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Abstract
We present the surface area traversal order (SATO) metric to accelerate shadow ray traversal. Our formulation uses the surface
area of each child node to compute the TO. In this metric, we give a traversal priority to the child node with the larger surface
area to quickly find occluders. Our algorithm reduces the pre-processing overhead significantly, and is much faster than other
metrics. Overall, the SATO is useful for ray tracing large and complex dynamic scenes (e.g. a few million triangles) with shadows.
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1. Introduction

A key problem in interactive rendering is generating images with
high-quality shadows. In general, ray tracing provides a sim-
ple solution that generates accurate hard and soft shadows with
good scalability to large models. This involves tracing shadow
and non-shadow rays and accelerating intersection tests using
hierarchies.

When we trace a shadow ray, we do not need to exactly find
the closest hit point; we are only interested in whether a shadow
ray is occluded. This ‘any hit’ property can be exploited to use
more efficient traversal orders (TOs) or heuristics for shadow rays;
if an occluded shadow ray is first intersected with an occluder in
an upper-level node, the traversal of the shadow ray can be quickly
terminated. Many prior approaches use the ‘any hit’ property: the ray
termination surface area heuristic (RTSAH) TO [IH11], the shadow
ray distribution heuristic (SRDH) [FLF12] and the use of volumetric
occluders [DKH09]. These techniques work well in static scenes,
but can be slow for dynamic scenes when the hierarchy is updated
at each frame.

Many applications use large and complex dynamic scenes with
millions of triangles. In these applications, there is a trade-off be-
tween the time spent in updating the hierarchy and the time spent in
traversing the hierarchy for ray intersections. A good, tight-fitting
hierarchy can reduce the total time spent in tree traversal. Moreover,
it is relatively easy to parallelize tree traversal using single instruc-
tion, multiple data or multi-core capabilities (SIMD). As a result,

tree updating time can become a major bottleneck in large dynamic
scenes. This has implications in terms of choice of techniques to
accelerate traversal of shadow rays. If the additional overhead of
the data-structure pre-processing is more than the reduced traversal
time, use of such pre-processing may increase the overall render
time.

1.1. Main results

We present the new surface area TO (SATO) metric for shadow ray
tracing. Our formulation gives higher traversal priority to the child
node with the larger surface area. This TO can quickly find large
primitives in the upper-level nodes. Due to its simplicity, SATO
offers the following advantages. First, it does not have high pre-
processing overhead. Second, it can be easily integrated with ex-
isting SAH-based tree construction or update methods, so paral-
lelization of SATO computation is simple. Third, when SATO is
combined with the tree rotation method [KIS*12], the resulting al-
gorithm can selectively update the TO only if a rotation occurs in a
bounding volume hierarchy (BVH).

We combine the SATO metric with kd-trees and BVHs and com-
pare its performance with RTSAH using the Manta interactive ray
tracer [BSP06]. The SATO’s traversal performance is competitive
with that of RTSAH in our benchmarks. However, the compu-
tation cost of SATO is significantly lower than that of RTSAH.
We highlight the performance benefits of SATO in large dynamic
scenes.
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Figure 1: Ray-traced images in the dense crowd simulation scenario with different numbers of agents: (left) 1 000 agents, (middle) 4 000
agents and (right) 16 000 agents. Each agent corresponds to a dynamic object in the scene, and at each frame, we update the hierarchy. Our
surface area TO (SATO) metric only requires 1.6 ms with a 4-core Core i7 CPU to calculate the TO for 16 000 agents with 10.9M triangles,
which makes it attractive for large dynamic scenes. Moreover, the SATO metric decreases the ray-tracing time by 15% in this complex dynamic
scene. In contrast, the approximate RTSAH metric requires 208 ms to calculate the TO.

The rest of the paper is organized in the following manner. We
give a brief overview of related work in Section 2. We present the
SATO in Section 3 and highlight its performance in Section 4.

2. Related Work

In this section, we first summarize the SAH. Next, we describe
acceleration techniques for shadow ray tracing which are closely
related to our work. Finally, we give an overview of hierarchy update
methods that can be used with SATO.

2.1. Surface area heuristic

The SAH [GS87, MB90] has been widely used for high-quality tree
construction. Greedy SAH construction determines the split position
using the expected traversal cost using the following equation:

CV (p) ≈ KT + KI

(
SA(VL)

SA(V )
TL + SA(VR)

SA(V )
TR

)
, (1)

where CV (p) is the expected cost of the voxel V with the split
position p, KT is a traversal cost, KI is an intersection cost and
VL and VR are voxels of the left and right child node, respectively.
SA(x) is the surface area of the voxel x, and TL and TR are the
number of primitives in the left and right child node, respectively.
This metric assumes that the probability of a node being pierced by
rays is proportional to the node’s surface area with finite random
rays.

