RICE 7,& COMPUTER SCIENCE

* GEORGE B BROWMN SCHOOL OF ENGINEERING

Portable Parallel Programming for
Heterogeneous Multicore Computing

Vivek Sarkar
Parallel Computing Group, Rice University

vsarkar@rice.edu

Acknowledgments

= X10 project (x10.sf.net)

= Rice COMP 635 Seminar on Heterogeneous Processors
(www.cs.rice.edu/~vsarkar/comp635)

= Rice Habanero Multicore Software project
= Qverview presentations on Habanero in Rice/GCAS booth #789
= Tuesday, 12:00 - 12:30
= Wednesday, 1:00 - 1:30

= Georgia Tech ECE 6100 course (Module 14), Multi-core Case Studies (Vince Mooney,
Krishna Palem, Sudhakar Yalamanchili)

= UIUC ECE 498 AL1 course, Programming Massively Parallel Processor (David Kirk,
Wen-mei Hwu)

= MIT 6.189 IAP 2007 course, Introduction to the Cell Processor (Michael Perrone)
» Overview slides on Clearspeed CSX600 (Simon McIntosh-Smith)

Future System Trends: a new Era of Mainstream & High
End Parallel Processing

Hardware building blocks for mainstream and high-performance
systems are varied and proliferating ...

Homogeneous Heterogeneous

High Performance
Multicore Multicore

Clusters

e N 2 !

3 —3
=" ="
f{
:[
:E

PPE | | | |
PPU 4
; exul| 1 [T v ’
R Dual FlexIO™
XDR™

64-bit Power Architecture with VMX

Challenge: Develop new programming technologies to support
portable parallel abstractions for future hardware

Heterogeneous Processors

Memory transfer
module
schedules
system-wide bulk
data movement

Accelerated activities and associated private data
are localized for bandwidth, power, efficiency

General-purpose processor

orchestrates activity

o000

L~

e

oot

A

4

Accelerators can use
scheduled, streaming
communication...

or can operate on
locally-buffered data
pushed to them in
advance

Motivation:

1) Different parts of programs have different
requirements

Control-intensive portions need good branch
predictors, speculation, big caches to
achieve good performance

Data-processing portions need lots of ALUs,
have simpler control flows

2) Power consumption

Features like branch prediction, out-of-order
execution, tend to have very high
power/performance ratios.

Applications often have time-varying
performance requirements

Heterogeneous Processor Spectrum

Dimension 1:
Distance of
accelerator from
main processor
(decreasing
latency, increasing

VizClusters nVidia CPU + FPU accel Hetero
- Clearspeed) geneous
bandwidth) % T Opteron CPU + ATI Graphics -
Dimension 2: Processor / DSP Programmable HW HW ‘
5@ 2 T 2XeC . ard al exXec Te ; aralle axec i .
Hardware Sequential execution Parallel execution 1 Parallel execution éz
: . . Very flexible Flexible 1 Inflaxible ‘
CuStomlzatlon mn Power inefficient Power efficient § Very power efficient |
accelerator Inexpensive P(]d[l"d 3:11?1'72(‘93(pumu 4 Vt;\/]U\b(r 1)§i~.ie |
1 Very difficult to design
(decreasing energy on |
per operation)

Sample Application Domains for Heterogeneous Processors

Cell Processor
= Medical imaging, Drug discovery, Reservoir modeling, Seismic analysis, ...
GPGPU (e.g., Nvidia G80)

= Graphics, Computer-aided design (CAD), Digital content creation (DCC), emerging
HPC applications, ...

FPGA (e.g., Xilinx DRC)
= HPC, Petroleum, Financial, ...
HPC accelerators (e.g., Clearspeed)
= HPC, Network processing, Graphics, ...
Stream Processors (e.g., Imagine)
= |mage processing, Signal processing, Video, Graphics, ...
Others
= TCP/IP offload, Crypto, ...

