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What Will a What Will a PetascalePetascale System Looks Like?System Looks Like?

Possible Petascale System

1. # of cores per nodes 10 – 100 coresp

2. Performance per nodes 100 – 1,000 GFlop/s

3. Number of nodes 1,000 - 10,000 nodes

4  Latency inter nodes 1 μsec4. Latency inter-nodes 1 μsec

5. Bandwidth inter-nodes 10 GB/s

6. Memory per nodes 10 GB

• Part I: First rule in linear algebra: Have an efficient DGEMM
Motivation in 

2. performance per node     5. bandwidth inter-nodes     6. memory per nodes p p y p
• Part II: Algorithms for multicore and latency avoiding algorithms for 

LU, QR …
Motivation in:

1  Number of cores per node     2  performance per node     4  Latency inter-nodes1. Number of cores per node     2. performance per node     4. Latency inter nodes
• Part III: Algorithms for fault tolerance

Motivation in:
1. Number of cores per node     3. number of nodes



Major Changes to SoftwareMajor Changes to Software
• Must rethink the design of our 

softwaresoftware
Another disruptive technology
• Similar to what happened with cluster 

computing and message passing
Rethink and rewrite the applications, 
algorithms  and softwarealgorithms, and software

• Numerical libraries for example will 
changechange

For example, both LAPACK and 
ScaLAPACK will undergo major changes 
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Coding for an Coding for an Abstract Abstract MMulticoreulticore
Parallel software for multicores should have two 
characteristics:
•Fine granularity: 

high level of parallelism is needed
cores will probably be associated with relatively smallcores will probably be associated with relatively small 
local memories. This requires splitting an operation into 
tasks that operate on small portions of data in order to 
reduce bus traffic and improve data localityreduce bus traffic and improve data locality.

•Asynchronicity: as the degree of TLP grows and 
granularity of the operations becomes smaller, the 
presence of synchronization points in a parallel execution 
seriously affects the efficiency of an algorithm.



ManyCoreManyCore -- Parallelism for the Parallelism for the 
MassesMasses

• We are looking at the following g g
concepts in designing the next 
numerical library implementationy p

Dynamic Data Driven Execution
Self Adaptingp g
Block Data Layout
Mixed Precision in the AlgorithmMixed Precision in the Algorithm
Exploit Hybrid Architectures
Fault Tolerant Methods Fault Tolerant Methods 
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A New Generation of Software:A New Generation of Software:

Algorithms follow hardware evolution in time

LINPACK (70’s)
(Vector operations)

Rely on 
Level 1 BLAS(Vector operations) - Level-1 BLAS

operations

LAPACK (80’s) Rely on LAPACK (80 s)
(Blocking, cache 
friendly)

Rely on 
- Level-3 BLAS 

operations

ScaLAPACK (90’s)
(Distributed Memory)

Rely on 
- PBLAS Mess Passing

PLASMA (00’s) Rely on 
New Algorithms 
(many-core friendly)

- a DAG/scheduler
- block data layout
- some extra kernels

Those new algorithms 
h l l it th l ll ( lti t l ti )- have a very low granularity, they scale very well (multicore, petascale computing, … )

- removes a lots of dependencies among the tasks, (multicore, distributed computing)
- avoid latency (distributed computing, out-of-core)
- rely on fast kernels 

Those new algorithms need new kernels and rely on efficient scheduling algorithms.



A New Generation of Software:A New Generation of Software:
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Developing Developing PParallel arallel AAlgorithmslgorithms

parallelism

LAPACK LAPACK

Threaded
BLAS

parallelism

sPThreads OpenMP

PThreads OpenMP sequential
BLAS

sequential
BLAS



Steps in the LAPACK LUSteps in the LAPACK LU
DGETF2 LAPACK

(Factor a panel)

DLSWP LAPACK
(B k d )

DLSWP LAPACK

(Backward swap)

DLSWP LAPACK
(Forward swap)

DTRSM BLAS
(Triangular solve)
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DGEMM BLAS

(Matrix multiply)



LU Timing Profile (4 LU Timing Profile (4 core core system)system)
Threads – no lookahead