2.2. Acceleration of shadow ray tracing

Djeu et al. [DKH09] proposed the use of volumetric occluders in a
kd-tree and the quick descent breadth-first search order. This method
accelerates shadow ray tracing on opaque watertight meshes.

For more general shadow computation, Ize and Hansen [IH11]
proposed the RTSAH TO for both BVHs and kd-trees. The RTSAH
metric calculates the expected cost of terminating traversal in both
the left and right child nodes. To specify which child node should be
traversed first, a flag in each parent node is then updated using the

expected cost; this flag is used for shadow ray traversal. The approx-
imate RTSAH metric for BVHs [IH11] reduces the pre-processing
cost by ignoring empty spaces in a BVH.

Feltman et al. [FLF12] presented the SRDH metric using the
representative set of shadow rays. Like the ray distribution heuris-
tic (RDH) [BH09], the SRDH exploits the traversal results of a
small representative set of rays for tree construction. By exploiting
the actual traversal results, the SRDH constructs a shadow-ray-
specialized BVH and determines effective TO of the BVH. This
method increases the overall pre-processing time by computing an
additional BVH for shadow ray traversal, but this method may take
fewer traversal steps than RTSAH.

Vinkler et al. [VHS12] presented a visibility-driven BVH con-
struction algorithm. This algorithm employs an improved SAH that
uses the visibility of primitives to construct higher quality BVHs.
This method can accelerate the tracing of both shadow and non-
shadow rays in highly occluded scenes.

Latuerbach et al. [LMM09] presented a selective ray-tracing algo-
rithm for shadows. This algorithm first performs shadow mapping,
after that, selectively performs ray tracing on potentially inaccurate
pixels to compute correct shadows. Because this algorithm only
shoots rays corresponding to a small subset of the entire pixels,
shadows can be quickly computed with this algorithm.

2.3. Fast hierarchy updates

Because SAH construction has O(nlogn) time complexity [WH06],
full SAH construction during each frame of a dynamic scene can
be costly, especially for large scenes. Many techniques for fast
hierarchy updates have been proposed to address this problem.

Fast tree reconstruction methods utilize cheaper split criteria or
parallelization. The methods can be classified into SAH construc-
tion on CPUs [WBS07, CKL*10] and GPUs [LGS*09, WZL11,
KA13], spatial median/SAH hybrids on CPUs [Wal07] and GPUs
[ZHWG08, LGS*09, GPM11], object median/SAH hybrids on
CPUs [SSK07] and approximate agglomerative clustering (AAC)
on CPUs [GHFB13].
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BV refitting [LYTM06, WBS07] updates a BVH without topo-
logical changes. This method can quickly update a BVH, but it can
degrade tree quality. In order to prevent the tree quality degradation
caused by BV refitting, Kopta et al. [KIS*12] presented a tree rota-
tion algorithm that can be integrated into a refit procedure.

Other techniques are based on partial or lazy updates. In partial
updates, only dynamic parts of the scene are updated. These methods
either use a separate dynamic tree [SBSK03] or multi-level hierar-
chies [KNPY13]. The lazy tree construction method [DHW*11]
computes the subtree associated with a node only when a ray enters
that node.

Pre-processing overhead for specific cache-efficient tree layouts
can become a bottleneck for ray-tracing dynamic scenes. In order
to address this issue, Nah et al. [NPK*10, NPP*11] proposed an
ordered depth-first layout for kd-trees. In this method, the child
node with the larger surface area is stored next to its parent node
using the SAH assumption. This results in better cache efficiency
than depth-first layouts and can be easily combined with the SATO
metric.

3. Surface-Area Traversal Order

In this section, we present the SATO metric that is used for fast
shadow ray traversal. In terms of design, we have two major goals:
to minimize the TO calculation time for dynamic scenes and to
quickly find a large occluder for shadow ray tracing. To achieve
these goals, we simply use the surface area of each node when
we determine the TO. Note that we assume that the acceleration
structure is a binary tree.