Cell Broadband Engine

= Heterogeneous
multicore system
architecture

= Power Processor Element
for control tasks

= Synergistic Processor
Elements for data-intensive
processing

Synergistic Processor
Element (SPE)
consists of

= Synergistic Processor Unit
(SPU)

= Synergistic Memory Flow
Control (MFC)

= Data movement and
synchronization

= |nterface to high-
performance Element
Interconnect Bus

16B/c

SPE

SPU SPU SPU SPU SPU SPU SPU SPU

s I swo | ICsw)i s s) sy) sx) s]
v v v v v v
LS LS LS LS LS LS LS LS

o v T4 TV TF T T T 1

EIB (up to 96B/cycle)

PPE

16Bl/cycle

j
|

v

=

16B/cycle
(2x)

PP

U

—»

e 16

L1

-

MIC BIC
Dual FlexlO™
XDR™

64-bit Power Architecture with VMX

Nvidia GeForce 8300 GTX

The device is a set of 16
multiprocessors

Each multiprocessor is a set of
32-bit processors with a Single
Instruction Multiple Data
architecture — shared instruction

unit

Each multiprocessor has:

32 32-bit registers per processor

16KB on-chip shared memory per
multiprocessor Host

A read-only constant cache
A read-only texture cache

\ig

Device

Multiprocessor N

Multiprocessor 2

Multiprocessor 1

Shared Memory

Registers Registers Registers
Instruction

Unit
Processor 1 Processor2 ©® ®°® Processor M

A 4 A * A *
‘_} Constant
Cache
Texture
‘ ’ Cache
\ 4 v v T

Device memory

Clearspeed MTAP processor core

CSX600

System

Networl%>

Networl%>

Controuern'"ftr:c Control
Cache

Poly Controller

Programmable I/O to DRAM

Network)

* Multi-Threaded Array
Processing
= Hardware multi-threading
= Asynchronous, overlapped I/O
» Run-time extensible instruction set

= Array of 96 Processor
Elements (PEs)

= Each is a Very Long Instruction
Word (VLIW) core, not just an ALU

= Coarse-grained data parallel
processing

= Cnis the natural language
= Single “poly” data type modifier
» Rich expressive semantics

Comparison of Parallelism Levels in Example Accelerators

Cell BE Nvidia G80 ClearSpeed CSX600
Board-level 2 Cell BE chips/board | 1 G80 chip + 1 NVIO 2 CSX600
chip chips/board
Chip-level MIMD | 1 PPE + 8 SPE’s 16 multiprocessors 1 mono controller + 1
(MPs) poly controller
Chip-level SIMD | 128-bit native SIMD | 8 SIMD “stream 96 SIMD PE’s per
on SPE & 128-bit processors” per MP = | poly controller
VMX on PPE 128 procs/chip
Thread-level 2 PPE threads + 8 32 threads per MP = 8 mono threads
SPE threads 512 threads/chip
Instruction-level | Dual-issue SPE 4-stage floating point
pipelines add & multiply units +

ILP among mono,
poly, 1/O units

Other Hardware Characteristics

Cell BE Nvidia G80 ClearSpeed

CSX600

32-bit FP 200+ GFLOPS 360+ GFLOPS 25+ GFLOPS

64-bit FP 20+ GFLOPS 25+ GFLOPS

Clock 3.2 GHz 575 MHz 210 MHz

frequency

Transistors/ |~ 241M ~6381M ~ 128M

chip

Power ~ 110 Watts ~ 145 W (for ~ 10W

GeForce 8800 GTX

board)

Sample Cell PPE code (contd.)

(from http://tu-dresden.de/die_tu_dresden/zentrale_einrichtungen/zih/forschung/architektur_und_leistungsanalyse_von_hochleistungsrechnern/cell/dateien/matmul.tar.gz)

/* start PPE-side measurement of the execution time */
B start > my gettimeomday () ;

/* send a start signal to each SPE */
romg (L =070 s nuiispesHsita o write 1n mbox (speidf[i], 0);

/* get the performance data of each SPE */

for (1 = 0; i < num spes; 1i++) {
while (!spe stat out mbox (speid[i]));
spe time[1] = spe read out mbox(speid[1]);
while (!spe stat out mbox (speid[i]));
spe count[i] = spe read out mbox(speid[1])

/* stop PPE-side measurement of execution time */
t all = my gettimeofday() - t start;

/* wait until all SPE threads have finished */
for (1 = 0; 1 < num spes; 1++) spe wailt (speid[i], &status, 0);

Sample Cell SPE code

(from http://tu-dresden.de/die_tu_dresden/zentrale_einrichtungen/zih/forschung/architektur_und_leistungsanalyse_von_hochleistungsrechnern/cell/dateien/matmul.tar.gz)