Time for each component
DGETF2
DLASWP(L)
DLASWP(R)
DTRSM
DGEMM

DGETF2

DLSWP

DLSWP

DTRSM

DGEMMBulk Sync PhasesBulk Sync Phases



Adaptive Lookahead Adaptive Lookahead -- DynamicDynamic

12Event Driven MultithreadingEvent Driven Multithreading
Reorganizing 

algorithms to use 
this approach



ForkFork--Join vs. Dynamic ExecutionJoin vs. Dynamic Execution
A

C

A

B C

T TT Fork-Join – parallel BLAS

Time

Experiments on Experiments on 
13

pe e ts ope e ts o
Intel’s Quad Core Clovertown Intel’s Quad Core Clovertown 
with 2 Sockets w/ 8 Treadswith 2 Sockets w/ 8 Treads



ForkFork--Join vs. Dynamic ExecutionJoin vs. Dynamic Execution
A

C

A

B C

T TT Fork-Join – parallel BLAS

Time

DAG-based – dynamic scheduling

Experiments on Experiments on 

Time 
saved
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pe e ts ope e ts o
Intel’s Quad Core Clovertown Intel’s Quad Core Clovertown 
with 2 Sockets w/ 8 Treadswith 2 Sockets w/ 8 Treads



Achieving Achieving AAsynchronicitysynchronicity

The matrix factorization can beThe matrix factorization can be 
represented as a DAG:
•nodes: tasks that operate on “tiles”
•edges: dependencies among tasks•edges: dependencies among tasks

Tasks can be scheduled 
asynchronously and in any order as 
long as dependencies are not 
violated.



Achieving Achieving AAsynchronicitysynchronicity

A critical path can be defined as theA critical path can be defined as the 
shortest path that connects all the 
nodes with the higher number of 

t i doutgoing edges. 

Priorities:Priorities:



Achieving asynchronicityAchieving Achieving AAsynchronicitysynchronicity

Very fine granularity
Few dependencies, i.e., high 

flexibility for the scheduling offlexibility for the scheduling of 
tasks         asynchronous 
scheduling
No idle timesNo idle times
Some degree of adaptativity
Better locality thanks to block 

data layout



CholeskyCholesky Factorization Factorization 
DAGDAG--based based Dependency TrackingDependency Tracking
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Dependencies expressed by the DAG
are enforced on a tile basis:

fine-grained parallelization
flexible scheduling 3



CholeskyCholesky on the IBM Cellon the IBM Cell

Pi li iPipelining:
Between loop iterations.

Double Buffering:
Within BLAS

Result:

Within BLAS,
Between BLAS,
Between loop iterations.

Minimum load imbalance,
Minimum dependency stalls,
Minimum memory stalls

(no waiting for data).
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( g )

Achieves 174 Gflop/s;  85% of peak in SP.



CholeskyCholesky -- Using 2 Cell ChipsUsing 2 Cell Chips
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Parallelism in LAPACK: Parallelism in LAPACK: Blocked StorageBlocked Storage

Column-MajorColumn Major



Parallelism in LAPACK: Parallelism in LAPACK: Blocked Blocked SStoragetorage

Column-Major BlockedColumn Major Blocked



Parallelism in LAPACK: blocked storageParallelism in LAPACK: blocked storage

Column-Major BlockedColumn Major Blocked



Parallelism in LAPACK: Parallelism in LAPACK: Blocked Blocked SStoragetorage
The use of blocked storage can significantly 
improve performance

2
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MulticoreMulticore Friendly AlgorithmsFriendly Algorithms

QR Factorization -- 2-socket Clovertown
(Peak 85 12 Gflop/s)
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Intel’s Intel’s ClovertownClovertown Quad CoreQuad CoreQQ
1. LAPACK (BLAS Fork-Join Parallelism)

2. ScaLAPACK (Mess Pass using mem copy)
3. DAG Based (Dynamic Scheduling)

3 Implementations of LU factorization3 Implementations of LU factorization
Quad core w/2 sockets per board, w/ 8 TreadsQuad core w/2 sockets per board, w/ 8 Treads
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With With the the Hype on Hype on Cell & PS3Cell & PS3
We Became Interested We Became Interested We Became Interested We Became Interested 

• The PlayStation 3's CPU based on a "Cell“ processor
• Each Cell contains a Power PC processor and 8 SPEs. (SPE is processing unit, 

SPE: SPU + DMA engine)
An SPE is a self contained vector processor which acts independently from the 
others. 

