
ManyCoreManyCore Computing: Computing: ManyCoreManyCore Computing: Computing:
The Impact on Numerical The Impact on Numerical

Software for Linear Algebra Software for Linear Algebra
Libraries Libraries Libraries Libraries

kJack Dongarra
INNOVATIVE COMP ING LABORATORY

U i i f TUniversity of Tennessee
Oak Ridge National Laboratory

University of Manchester

11/12/2007 1

Performance ProjectionPerformance Projection
Top500 DataTop500 Datapp

1 F/s
100 PF/s

SUM
1 PF/s

10 PF/s

SUM

1 TF/s

100 TF/s

10 TF/s

N=1

1 TF/s

100 GF/s

10 GF/

N=5001 GF/s

10 GF/s

2

1993 1995 1997 1999 2001 2003 2005 2007 2009
100 MF/s

What Will a What Will a PetascalePetascale System Looks Like?System Looks Like?

Possible Petascale System

1. # of cores per nodes 10 – 100 coresp

2. Performance per nodes 100 – 1,000 GFlop/s

3. Number of nodes 1,000 - 10,000 nodes

4 Latency inter nodes 1 μsec4. Latency inter-nodes 1 μsec

5. Bandwidth inter-nodes 10 GB/s

6. Memory per nodes 10 GB

• Part I: First rule in linear algebra: Have an efficient DGEMM
Motivation in

2. performance per node 5. bandwidth inter-nodes 6. memory per nodes p p y p
• Part II: Algorithms for multicore and latency avoiding algorithms for

LU, QR …
Motivation in:

1 Number of cores per node 2 performance per node 4 Latency inter-nodes1. Number of cores per node 2. performance per node 4. Latency inter nodes
• Part III: Algorithms for fault tolerance

Motivation in:
1. Number of cores per node 3. number of nodes

Major Changes to SoftwareMajor Changes to Software
• Must rethink the design of our

softwaresoftware
Another disruptive technology
• Similar to what happened with cluster

computing and message passing
Rethink and rewrite the applications,
algorithms and softwarealgorithms, and software

• Numerical libraries for example will
changechange

For example, both LAPACK and
ScaLAPACK will undergo major changes

4

g j g
to accommodate this

Coding for an Coding for an Abstract Abstract MMulticoreulticore
Parallel software for multicores should have two
characteristics:
•Fine granularity:

high level of parallelism is needed
cores will probably be associated with relatively smallcores will probably be associated with relatively small
local memories. This requires splitting an operation into
tasks that operate on small portions of data in order to
reduce bus traffic and improve data localityreduce bus traffic and improve data locality.

•Asynchronicity: as the degree of TLP grows and
granularity of the operations becomes smaller, the
presence of synchronization points in a parallel execution
seriously affects the efficiency of an algorithm.

ManyCoreManyCore -- Parallelism for the Parallelism for the
MassesMasses

• We are looking at the following g g
concepts in designing the next
numerical library implementationy p

Dynamic Data Driven Execution
Self Adaptingp g
Block Data Layout
Mixed Precision in the AlgorithmMixed Precision in the Algorithm
Exploit Hybrid Architectures
Fault Tolerant Methods Fault Tolerant Methods

6

A New Generation of Software:A New Generation of Software:

Algorithms follow hardware evolution in time

LINPACK (70’s)
(Vector operations)

Rely on
Level 1 BLAS(Vector operations) - Level-1 BLAS

operations

LAPACK (80’s) Rely on LAPACK (80 s)
(Blocking, cache
friendly)

Rely on
- Level-3 BLAS

operations

ScaLAPACK (90’s)
(Distributed Memory)

Rely on
- PBLAS Mess Passing

PLASMA (00’s) Rely on
New Algorithms
(many-core friendly)

- a DAG/scheduler
- block data layout
- some extra kernels

Those new algorithms
h l l it th l ll (lti t l ti)- have a very low granularity, they scale very well (multicore, petascale computing, …)

- removes a lots of dependencies among the tasks, (multicore, distributed computing)
- avoid latency (distributed computing, out-of-core)
- rely on fast kernels

Those new algorithms need new kernels and rely on efficient scheduling algorithms.