WasstF for | BMA (N-j=
matmul SIMD64 (matrix A a, matrix B a, matrix C a);
muilN a alla */

load data (PPE matrix A Ptr, matrix A b, dma listlb,
offset 1 b m, offset 1 b n + cb.p blocks - 1, 3);

/*

store data(matrix C a, dma listd4a, offset 3 a m, offset 3 a n,

4) ;
wait for DMA(2);

matmul SIMD64 (matrix A a, matrix B b, matrix C b);
mul a b b */

/*

store data(matrix C b, dma listdb, offset 3 b m, offset 3 b n,

4);
wait for DMA(3);

matmul SIMD64 (matrix A b, matrix B a, matrix C c);
mul b a ¢ */

/*

store data (matrix C c, dma listdc¢, offset 3 ¢ m, offset 3 c n,

4) ;

matmul SIMD64 (matrix A b, matrix B b, matrix C d);
mul b b d */

/*

store data(matrix C d, dma listdd, offset 3 d m, offset 3 d n,

4) ;
wait for DMA (4) ;

{

void Mul (const float* A, const float* B, int hA, int wA,
float* C)
int size;

// Load A and B to the device

float* Ad;

size = hA * wA * sizeof(float);

cudaMalloc ((void**) &Ad, size);

cudaMemcpy (Ad, A, size, cudaMemcpyHostToDevice) ;
float* Bd;

size = WA * wB * sizeof (float);

cudaMalloc ((void**)&Bd, size);

cudaMemcpy (Bd, B, size, cudaMemcpyHostToDevice) ;

// Allocate C on the device
float* Cd;

size = hA * wB * sizeof (float);
cudaMalloc ((void**)&Cd, size);

// Compute the execution configuration assuming

// the matrix dimensions are multiples of BLOCK_SIZE
dim3 dimBlock (BLOCK SIZE, BLOCK_SIZE);

dim3 dimGrid(wB / dimBlock.x, hA / dimBlock.y);

// Launch the device computation
Muld<<<dimGrid, dimBlock>>> (Ad, Bd, wA, wB, Cd);

// Read C from the device
cudaMemcpy (C, Cd, size, cudaMemcpyDeviceToHost);

// Free device memory
cudaFree (Ad) ;
cudaFree (Bd) ;
cudaFree (Cd) ;

int wB,

__global _ void Muld(float* A, float* B, int wA, int wB, float* C)

// Block index
int bx = blockIdx.x;
int by = blocklIdx.y;

// Thread index
int tx = threadIdx.x;

int ty = threadIdx.y:

// Index of the first sub-matrix of A processed by the block
int aBegin = wA * BLOCK_SIZE * by;

// Index of the last sub-matrix of A processed by the block
int aEnd = aBegin + wA - 1;

// Step size used to iterate through the sub-matrices of A

int aStep = BLOCK_SIZE;

// Index of the first sub-matrix of B processed by the block
int bBegin = BLOCK_SIZE * bx;

// Step size used to iterate through the sub-matrices of B
int bStep = BLOCK_SIZE * wB;

// The element of the block sub-matrix that is computed
// by the thread
float Csub = 0;

// Loop over all the sub-matrices of A and B required
// compute the block sub-matrix
for (int a = aBegin, b = bBegin;

a <= aEnd;

a += aStep, b += bStep) {

// Shared memory for the sub-matrix of A
__shared float As[BLOCK_SIZE][BLOCK_SIZE] ;

// Shared memory for the sub-matrix of B
__shared float Bs[BLOCK_SIZE][BLOCK_SIZE] ;

// Load the matrices from global memory to shared memory;
// each thread loads one element of each matrix

As[tyl[tx] = Ala + wA * ty + tx];

Bs[tyl[tx] = B b + wB * ty + tx];

// Synchronize to make sure the matrices are loaded
syncthreads () ;

// Multiply the two matrices together;
// each thread computes one element
// of the block sub-matrix

for (int k = 0; k < BLOCK SIZE: ++k)
Csub += As[ty][k] * Bs[k][tx] ;

// Synchronize to make sure that the preceding
// computation is done before loading two new
// sub-matrices of A and B in the next iteration
__syncthreads();

}

// Write the block sub-matrix to global memory;
// each thread writes one element

int ¢ = wB * BLOCK_SIZE * by + BLOCX SIZE * bx;
dc + wB * ty + tx] = Csub;

Here is a simple example of an inner loop of a host program which passes data to the co-
processor. For simplicity, status checking has been omitted from this example.