• 4 way SIMD floating point units capable of a total of 25.6 Gflop/s @ 3.2 GHZ

204 8 Gflop/s peak!204.8 Gflop/s peak!
The catch is that this is for 32 bit floating point; (Single Precision SP) 
And 64 bit floating point runs at 14.6 Gflop/s total for all 8 SPEs!! 

• Divide SP peak by 14; factor of 2 because of DP and 7 because of latency issues

SPE ~ 25 Gflop/s peak

27



Moving Data Around on the Cell

256 KB256 KB

Injection bandwidth
25.6 GB/s

Injection bandwidth Injection bandwidthInjection bandwidth

Worst case memory bound operations (no reuse of data) 
3 data movements (2 in and 1 out) with 2 ops (SAXPY)
For the cell would be 4.6 Gflop/s (25.6 GB/s*2ops/12B)



32 or 64 bit Floating Point Precision?32 or 64 bit Floating Point Precision?
• A long time ago 32 bit floating point was 

used
S ill d i  i ifi   b  li i dStill used in scientific apps but limited

• Most apps use 64 bit floating point
Accumulation of round off errorAccumulation of round off error

• A 10 TFlop/s computer running for 4 hours performs > 1 
Exaflop (1018) ops. 

Ill conditioned problemsp
IEEE SP exponent bits too few (8 bits, 10±38)
Critical sections need higher precision

• Sometimes need extended precision (128 bit fl pt)Sometimes need extended precision (128 bit fl pt)
However some can get by with 32 bit fl pt in 
some parts

• Mixed precision a possibility
29

• Mixed precision a possibility
Approximate in lower precision and then refine 
or improve solution to high precision.



Idea Goes Something Like This…Idea Goes Something Like This…
• Exploit 32 bit floating point as much as 

possible.
Especially for the bulk of the computation

• Correct or update the solution with selective 
use of 64 bit floating point to provide a 
refined results

• Intuitively: 
Compute a 32 bit result, 
C l l t   ti  t  32 bit lt i  Calculate a correction to 32 bit result using 
selected higher precision and,
Perform the update of the 32 bit results with the 

30

Perform the update of the 32 bit results with the 
correction using high precision. 



MixedMixed--Precision Iterative RefinementPrecision Iterative Refinement
It ti  fi t f  d  t    A   b   k thi  

L U = lu(A) SINGLE O(n3)
x = L\(U\b) SINGLE O(n2)

• Iterative refinement for dense systems,   Ax = b, can work this 
way.

x  L\(U\b) ( )
r = b – Ax DOUBLE O(n2)
WHILE || r || not small enough

z = L\(U\r) SINGLE O(n2)
x = x + z DOUBLE O(n1)x = x + z DOUBLE O(n )
r = b – Ax DOUBLE O(n2)

END

Wilkinson, Moler, Stewart, & Higham provide error bound for SP fl pt 
results when using DP fl pt.
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MixedMixed--Precision Iterative RefinementPrecision Iterative Refinement
It ti  fi t f  d  t    A   b   k thi  

L U = lu(A) SINGLE O(n3)
x = L\(U\b) SINGLE O(n2)

• Iterative refinement for dense systems,   Ax = b, can work this 
way.

x  L\(U\b) ( )
r = b – Ax DOUBLE O(n2)
WHILE || r || not small enough

z = L\(U\r) SINGLE O(n2)
x = x + z DOUBLE O(n1)x = x + z DOUBLE O(n )
r = b – Ax DOUBLE O(n2)

END

Wilkinson, Moler, Stewart, & Higham provide error bound for SP fl pt 
results when using DP fl pt.
It can be shown that using this approach we can compute the solution It can be shown that using this approach we can compute the solution 
to 64-bit floating point precision.