A New Generation of Software:A New Generation of Software:
Parallel Linear Algebra Software for Parallel Linear Algebra Software for MulticoreMulticore Architectures (PLASMA)Architectures (PLASMA)

Algorithms follow hardware evolution in time

LINPACK (70’s)
(Vector operations)

Rely on
Level 1 BLAS(Vector operations) - Level-1 BLAS

operations

LAPACK (80’s) Rely on LAPACK (80 s)
(Blocking, cache
friendly)

Rely on
- Level-3 BLAS

operations

ScaLAPACK (90’s)
(Distributed Memory)

Rely on
- PBLAS Mess Passing

PLASMA (00’s) Rely on
New Algorithms
(many-core friendly)

- a DAG/scheduler
- block data layout

These new algorithms
h l l it th l ll (lti t l ti)- have a very low granularity, they scale very well (multicore, petascale computing, …)

- removes a lots of dependencies among the tasks, (multicore, distributed computing)
- avoid latency (distributed computing, out-of-core)
- rely on fast kernels

Those new algorithms need new kernels and rely on efficient scheduling algorithms.

Developing Developing PParallel arallel AAlgorithmslgorithms

parallelism

LAPACK LAPACK

Threaded
BLAS

parallelism

sPThreads OpenMP

PThreads OpenMP sequential
BLAS

sequential
BLAS

Steps in the LAPACK LUSteps in the LAPACK LU
DGETF2 LAPACK

(Factor a panel)

DLSWP LAPACK
(B k d)

DLSWP LAPACK

(Backward swap)

DLSWP LAPACK
(Forward swap)

DTRSM BLAS
(Triangular solve)

10
DGEMM BLAS

(Matrix multiply)

LU Timing Profile (4 LU Timing Profile (4 core core system)system)
Threads – no lookahead

Time for each component
DGETF2
DLASWP(L)
DLASWP(R)
DTRSM
DGEMM

DGETF2

DLSWP

DLSWP

DTRSM

DGEMMBulk Sync PhasesBulk Sync Phases

Adaptive Lookahead Adaptive Lookahead -- DynamicDynamic

12Event Driven MultithreadingEvent Driven Multithreading
Reorganizing

algorithms to use
this approach

ForkFork--Join vs. Dynamic ExecutionJoin vs. Dynamic Execution
A

C

A

B C

T TT Fork-Join – parallel BLAS

Time

Experiments on Experiments on
13

pe e ts ope e ts o
Intel’s Quad Core Clovertown Intel’s Quad Core Clovertown
with 2 Sockets w/ 8 Treadswith 2 Sockets w/ 8 Treads

ForkFork--Join vs. Dynamic ExecutionJoin vs. Dynamic Execution
A

C

A

B C

T TT Fork-Join – parallel BLAS

Time

DAG-based – dynamic scheduling

Experiments on Experiments on

Time
saved

14

pe e ts ope e ts o
Intel’s Quad Core Clovertown Intel’s Quad Core Clovertown
with 2 Sockets w/ 8 Treadswith 2 Sockets w/ 8 Treads

Achieving Achieving AAsynchronicitysynchronicity

The matrix factorization can beThe matrix factorization can be
represented as a DAG:
•nodes: tasks that operate on “tiles”
•edges: dependencies among tasks•edges: dependencies among tasks

Tasks can be scheduled
asynchronously and in any order as
long as dependencies are not
violated.

Achieving Achieving AAsynchronicitysynchronicity

A critical path can be defined as theA critical path can be defined as the
shortest path that connects all the
nodes with the higher number of

t i doutgoing edges.

Priorities:Priorities:

Achieving asynchronicityAchieving Achieving AAsynchronicitysynchronicity

Very fine granularity
Few dependencies, i.e., high

flexibility for the scheduling offlexibility for the scheduling of
tasks asynchronous
scheduling
No idle timesNo idle times
Some degree of adaptativity
Better locality thanks to block

data layout

CholeskyCholesky Factorization Factorization
DAGDAG--based based Dependency TrackingDependency Tracking

1:1

1:
1

1: 1: 1:1:1

1:2 2:2

1:
2

1:
3

1:
4

2:
2

2:
3

2:
4

1:3 2:3 3:3

2 3 4

2:
2

1:4 2:4 3:4 4:4
2:
3

2:
4

3: 3:Dependencies expressed by the DAG 3:
3

3:
4

3:
3

Dependencies expressed by the DAG
are enforced on a tile basis:

fine-grained parallelization
flexible scheduling 3

CholeskyCholesky on the IBM Cellon the IBM Cell

Pi li iPipelining:
Between loop iterations.