// obtain the address of the shared memory represented by the symbol
__SHARED MEMORY

CSAPI get symbol value (" /home/mh/simple.csx”, ” SHARED MEMORY “,
&shared memory) ;

while (... there is data to process ...) {
// prepare the data
pl.a = 1; pl.b = 2;

// copy the data onto the card side
CSAPI write mono memory (state, shared memory, sizeof (MyPayload),
(void*) (&pl)) ;

// signal the start semaphore
CSAPI_signal (state, SEM DATA_IN READY) ;

// wailt for results

// in case of a multi-threaded applications

// something useful could be done during the wait

// for single-threaded applications, polling could be used
CSAPI wait (state, SEM PROCESSING COMPLETE) ;

// consume the data after processing, assuming here that the

// shared memory 1s used both for receiving and sending data

CSAPI read monc memcry (state, shared memory, sizeof (MyPaylcad),
(void=*) (&pl)) ;

}

ClearSpeed: DAXPY example in Cn

void daxpy(double *c, double *a, double alpha, uint N) {

uint i;
for (i=0; i<N; i++)
c[i] = c[i] + a[i]*alpha;

void daxpy (double *c, double *a, double alpha, uint N) {
uint 1i;
pﬂly;dcuble cp, ap;
poly int pe_num=get penum() ;

for (i=0; i<N; i+= get_numpes()) {
memcpym2p (&cp, &c[i+pe num], sizeof(double));
memcpym2p (&ap, &a[i+pe_num], sizeof (double)) ;
cp = cp + ap*alpha;
memcpyp2m(&c[i+pe num], &cp, sizeof(double))

X10 Approach

= Unified abstractions of asynchrony and concurrency for use in
= Multi-core SMP Parallelism
= Messaging and Cluster Parallelism
= Productivity
= High Level Language designed for portability and safety
= X10 Development Toolkit for Eclipse
= Performance
= Extend VM+JIT model for high performance
= 80% of new code is written for execution on VMs and managed runtimes
= Performance transparency — don’t lock out the performance expert!

= expert programmer should have controls to tune optimizations and tailor distributions &
communications to actual deployment

= Build on sequential subset of Java language
= Retain core values of Java --- productivity, ubiquity, maturity, security
= Target adoption by mainstream developers with Java/C/C++ skills
= Efficient foreign function interfaces for libraries written in Fortran and C/C++

= Reference: “X10: An Object-Oriented Approach to Non-Uniform Cluster Computing”, P.Charles et al,
OOPSLA 2005 Onward! track.

X10 Proarammina Model — The Bia Picture

A Immutable data: final fields, value type instances

I ® | ocal section

Global Array Remote section t.\
Local / N j-—» Remote
$ | 4object o /| object
. Outbound Inbound
Activities Activities
- >
a| | 9090900 e , A X
7 / 2
'Activities \:I < v Activities
Place 0 Place (MaxPlaces-1)

» Dynamic parallelism with a Partitioned Global Address Space

Storage
classes:

= |mmutable

* Places encapsulate binding of activities and globally addressable data

* Number of places currently fixed at launch time

* All concurrency is expressed as asynchronous activities — subsumes

threads, structured parallelism, messaging, DMA transfers, etc.
» Atomic sections enforce mutual exclusion of co-located data
* No place-remote accesses permitted in atomic section

« Immutable data offers opportunity for single-assignment parallelism

X10 Language Summary

async [(Place)] [clocked(c...)] Stm
= Run Stm asynchronously at Place
finish Stm

= Execute s, wait for all asyncs to terminate
(generalizes join)

foreach (point P : Reg) Stm

= Run Stm asynchronously for each point in
region

ateach (point P : Dist) Stm

= Run Stm asynchronously for each point in dist,

in its place.
atomic Stm
= Execute Stm atomically
new T
= Allocate object at this place (here)
new T[d] / new T value [d]

Region
= Collection of index points, e.g.
region r = [1:N,1:M];
Distribution
= Mapping from region to places, e.g.
= distd = block(r);
next

= suspend till all clocks that the current activity is
registered with can advance

= Clocks are a generalization of barriers and MPI
communicators

future [(Place)] [clocked(c...)] Expr

= Compute Expr asynchronously at Place
F. force()