• Requires extra storage, total is 1.5 times normal;
• O(n3) work is done in lower precision

32

( ) p
• O(n2) work is done in high precision

• Problems if the matrix is ill-conditioned in sp; O(108)



Results for Mixed Precision Iterative 
Refinement for Dense Ax = b

Architecture (BLAS)
1 Intel Pentium III Coppermine (Goto)
2 Intel Pentium III Katmai (Goto)
3 Sun UltraSPARC IIe (Sunperf) 
4 Intel Pentium IV Prescott (Goto)
5 Intel Pentium IV-M Northwood (Goto)
6 AMD Opteron (Goto)
7 Cray X1 (libsci)
8 IBM Power PC G5 (2 7 GHz) (VecLib)8 IBM Power PC G5 (2.7 GHz) (VecLib)
9 Compaq Alpha EV6 (CXML)
10 IBM SP Power3 (ESSL)
11 SGI Octane (ATLAS)

• Single precision is faster than DP because:
Higher parallelism within vector units

4 ops/cycle (usually) instead of 2 ops/cycle
Reduced data motionReduced data motion 

32 bit data instead of 64 bit data
Higher locality in cache

More data items in cache



Results for Mixed Precision Iterative 
Refinement for Dense Ax = b

Architecture (BLAS)
1 Intel Pentium III Coppermine (Goto)
2 Intel Pentium III Katmai (Goto)
3 Sun UltraSPARC IIe (Sunperf) 
4 Intel Pentium IV Prescott (Goto)
5 Intel Pentium IV-M Northwood (Goto)
6 AMD Opteron (Goto)
7 Cray X1 (libsci)
8 IBM Power PC G5 (2 7 GHz) (VecLib)8 IBM Power PC G5 (2.7 GHz) (VecLib)
9 Compaq Alpha EV6 (CXML)
10 IBM SP Power3 (ESSL)
11 SGI Octane (ATLAS)

A hi (BLAS MPI) # DP S l DP S l #Architecture (BLAS-MPI) # procs n DP Solve
/SP Solve

DP Solve
/Iter Ref

# 
iter

AMD Opteron (Goto – OpenMPI MX) 32 22627 1.85 1.79 6

AMD Opteron (Goto – OpenMPI MX) 64 32000 1 90 1.83 6

• Single precision is faster than DP because:
Higher parallelism within vector units

4 ops/cycle (usually) instead of 2 ops/cycle
Reduced data motion

1.90 1.83

Reduced data motion 
32 bit data instead of 64 bit data

Higher locality in cache
More data items in cache



IBM Cell 3.2 GHz, Ax = bIBM Cell 3.2 GHz, Ax = b
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IBM Cell 3.2 GHz, Ax = bIBM Cell 3.2 GHz, Ax = b
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CholeskyCholesky on the Cellon the Cell, , Ax=b, A=AAx=b, A=ATT, , xxTTAxAx > 0> 0

Single precision performance

Mixed precision performance using iterative refinement 
Method achieving 64 bit accuracy

33 37For the SPE’s standard C code and C language SIMD extensions (intrinsics) 



Sparse Linear AlgebraSparse Linear Algebra

• Computational speed 24s)Computational speed 
doesn't matter
• Peak 204 Gflop/s

M  b  tt
18

20

22 64 bytes
128 bytes
256 bytes
512 bytes
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• Memory bus matters
• 25 GB/s = 12 Gflop/s

• Assuming matrix read 12
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• In practice ~6 Gflop/s
• In SP using 8 SPEs 6
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Synergistic Processing Elements



What About That PS3?What About That PS3?
25.6 Gflop/s 25.6 Gflop/s 25.6 Gflop/s 25.6 Gflop/s

SIT CELL
PE PE PE PE

SIT CELL200 GB/s

PowerPC

PE PE PE PE

25.6 Gflop/s 25.6 Gflop/s 25.6 Gflop/s 25.6 Gflop/s

25 GB/s

3.2 GHz
25 GB/ i j ti b d idth

512 MiB
25 GB/s injection bandwidth
200 GB/s between SPEs
32 bit peak perf 8*25.6 Gflop/s

204.8 Gflop/s peak
64 bit peak perf 8*1.8 Gflop/sp p p

14.6 Gflop/s peak
512 MiB memory



PS3 Hardware OverviewPS3 Hardware Overview
Disabled/Broken: Yield issues25.6 Gflop/s 25.6 Gflop/s 25.6 Gflop/s