Double Buffering:
Within BLAS

Result:

Within BLAS,
Between BLAS,
Between loop iterations.

Minimum load imbalance,
Minimum dependency stalls,
Minimum memory stalls

(no waiting for data).

19

(g)

Achieves 174 Gflop/s; 85% of peak in SP.

CholeskyCholesky -- Using 2 Cell ChipsUsing 2 Cell Chips

20

Parallelism in LAPACK: Parallelism in LAPACK: Blocked StorageBlocked Storage

Column-MajorColumn Major

Parallelism in LAPACK: Parallelism in LAPACK: Blocked Blocked SStoragetorage

Column-Major BlockedColumn Major Blocked

Parallelism in LAPACK: blocked storageParallelism in LAPACK: blocked storage

Column-Major BlockedColumn Major Blocked

Parallelism in LAPACK: Parallelism in LAPACK: Blocked Blocked SStoragetorage
The use of blocked storage can significantly
improve performance

2

Blocking Speedup

p p

1.4

1.6

1.8

2

DGEMM
DTRSM

0.8

1

1.2

sp
ee

du
p

0

0 .2

0.4

0.6

64 128 256
0

block size

MulticoreMulticore Friendly AlgorithmsFriendly Algorithms

QR Factorization -- 2-socket Clovertown
(Peak 85 12 Gflop/s)

50

60

(Peak 85.12 Gflop/s)

DAG based, Tiled

40

50

s

Intel MKL

20

30

G
flo

p/
s

LAPACK BLAS Threading

0

10

0 2000 4000 6000 8000 10000 12000 140000 2000 4000 6000 8000 10000 12000 14000

problem size

Intel’s Intel’s ClovertownClovertown Quad CoreQuad CoreQQ
1. LAPACK (BLAS Fork-Join Parallelism)

2. ScaLAPACK (Mess Pass using mem copy)
3. DAG Based (Dynamic Scheduling)

3 Implementations of LU factorization3 Implementations of LU factorization
Quad core w/2 sockets per board, w/ 8 TreadsQuad core w/2 sockets per board, w/ 8 Treads

35000

40000

45000

25000

30000

35000

p/
s

15000

20000M
flo

8 Core Experiments

0

5000

10000
8 Core Experiments

26

0
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000 12000 13000 14000 15000

Problems Size

With With the the Hype on Hype on Cell & PS3Cell & PS3
We Became Interested We Became Interested We Became Interested We Became Interested

• The PlayStation 3's CPU based on a "Cell“ processor
• Each Cell contains a Power PC processor and 8 SPEs. (SPE is processing unit,

SPE: SPU + DMA engine)
An SPE is a self contained vector processor which acts independently from the
others.

• 4 way SIMD floating point units capable of a total of 25.6 Gflop/s @ 3.2 GHZ

204 8 Gflop/s peak!204.8 Gflop/s peak!
The catch is that this is for 32 bit floating point; (Single Precision SP)
And 64 bit floating point runs at 14.6 Gflop/s total for all 8 SPEs!!

• Divide SP peak by 14; factor of 2 because of DP and 7 because of latency issues

SPE ~ 25 Gflop/s peak

27

Moving Data Around on the Cell

256 KB256 KB

Injection bandwidth
25.6 GB/s

Injection bandwidth Injection bandwidthInjection bandwidth

Worst case memory bound operations (no reuse of data)
3 data movements (2 in and 1 out) with 2 ops (SAXPY)
For the cell would be 4.6 Gflop/s (25.6 GB/s*2ops/12B)

32 or 64 bit Floating Point Precision?32 or 64 bit Floating Point Precision?
• A long time ago 32 bit floating point was

used
S ill d i i ifi b li i dStill used in scientific apps but limited

• Most apps use 64 bit floating point
Accumulation of round off errorAccumulation of round off error

• A 10 TFlop/s computer running for 4 hours performs > 1
Exaflop (1018) ops.

Ill conditioned problemsp
IEEE SP exponent bits too few (8 bits, 10±38)
Critical sections need higher precision

• Sometimes need extended precision (128 bit fl pt)Sometimes need extended precision (128 bit fl pt)
However some can get by with 32 bit fl pt in
some parts

• Mixed precision a possibility
29

• Mixed precision a possibility
Approximate in lower precision and then refine
or improve solution to high precision.