In order to evaluate the benefits of SATO, we introduce a sub-
metric of SATO called PrimSATO. In PrimSATO, we calculate the
average or maximum surface area of each primitive in each node
and give the traversal priority to the child node with the higher value
of the primitives’ surface area. This method helps to quickly find
larger occluders in ray traversal. We also introduce a primitive num-
ber TO (PrimNumTO); this metric gives the traversal priority to the
child node with the less number of primitives. We then present three
assumptions that are used to analyse the relationship among Prim-
SATO, PrimNumTO and SATO using the surface area of each node.
To prevent confusion, we will refer to the latter metric as Node-
SATO in the rest of the paper. After that, we describe PrimSATO,
NodeSATO and PrimNumTO. Finally, we describe the ray traversal
algorithm using SATO. Figure 2 illustrates the use of SATO.

3.1. Assumptions

Our metric is based on the following assumptions:

Assumption 1. Large primitives are usually located in the upper-
level nodes in a tree, so intersecting with a large primitive first can
result in early termination of a shadow ray.

Assumption 2. In SAH-constructed kd-trees, the child node with the
larger surface area between two child nodes has a higher probability
of enclosing larger primitives.

Figure 2: An example of the SATO with a kd-tree (a) and a BVH
(b). (c) shows the hierarchy of both the kd-tree in (a) and the BVH
in (b). In this example, PrimSATO, PrimNumTO and NodeSATO
compute the same TO. To quickly find a larger occluder, a shadow
ray first visits the child node with the higher traversal priority as
determined by SATO. In the above figure, when the SATO is used,
TO is N0, N1 and T0. In contrast, when the front-to-back TO is used,
the TO is N0, N2, N4, T2, T3, N1 and T0.

Assumption 3. In BVHs, the child node with the larger surface area
between two child nodes also has a higher probability of enclosing
larger primitives.

Assumption 1 is related to PrimSATO. This assumption is based
on the character of SAH-constructed trees; the SAH tends to keep
larger primitives near the root [Smi98]. Therefore, if we visit a node
enclosing a large primitive first, the number of traversal steps can
be reduced.

Assumptions 2 and 3 are related to NodeSATO. These assump-
tions are based on Assumption 1, so they imply a close relationship
between NodeSATO and PrimSATO.

We can explain the reasoning behind Assumption 2 based on
the following criteria. In SAH kd-trees, the child node with the
larger surface area would have a higher probability of containing a
smaller number of primitives. This is possible when the left node’s
expected cost (SA(VL) · TL in Equation (1) and the right node’s ex-
pected cost (SA(VR) · TR) are comparable. In many cases, the SAH
costs would be comparable in the upper-level nodes, because the
split plane is inside the median interval (between the spatial and
object median) if there are no objects intersecting with the split
plane [MB90, Hav00]. In this case, it is often one of these two
cases: It either has a more sparse primitive distribution, or a higher
average surface area of the primitives in that child node. Empty
spaces between primitives in the first case can be reduced based
on empty space maximizing techniques [Hav00, HKRS02]. There-
fore, the second case will have a high probability, and the child
node with the larger surface area will have a higher probability of
enclosing large primitives. Additionally, if SAH values are compa-
rable, a higher surface area implies less number of primitives. Thus,
NodeSATO and PrimNumTO will compute similar TOs in a SAH
kd-tree.
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BVHs have different characteristics than kd-trees, and the anal-
ysis given for kd-tress above may not be applicable to BVHs. Be-
cause BVH nodes have a tighter fit to the primitives than kd-tree
nodes [LYTM06], there may be empty space that is not enclosed
by both child nodes. Thus, the SAH costs between the child nodes
may not be comparable if the split plane is determined in such
a way that it maximizes empty spaces. It means that the correla-
tion between the node’s surface area and the number of primitives
in BVHs can be lower than that in kd-trees. However, in contrast
to kd-trees, the BV of a parent BVH node includes the BVs of
its primitives. Therefore, the child node with the larger surface
area among two child BVH nodes will also have a higher prob-
ability of enclosing larger primitives, as is the case with kd-trees
(Assumption 3).

3.2. PrimSATO

The goal of PrimSATO is to quickly find a large occluder when
tracing a shadow ray, and is same as that of NodeSATO. In or-
der to determine which child node has larger primitives, the Prim-
SATO calculation is performed during the tree construction. Before
the tree construction, we first calculate the surface area of each
primitive. After that, when an inner node is created, we average
the surface area values of the primitives in the node or find the
maximum value of the primitives. We call the method using the
average value PrimSATOAVG and the method using the maximum
value PrimSATOMAX. By comparing the calculated average or max-
imum value of the two child nodes, we can give the traversal pri-
ority to the child node with the higher surface area value of the
primitives.