= Block until future F has been computed
extern

" Arraylbf baSetypseshiantdistibution @ program W'ﬁ.@ﬂt%@b*ﬂtﬂﬁé’ﬁh‘ée?&%‘ﬂ%’code

finish, foreach, ateach, and clocks can never deadlock

Asynchronous Activities -- the first step in Parallel Programming

Activity AO (Part 1)

async

Activity A1

Activity A2

Activity AO (Part 3)

Activity AO (Part 2)

Activity A3

Activity A4

// X10 pseudo code
main(){ // implicit finish
Activity A0 (Part 1) ;
async {Al; async A2;}
try {
finish {
Activity A0 (Part 2);
async A3;
async A4;
}
catch (..) { ..}
Activity A0 (Part 3);

o

Atomic blocks --- the Second Step in Parallel Programming

next)

Example 1:

atomic

Example 2:

node =
atomic
node
head

}

An atomic block is conceptually executed in a single step

= Resultis equivalent to that of suspending all other activities
during execution of atomic block

= Atomic block may not include blocking operations (force,

* Programmer does not manage any locks explicitly

.next = head;

Read-modify-write operation on an array element

. Atomic sections do
Table[J] "= k ; _ not have blocking
Exet_:u_t{ng semantics
Insertion in a linked list Activities

new Node (data) ;

{

= node;

Places --- the Third Step in Parallel Programming

Question: how should an activity access remote data?

Answer: by implicitly or explicitly creating an activity at the remote place

Local array section DISTRIBUTED ARRAY Remote array section
| Local object | . - N > Remote object
= Activities — — Activities
2 § % Outbound Inbound 2 § %
N activities activities .
Activity Activity
Stacks <:| TN <:| Stacks
Inbound
Place 0 und Outbound pjace (MAX_PLACES -1)

activity activity
replies replies

X10 Deployment on a Multicore SMP

Example: IBM Powerd, Powerd - Basic Approach partiion
[0 other modules X10 h int tio|
A GX bus ¢ GX bus ¢ GX bus ¢ GX bus Sl MR- ErE
J l J) place-local heaps
— T - (- [g = Each X10 object is allocated
(l i occ] (1 (Loce] {[“Jlocc] [‘, ~ occ in a designated place
1 tj ' tj ﬁj = Each X10 activity is created
- - T e\ (and pinned) at a
7 % T designated place
L3 controller §f L3 controller §] L3 controller §| L3 controller = Allow an X10 activity to
directory directory directory directory
J, . ' l (l synchronously access data
' | L | L1 at remote places outside of
| :" | } g :’ |- 3\ atomic sections
y v y y =>» Thus, places serve as
aemaory ACIMOryY vemory Memaory
o ' ' affinity hints for intra-SMP

< > < > < > < > locality

Place 0 Place 1 Place 2 Place 3

X10 Places (contd.)

Examples

1) finish { // Inter-place parallelism

final int x = .. , y = .. ;
async (a) a.foo(x); // Execute at a’s place

async (b) b.bar(y); // Execute at b’s place

2) // Implicit and explicit versions of remote fetch-and-

add
a) a.x +=b.y ;
b) async (b) {
final int v = b.y;
async (a) atomic a.x += v;

Examples of X10 Arrays, Points, Regions, Distributions

// A is a local 1-D array, B is a distributed 2-D array
int[.] A = new int[[0:N-1]];
int[.] B = new int[dist.blockRows ([0:M-1,0:N-1])1;

}/.sérial pointwise for loop
for (point[j] : [1l:N-1]1) A[j] = £(A[j-11);

// intra-place pointwise parallel loop
foreach (point[j] : A.region) A[j] = g(A[]j]l):

// inter-place pointwise parallel loop
ateach (point[i,]j] : B.distribution) B[i,j] = h(B[1i,]]):

// Rank-independent version of previous loop
ateach (point p : B.distribution) B[p] = h(B[pl)

X10 Parallelism = Activities + Atomic + Places

Advantages:

1. Any program written with atomic, async, finish, foreach,
ateach, and clock parallel constructs will never deadlock

2. Inter-node and intra-node parallelism integrated in a single
model

3. Remote activity invocation subsumes one-sided data
transfer, remote atomic operations, active messages, . . .

4. Finish subsumes point-to-point and team synchronization

5. All remote data accesses are performed as activities --- rules
for ordering of remote accesses simply follows rules for
activity synchronization

Human Productivity Study
(Comparison of MPI, UPC, X10)

= Goals

= Contrast productivity of X10, UPC, and MPI for a statistically significant subject sample on a
programming task relevant to HPCS Mission Partners

= Validate the PERCS Productivity Methodology to obtain quantitative results that, given specific
populations and computational domains, will be of immediate and direct relevance to HPCS.