Idea Goes Something Like This…Idea Goes Something Like This…
• Exploit 32 bit floating point as much as

possible.
Especially for the bulk of the computation

• Correct or update the solution with selective
use of 64 bit floating point to provide a
refined results

• Intuitively:
Compute a 32 bit result,
C l l t ti t 32 bit lt i Calculate a correction to 32 bit result using
selected higher precision and,
Perform the update of the 32 bit results with the

30

Perform the update of the 32 bit results with the
correction using high precision.

MixedMixed--Precision Iterative RefinementPrecision Iterative Refinement
It ti fi t f d t A b k thi

L U = lu(A) SINGLE O(n3)
x = L\(U\b) SINGLE O(n2)

• Iterative refinement for dense systems, Ax = b, can work this
way.

x L\(U\b) ()
r = b – Ax DOUBLE O(n2)
WHILE || r || not small enough

z = L\(U\r) SINGLE O(n2)
x = x + z DOUBLE O(n1)x = x + z DOUBLE O(n)
r = b – Ax DOUBLE O(n2)

END

Wilkinson, Moler, Stewart, & Higham provide error bound for SP fl pt
results when using DP fl pt.

31

MixedMixed--Precision Iterative RefinementPrecision Iterative Refinement
It ti fi t f d t A b k thi

L U = lu(A) SINGLE O(n3)
x = L\(U\b) SINGLE O(n2)

• Iterative refinement for dense systems, Ax = b, can work this
way.

x L\(U\b) ()
r = b – Ax DOUBLE O(n2)
WHILE || r || not small enough

z = L\(U\r) SINGLE O(n2)
x = x + z DOUBLE O(n1)x = x + z DOUBLE O(n)
r = b – Ax DOUBLE O(n2)

END

Wilkinson, Moler, Stewart, & Higham provide error bound for SP fl pt
results when using DP fl pt.
It can be shown that using this approach we can compute the solution It can be shown that using this approach we can compute the solution
to 64-bit floating point precision.

• Requires extra storage, total is 1.5 times normal;
• O(n3) work is done in lower precision

32

() p
• O(n2) work is done in high precision

• Problems if the matrix is ill-conditioned in sp; O(108)

Results for Mixed Precision Iterative
Refinement for Dense Ax = b

Architecture (BLAS)
1 Intel Pentium III Coppermine (Goto)
2 Intel Pentium III Katmai (Goto)
3 Sun UltraSPARC IIe (Sunperf)
4 Intel Pentium IV Prescott (Goto)
5 Intel Pentium IV-M Northwood (Goto)
6 AMD Opteron (Goto)
7 Cray X1 (libsci)
8 IBM Power PC G5 (2 7 GHz) (VecLib)8 IBM Power PC G5 (2.7 GHz) (VecLib)
9 Compaq Alpha EV6 (CXML)
10 IBM SP Power3 (ESSL)
11 SGI Octane (ATLAS)

• Single precision is faster than DP because:
Higher parallelism within vector units

4 ops/cycle (usually) instead of 2 ops/cycle
Reduced data motionReduced data motion

32 bit data instead of 64 bit data
Higher locality in cache

More data items in cache

Results for Mixed Precision Iterative
Refinement for Dense Ax = b

Architecture (BLAS)
1 Intel Pentium III Coppermine (Goto)
2 Intel Pentium III Katmai (Goto)
3 Sun UltraSPARC IIe (Sunperf)
4 Intel Pentium IV Prescott (Goto)
5 Intel Pentium IV-M Northwood (Goto)
6 AMD Opteron (Goto)
7 Cray X1 (libsci)
8 IBM Power PC G5 (2 7 GHz) (VecLib)8 IBM Power PC G5 (2.7 GHz) (VecLib)
9 Compaq Alpha EV6 (CXML)
10 IBM SP Power3 (ESSL)
11 SGI Octane (ATLAS)

A hi (BLAS MPI) # DP S l DP S l #Architecture (BLAS-MPI) # procs n DP Solve
/SP Solve

DP Solve
/Iter Ref

iter

AMD Opteron (Goto – OpenMPI MX) 32 22627 1.85 1.79 6

AMD Opteron (Goto – OpenMPI MX) 64 32000 1 90 1.83 6

• Single precision is faster than DP because:
Higher parallelism within vector units