The PrimSATO procedure is straightforward and simple, but the
pre-processing cost of PrimSATO may not be negligible in large
dynamic scenes due to the cost of computing the surface areas.
Moreover, PrimSATO cannot be tightly coupled with BVH update
methods [LYTM06, WBS07, KIS*12]. The reason is that we cannot
get the primitive information enclosed by an inner node after the
tree is constructed; a BVH node usually stores its bounding box and
child node pointers.

3.3. NodeSATO and PrimNumTO

NodeSATO addresses the weaknesses of PrimSATO; NodeSATO
compares only the surface areas of each child node, giving traversal
priority to the child node with the larger surface area. If there is a
high traversal similarity between NodeSATO and PrimSATO, Node-
SATO will be a more attractive metric in terms of TO calculation
time.

NodeSATO’s simplicity means that this metric can be easily inte-
grated into all SAH-based tree construction/update methods (see
Appendix for details). If SAH is used for kd-tree construction,
NodeSATO metric requires only one additional computation (the
node comparison). Since we calculate the child nodes’ surface ar-
eas during SAH kd-tree construction, the calculated surface areas
can be reused. Parallelization of NodeSATO is also trivial if par-
allel tree construction/update methods [Wal07, CKL*10, KIS*12]
are used. Additionally, NodeSATO can be combined with lazy tree
construction [DHW*11], because NodeSATO requires only local

information about the node (child nodes’ surface areas) instead of a
traversal of the entire subtree.

When NodeSATO is combined with a tree rotation method
[KIS*12] in dynamic scenes, we can selectively update the TO
of only the rotated nodes. According to [KIS*12], a rotation is
performed only if the rotation can decrease the SAH cost of a
node. Therefore, if a rotation is not performed, it indicates that
the node’s bounding box is still near optimal and we can simply
reuse the TO calculated during the previous frame. If a rotation
is performed, NodeSATO calculations are performed with up to
three inner nodes (the current node and the inner child nodes of the
current node) because a rotation affects a subtree with a depth of
two.

PrimNumTO gives traversal priority to the child node with fewer
primitives. Thus, PrimNumTO computation only requires a simple
comparison between the child nodes. However, this method can-
not be combined with BVH update methods [LYTM06, WBS07,
KIS*12] due to the same reasons that were described for PrimSATO
in Section 3.2

3.4. Ray traversal with the SATO metric

NodeSATO, PrimSATO and PrimNumTO have a common traversal
procedure, which is similar to RTSAH traversal [IH11]. SATO re-
quires a 1-bit flag per node (e.g. the isLeftCheaper flag in Manta),
which can be embedded in the node structure without additional
memory overhead. When tracing shadow rays, the flag bit is used
in determining the TO. Instead of using the flag, we can rearrange
the node’s child order using SATO. However, if the acceleration
structure is not a BVH but a kd-tree, the 1-bit flag is still needed
for rearrangement, because kd-tree node rearrangement using sur-
face area is the same as the ordered depth-first layout [NPK*10,
NPP*11]; the 1-bit flag is used to indicate whether the node has
been rearranged or not for front-to-back traversal.

4. Performance and Comparison

In this section, we first compare NodeSATO, PrimSATO and other
TO metrics using the benchmarks used in [IH11] and [FLF12]. Next,
we present experimental results for several dynamic scenes. Finally,
we analyse and describe the limitations of our metric.

4.1. SATO versus other TO metrics

We have tested our method in the Manta interactive ray tracer
[BSP06] (revision 2542) on a PC with 3.4 GHz Intel Core i7 with
8 GB RAM. Ray tracing was performed using eight threads with
hyperthreading; tree construction and pre-processing for each algo-
rithm was performed using a single thread.

We use the static test scenes used in [IH11] (Figure 3) for evaluat-
ing the performance. The Mad Science scene with 80K triangles was
rendered using five samples per pixel, 14 area lights with 25 samples
per shading point and 36 ambient occlusion rays per shading point.
The Carnival scene with 446K triangles was rendered using five
samples per pixel and 100 ambient occlusion rays. The Bedroom
scene with 361K triangles was rendered using 11 point lights. The
Shadow Overlap scene with 2056K triangles was rendered using

c© 2014 The Authors
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Figure 3: Static benchmark scenes: (top row) Mad Science, Carnival, Bedroom, Sponza, (bottom row) Ship and Shadow Overlap. The Shadow
Overlap scene was rendered at 1024×256 pixels, the Ship scene was rendered at 1024×768 pixels and the others were rendered at 1024×1024
pixels.