= Qverview

4.5 days: May 23-27, 2005 at the Pittsburgh Supercomputing Center (PSC)

Pool of 27 comparable student subjects

Programming task: Parallelizing the alignment portion of Smith-Waterman algorithm (SSCA#1)
3 language programming model combinations (X10, UPC, or C + MPI)

Equal environment as near as possible (e.g. pick of 3 editors, simple println stmts for debugging)
Provided expert training and support for each language

= References (3 papers in P-PHEC 2006, www.research.ibm.com/arl/pphec/PPHEC2006-
Proceedings-FINAL.pdf)

= “The Value Derived from the Observational Component in an Integrated Methodology for the Study of HPC
Programmer Productivity”, C.Danis, C.Halverson.

= “An Experiment in Measuring the Productivity of Three Parallel Programming Languages”, K.Ebcioglu,
V.Sarkar, T.El-Ghazawi, J.Urbanic.

= “The SUMS Methodology for Understanding Productivity: Validation Through a Case Study Applying X10,
UPC, and MPI to SSCA#1”, N.Nystrom, D.Weisser, J.Urbanic.

obtained correct
parallel output

did not obtain correct
parallel output
dropped out

documentation

First correct
parallel output
4 Begin development

Executing

" Cleaning
Parallelizing

I Debugging

% Authoring

“+ Accessing

» End development

—

IG.L..|||1

H\l.V -
|-
[
[
- =
=
-
n

- -'“*'l | '

time (minutes, excluding off-task and idle)

600 [

450 |

300 |

250 |

150 |

100 |

550 |

500 [
400 F
350 |

200 f

50 f

Average Development Time by Language

Comparing average development
times between languages, several
observations are clear:

Absolute Time

Oexecuting

Ocleaning

Oparallelizing

Odebugging

Oauthoring

O accessing
documentation

MPI

UPC
Language

X10

100%

percentage of total time (excluding off-task and idle)

50%

0%

Percentage of Total

MPI

UPC
Language

X10

Average development time for subjects
using X10 was significantly lower than
that for subjects using UPC and MPI.

The relative time debugging was
approximately the same for all
languages.

X10 programmers spent relatively more
time executing code and relatively less
time authoring and tidying code.

Subjects using MPI spent more time
accessing documentation (tutorials
were online; more documentation is
available).

A batch environment was used in this
study --- use of an interactive
environment will probably have a
significant.impact on development time
results

Habanero: the Big Picture

Parallel Applications

(subsets)

1) Habanero

X19 FOI”[I’QSS \ Habanero
el G g Programming Foreign Seq Java, C, Fortran
b S0 B Language Function 0
\\\\\\\A Interface
~~4& | 2)Habanero
Static 5) Habanero Vendor tools
Compiler Toolkit
2), 3), 4) will be 3) Habanero = Y Java
developed first for Virtual fp standard
X10 subset Machine Platform libraries
4) Habanero Vendor Platform
Concurrency S bilers & Librari
! sitspE Ty ompilers & Libraries
< MulticoreOS

< Multicore Hardware =~

Habanero Research Topics

1) Language Research (builds on X10)

» Explicit parallelism: hierarchical places for multicore

 Implicit deterministic parallelism: array views, parameter intents, HPF-style forall, Sisal-style
loops and arrays

« Implicit non-deterministic parallelism: unordered iterators, partially ordered statement blocks

2) Compiler research (new)

» New Parallel Intermediate Representation (PIR)

 Analysis and transformation of PIR

» Optimization of high-level arrays and iterators

Strength reduction of synchronization and STM operations

» Code partitioning for accelerators

3) Virtual machine research (builds on Jikes RVM)

« VM support for work-stealing scheduling algorithms with extensions for places, transactions,
task groups

 Integration and exploitation of lightweight profiling in VM scheduler and memory management
system

4) Concurrency library (builds on JUC and DSTM2 libraries)

» Fine-grained signal/wait, efficient transactions, new nonblocking data structures