4 ops/cycle (usually) instead of 2 ops/cycle
Reduced data motion

1.90 1.83

Reduced data motion
32 bit data instead of 64 bit data

Higher locality in cache
More data items in cache

IBM Cell 3.2 GHz, Ax = bIBM Cell 3.2 GHz, Ax = b
250

200

SP Peak (204 Gflop/s)

SP Ax=b IBM
30

8 SGEMM (Embarrassingly Parallel)

100

150

G
Fl

op
/s DP Peak (15 Gflop/s)

DP Ax=b IBM

.30 secs

50

0
0 500 1000 1500 2000 2500 3000 3500 4000 4500

3.9 secs

35

Matrix Size

IBM Cell 3.2 GHz, Ax = bIBM Cell 3.2 GHz, Ax = b
250

200

SP Peak (204 Gflop/s)
SP Ax=b IBM

30

8 SGEMM (Embarrassingly Parallel)

100

150

G
Fl

op
/s

DSGESV
DP Peak (15 Gflop/s)
DP Ax=b IBM

.30 secs

.47 secs

50

100

8.3X

0
0 500 1000 1500 2000 2500 3000 3500 4000 4500

3.9 secs

36

0 500 1000 1500 2000 2500 3000 3500 4000 4500

Matrix Size

CholeskyCholesky on the Cellon the Cell, , Ax=b, A=AAx=b, A=ATT, , xxTTAxAx > 0> 0

Single precision performance

Mixed precision performance using iterative refinement
Method achieving 64 bit accuracy

33 37For the SPE’s standard C code and C language SIMD extensions (intrinsics)

Sparse Linear AlgebraSparse Linear Algebra

• Computational speed 24s)Computational speed
doesn't matter
• Peak 204 Gflop/s

M b tt
18

20

22 64 bytes
128 bytes
256 bytes
512 bytes

w
id

th
 (G

B
/s

• Memory bus matters
• 25 GB/s = 12 Gflop/s

• Assuming matrix read 12

14

16

m
or

y
B

an
dw

from memory

• In practice ~6 Gflop/s
• In SP using 8 SPEs 6

8

10
eg

at
e

M
em

1 2 3 4 5 6 7 8

2

4

Ag
gr

e

33

Synergistic Processing Elements

What About That PS3?What About That PS3?
25.6 Gflop/s 25.6 Gflop/s 25.6 Gflop/s 25.6 Gflop/s

SIT CELL
PE PE PE PE

SIT CELL200 GB/s

PowerPC

PE PE PE PE

25.6 Gflop/s 25.6 Gflop/s 25.6 Gflop/s 25.6 Gflop/s

25 GB/s

3.2 GHz
25 GB/ i j ti b d idth

512 MiB
25 GB/s injection bandwidth
200 GB/s between SPEs
32 bit peak perf 8*25.6 Gflop/s

204.8 Gflop/s peak
64 bit peak perf 8*1.8 Gflop/sp p p

14.6 Gflop/s peak
512 MiB memory

PS3 Hardware OverviewPS3 Hardware Overview
Disabled/Broken: Yield issues25.6 Gflop/s 25.6 Gflop/s 25.6 Gflop/s

SIT CELL
PE PE PE

SIT CELL200 GB/s
GameOS

Hypervisor
PowerPC

PE PE PE

25.6 Gflop/s 25.6 Gflop/s 25.6 Gflop/s

25 GB/s
3.2 GHz
25 GB/s injection bandwidth
200 GB/s between SPEs

256 MiB
200 GB/s between SPEs
32 bit peak perf 6*25.6 Gflop/s

153.6 Gflop/s peak
64 bit peak perf 6*1.8 Gflop/s

10.8 Gflop/s peak
1 Gb/s NIC
256 MiB memory

HPC in the Living RoomHPC in the Living Room

33 41

Matrix Multiple on a 4 Node PlayStation3 Cluster

What's good
Very cheap: ~4$ per Gflop/s (with 32

bit fl pt theoretical peak)
F t l l t ti b t SPE

What's bad
Gigabit network card. 1 Gb/s is too

little for such computational power (150
Gflop/s per node)Fast local computations between SPEs

