low-level culling.

culling are somewhat complementary and we obtain high speedups
by combining them. Fig. 1 highlights the improved culling with un-
projected normal cone tests. Furthermore, we observe considerable
improvements in the size and memory overhead of the BVTT front,
when it is combined with normal cone culling (see Fig. 11).

In all the implementations (SCT, AABB-only, CBC, and DC),
we used low-level culling methods (orphan sets [TCYM09] and
non-penetration filters [TMT10a]) for CCD to remove redundant
elementary tests. So the overall performance improvement in CCD
query is moderate. If we do not perform low-level culling and only
compare the relative performance with BVH culling only, we ob-
serve significantly higher speedups, as shown in Fig. 13. Many
other approaches only seem to compare the relative speedups with
only BVH-culling [SPO10,ZJ12]. Basically, these low-level culling
methods can significantly reduce the number of exact elementary
tests being performed between the primitives. The fastest CCD
algorithms use a combination of low-level and high-level culling
schemes, as shown in Fig. 10.

7. Limitations, Conclusions and Future Work

We present a fast and reliable algorithm to perform self-collision
culling on complex deformable models. There is a general percep-
tion that the overhead of normal cone tests is high and its applica-
tions has mostly been limited to DCD. We presented a novel un-
projected contour test, that provides 10− 30X improvement over
prior continuous contour tests for CCD. Furthermore, we described
a novel traversal scheme using front-based normal cone culling that
reduces the time and space overhead. The combination of these two
methods can accelerate the performance of CCD queries by an or-
der of magnitude.

Our approach has some limitations. The unprojected contour test
tends to be more conservative than prior methods. The current for-
mulation is limited to linearly interpolating triangles for CCD. Self-
collision culling based on normal cones works well when the re-
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sulting meshes do not have high variations in curvature. As a result, 
their performance depends on how a large mesh is decomposed into 
sub-meshes at different nodes of the BVH or the underlying clus-
tering criteria. Our current implementation is limited to deformable 
models that do not undergo topology changes.

There are many avenues for future work. It would be useful to 
combine our approach with fast, dynamic clustering schemes that 
can improve the culling efficiency of normal cones and also used 
for adaptive meshes. We would like to parallelize the approach 
on multi-core CPUs and GPUs, similar to [GLM05, SGG∗06, 
TMLT11, ZK14, TWT∗16], and our reduced-size BVTT front 
should improve the parallel performance. Finally, we would like 
to integrate our algorithm with FEM and hair simulation systems.
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