5) Toolkit research (builds on Rice HPCtoolkit & Eclipse PTP)

* Program analysis for common parallel software errors

« Performance attribution of loops and inlined code using static and dynamic calling context

Target Applications

1) Parallel Benchmarks

« SSCA's #1, #2, #3 from DARPA HPCS program

* NAS Parallel Benchmarks

« Java Grande Forum benchmarks

2) Signal Processing

» Back-end processing for Compressive Sensing (www.dsp.ece.rice.edu/cs)

« Contact: Rich Baranuik (Rice)

3) Seismic Data Processing

* Rice Inversion project (www.trip.caam.rice.edu)

« Contact: Bill Symes (Rice)

4) Computer Graphics and Visualization

« Mathematical modeling and smoothing of meshes

« Contact: Joe Warren (Rice)

5) Fock Matrix Construction

« Contacts: David Bernholdt, Wael Elwasif, Robert Harrison, Annirudha Shet
(ORNL)

6) Molecular Dynamics

« www.cs.sandia.gov/~sjplimp/download.html

« Contact: Steve Plimpton

Additional suggestions welcome

X

><

ekForce 86600GT.

€

Habanero Team

Habanero: Extending X10 Deployments for
Heterogeneous Multicore

X10 Data Structures

X10 language defines

mapping from X10 objects i
& activities to X10 places

X10 Places
Physical PEs
H Het
Mutt-coro Accaterators.
M B i A
Sache wH Hi H LLWIT)ﬂ H ‘ T TL TJ
= = I = B
B = R E—

Possible X10 Deployment for Cell

Place1 Place2 Place3 Place4 Place5 Place 6

Place 7 Place 8

5PU [EPu [P PU [P PU 5PU [EPu
| SXU [sxu ([{l] sxu [{[i[sxu Il XU | XU | SXu i SXU
v k N 3 3 v v v
LS LS LS LS LS LS LS LS
| sme |l smr |/ smr || smF I smr | smF || smF || smF |
6Bicycle] v v v v v v v
EIB (up to 96B/cycle)
y
PPE 16B/cycle 16Blcycle 16Blcycle (2x)
A4 YY
PPU
L3P XU
Bicy¢le 16Bf¢ycle
Dual FlexlO™
— Place 0 — XDR™

64-bit Power Architecture with VMX

= Basic Approach:

map 9 places on to PPE +
eight SPEs

Use finish & async’s as high-
level representation of DMAs

= (Challenges:

Weak PPE
SIMDization is critical

Lack of hardware support for
coherence

Limited memory on SPE's

Limited performance of code
with frequent conditional or
indirect branches

Different ISA's for PPE and
SPE.

Possible Deployment on Nvidia G80
(with extensions to support hierarchies of places)

Host Device (hierarchy of places)
Device (Place 0)
Grid 1
Multiprocessor N
Kernel » Block Block Block
. 1 (0, 0) (1, 0) (2,0)
Multiprocessor 2

Multiprocessor 1

Block~" Block | Block
(0, 1) (1,1 1 (21)

/ I,
Vi . /
/" Grid 2
- Instruction Kernel —<—}
Unit 2 i

Processor1| | Processor2 ©®®°® |Processor M) // v
J 4 “ ‘\‘
A A] | Y

Block (1, 1)

Opportunities for Broader Impact w/ Collaborators

= Education

» [nfluence how parallelism is taught in introductory Computer
Science courses

= (Open Source

= Build an open source testbed to grow ecosystem for
researchers in Parallel Software area

» |ndustry standards

= Qur research results can be used as proofs of concept for
new features being standardized

» [nfrastructure can provide foundation for reference
Implementations

Conclusion

Homogeneous Heterogeneous High Performance
Multi-core Accelerators Clusters

.:-
Bo
|ﬁr”_§ﬁ|_f SMF

‘ T I I I Hl TL Tl Tl Tl
EIB (up to 96Blcycle)
P 16Blcycle 16Blcycle 16Bl/cycle (2x) |

= |3
= T 1=

<>

PE | |
PPU mic BIC
wtexu| T [T $
Blcydd 16B{dycle
Dual Flexio™
XDR™

64-bit Power Architecture with VMX

Portable Parallel Programming for Heterogeneous Multicore Computing is achievable with
advances in languages, compilers, runtimes, and tools