Perfect overlap between
communications and computations is
possible (Open-MPI running):

Gflop/s per node)
Linux can only run on top of GameOS

(hypervisor)
Extremely high network access

l t i (120)PPE does communication via MPI
SPEs do computation via SGEMMs

latencies (120 usec)
Low bandwidth (600 Mb/s)

Only 256 MB local memory
Only 6 SPEs

33 Gold: Computation: 8 ms
Blue: Communication: 20 ms

SUMMA Model vs Measures 1 SPE

SUMMA on a 2x2 PlayStation3 clusterSUMMA on a 2x2 PlayStation3 cluster

95
100

SUMMA -- Model vs Measures 1 SPE

75
80
85
90

60
65
70
75

Model 1 SPEG
flo

p/
s

45
50
55 Measures 1 SPE

0 2000 4000 6000 8000
35
40

problem size

33

problem size

SUMMA Model vs Measures 1 SPE

SUMMA on a 2x2 PlayStation3 clusterSUMMA on a 2x2 PlayStation3 cluster

95
100

SUMMA -- Model vs Measures 1 SPE

75
80
85
90

60
65
70
75

Model 1 SPEG
flo

p/
s

45
50
55 Measures 1 SPE

0 2000 4000 6000 8000
35
40

problem size

33

problem size

Users Guide for SC on PS3Users Guide for SC on PS3

• SCOP3: A Rough • SCOP3: A Rough
Guide to Scientific
Computing on the Computing on the
PlayStation 3
S b • See webpage
for details

33

How to Deal with Complexity? How to Deal with Complexity?

• Adaptivity is the key for applications to • Adaptivity is the key for applications to
effectively use available resources whose
complexity is exponentially increasingp y p y g

• Goal:
Automatically bridge the gap between the y g g p
application and computers that are rapidly
changing and getting more and more complex

SelfSelf--Adapting SoftwareAdapting Software

• Variation• Variation
Many different algorithm
implementation are generatedimplementation are generated
automatically and tested for
performance

• Selection
The best performing implementation isThe best performing implementation is
sought by optimization

SelfSelf--Adapting SoftwareAdapting Software

Huge search space (algorithms, parameters,...)

Generate + Adapt (once per target) → Use (often)Generate Adapt (once per target) Use (often)

Variation SelectionVariation Selection

Automatic Performance Tuning

48

SelfSelf--Adapting Adapting SoftwareSoftware

Automatically generated HW adapted libraries
Large sections of straight-line code produced

Examplesp

Numerical linear algebra: ATLAS, OSKI

Discrete Fourier transforms: FFTW

Digital signal processing: SPIRALg g p g

MPI Collectives (UCB, UTK) FT-MPI

49

Generic Code OptimizationGeneric Code Optimization

• Can ATLAS-like techniques be applied to arbitrary code?
• What do we mean by ATLAS-like techniques?What do we mean by ATLAS like techniques?

Blocking
Loop unrollingp g
Data prefetch
Functional unit scheduling
etc.

• Referred to as empirical optimization
G t i tiGenerate many variations
Pick the best implementation by measuring the
performanceperformance

Applying Self Adapting SoftwareApplying Self Adapting Software

• Numerical and Non-numerical
li tiapplications

BLAS like ops / message passing collectives

• Static or Dynamic determine code to be
used

Perform at make time / every time invoked

• Independent or dependent on data Independent or dependent on data
presented

Same on each data set / depends on Same on each data set / depends on
properties of data

51

Multi, Many, …, ManyMulti, Many, …, Many--MoreMore
• Parallelism for the masses
• Multi, Many, Many-MoreCoreMulti, Many, Many MoreCore

are here and coming fast
• Our approach for numerical libraries:

Use Dynamic DAG based scheduling
Minimize sync - Non-blocking communication
Maximize locality - Block data layouty y

• Autotuners should take on a larger, or at least
complementary, role to compilers in translating
parallel programsparallel programs.

• What’s needed is a long-term, balanced
investment in hardware, software, algorithms and , , g
applications in the HPC Ecosystem.

52

Collaborators / SupportCollaborators / Support

Alfredo Buttari, UTK
J li L g Julien Langou,

UColorado
Julie Langou, UTKg ,
Piotr Luszczek,

MathWorks
J k b K k UTKJakub Kurzak, UTK
Stan Tomov, UTK

33