SIT CELL
PE PE PE

SIT CELL200 GB/s
GameOS

Hypervisor
PowerPC

PE PE PE

25.6 Gflop/s 25.6 Gflop/s 25.6 Gflop/s

25 GB/s
3.2 GHz
25 GB/s injection bandwidth
200 GB/s between SPEs

256 MiB
200 GB/s between SPEs 
32 bit peak perf 6*25.6 Gflop/s

153.6 Gflop/s peak
64 bit peak perf 6*1.8 Gflop/s

10.8 Gflop/s peak
1 Gb/s NIC
256 MiB memory 



HPC in the Living RoomHPC in the Living Room
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Matrix Multiple on a 4 Node PlayStation3 Cluster

What's good
Very cheap: ~4$ per Gflop/s (with 32 

bit fl pt theoretical peak)
F t l l t ti b t SPE

What's bad
Gigabit network card. 1 Gb/s is too 

little for such computational power (150 
Gflop/s per node)Fast local computations between SPEs

Perfect overlap between 
communications and computations is 
possible (Open-MPI running):

Gflop/s per node)
Linux can only run on top of GameOS 

(hypervisor)
Extremely high network access 

l t i (120 )PPE does communication via MPI
SPEs do computation via SGEMMs

latencies (120 usec)
Low bandwidth (600 Mb/s)

Only 256 MB local memory
Only 6 SPEs

33 Gold: Computation: 8 ms
Blue: Communication: 20 ms



SUMMA Model vs Measures 1 SPE

SUMMA on a 2x2 PlayStation3 clusterSUMMA on a 2x2 PlayStation3 cluster
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Users Guide for SC on PS3Users Guide for SC on PS3

• SCOP3: A Rough • SCOP3: A Rough 
Guide to Scientific 
Computing on the Computing on the 
PlayStation 3
S  b                                   • See webpage                                  
for details
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How to Deal with Complexity? How to Deal with Complexity? 

• Adaptivity is the key for applications to • Adaptivity is the key for applications to 
effectively use available resources whose 
complexity is exponentially increasingp y p y g

• Goal:  
Automatically bridge the gap between the y g g p
application and computers that are rapidly 
changing and getting more and more complex



SelfSelf--Adapting SoftwareAdapting Software

• Variation• Variation
Many different algorithm 
implementation are generatedimplementation are  generated 
automatically and tested for 
performance

• Selection 
The best performing implementation isThe best performing implementation is 
sought by optimization



SelfSelf--Adapting SoftwareAdapting Software

Huge search space (algorithms, parameters,...)

Generate + Adapt (once per target) → Use (often)Generate   Adapt (once per target)   Use (often)

Variation SelectionVariation Selection

Automatic Performance Tuning

48



SelfSelf--Adapting Adapting SoftwareSoftware

Automatically generated HW adapted libraries
Large sections of straight-line code produced

Examplesp

Numerical linear algebra: ATLAS, OSKI

Discrete Fourier transforms: FFTW

Digital signal processing: SPIRALg g p g

MPI Collectives (UCB, UTK) FT-MPI

49



Generic Code OptimizationGeneric Code Optimization

• Can ATLAS-like techniques be applied to arbitrary code?
• What do we mean by ATLAS-like techniques?What do we mean by ATLAS like techniques?

Blocking
Loop unrollingp g
Data prefetch
Functional unit scheduling
etc.

• Referred to as empirical optimization
G t   i tiGenerate many variations
Pick the best implementation by measuring the 
performanceperformance



Applying Self Adapting SoftwareApplying Self Adapting Software

• Numerical and Non-numerical 
li tiapplications

BLAS like ops / message passing collectives

• Static or Dynamic determine code to be 
used

Perform at make time / every time invoked

• Independent or dependent on data Independent or dependent on data 
presented

Same on each data set / depends on Same on each data set / depends on 
properties of data

51



Multi, Many, …, ManyMulti, Many, …, Many--MoreMore
• Parallelism for the masses
• Multi, Many, Many-MoreCoreMulti, Many, Many MoreCore

are here and coming fast
• Our approach for numerical libraries:

Use Dynamic DAG based scheduling
Minimize sync - Non-blocking communication
Maximize locality - Block data layouty y

• Autotuners should take on a larger, or at least 
complementary, role to compilers in translating 
parallel programsparallel programs.

• What’s needed is a long-term, balanced 
investment in hardware, software, algorithms and , , g
applications in the HPC Ecosystem. 
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