Table 1: TO calculation time for a BVH and a KD-tree (unit: millisecond, lower is better). A single thread was used.

BVH kd-tree

Approx PrimSATO PrimSATO PrimSATO PrimSATO
RTSAH RTSAH AVG MAX NodeSATO PrimNum RTSAH AVG MAX NodeSATO PrimNum

Mad Science 28.8 0.9 2.3 2.1 <0.1 <0.1 10.3 5.3 5.1 0.2 0.3
Carnival 185.3 5.4 19.6 18.5 0.6 0.2 39.9 25.8 23.1 1.4 1.6
Bedroom 135.7 3.7 12.0 10.9 0.4 0.1 53.2 33.7 32.1 0.8 1.2
Shadow Overlap 752.7 29.2 154.2 145.0 3.1 1.0 173.8 106.3 103.8 2.8 3.4
Sponza 18.4 0.7 1.8 1.6 <0.1 <0.1 9.0 2.9 2.2 0.3 0.3
Ship 1.3 <0.1 <0.1 <0.1 <0.1 <0.1 0.7 0.2 0.2 <0.1 <0.1

one sphere area light with 10 samples per sample point. This scene
consists of four objects with different complexity: Happy Buddha
with 1M triangles, Armadillo with 30K triangles, Bunny with 69K
triangles and Dragon with 871K triangles.

The two following benchmarks are difficult scenes in terms of
computing the optimal TO, in contrast to the scenes described above.
The Sponza scene with the arcade view is described in [FLF12]
consists of 66K triangles and two sphere area light sources. This
scene was rendered with two-level path tracing, and the number of
samples per shading point was one. This scene has low amount of
occlusion and an equal number of shadow and non-shadow rays, so
TOs do not greatly affect the overall traversal time. The Ship scene
with 4K triangles was rendered using 1 area light with 16 samples
per sample point. In this scene, an axis-aligned occluder (a cabin) is
located near the shaded deck and non-axis-aligned occluders (thin
ropes and an anchor) are located near the light source. A BVH
node that includes non-axis-aligned objects has large empty spaces,

assigning TO to non-axis-aligned occluders may not be a good
choice. Thus, the front-to-back order is near optimal.

To measure the performance of NodeSATO and PrimSATO in
different traversal methods, we use three traversal methods: packe-
tized ranged BVH traversal [WBS07] with 8×8 ray packets, single-
ray BVH traversal and single-ray kd-tree traversal. With this ex-
perimental setup, we compare a front-to-back TO, a random TO
[FLF12], two RTSAH implementations (RTSAH and approximate
RTSAH) [IH11] and four SATO implementations (NodeSATO,
PrimSATOAVG, PrimSATOMAX and PrimNumTO). As described in
[IH11], approximate RTSAH is only applicable to BVHs because
approximate RTSAH for BVHs and RTSAH for kd-trees are essen-
tially same. For the random TO, we have used a fast random-number
generation function in Manta [BSP06], because the standard rand()
function is not suitable for parallel processing. In all TOs, early
termination is commonly performed when the first intersection is
found.

c© 2014 The Authors
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Table 2: Render time (unit: seconds, lower is better). Eight threads with hyperthreading were used. ARP is an abbreviation of average relative performance
when a front-to-back TO is the reference method (higher is better). Approximate RTSAH is only applicable to BVHs, as described in [IH11]. Bold values
indicate the highest performance.

Front to back Random RTSAH Approx RTSAH PrimSATOAVG PrimSATOMAX NodeSATO PrimNum

Packetized BVH traversal
Mad Science 392.71 266.62 247.38 240.05 226.31 228.87 231.39 257.71
Carnival 151.19 114.00 81.46 97.34 83.22 98.54 82.55 77.35
Bedroom 0.48 0.28 0.27 0.26 0.24 0.26 0.25 0.26
Shadow Overlap 0.18 0.18 0.14 0.14 0.13 0.14 0.14 0.13
Sponza 0.76 0.75 0.75 0.73 0.74 0.74 0.76 0.73
Ship 1.31 1.40 1.46 1.42 1.32 1.31 1.41 1.49
ARP 1.00× 1.24× 1.40× 1.38× 1.48× 1.39× 1.44× 1.44×
Single-ray BVH traversal
Mad Science 577.71 452.49 320.57 316.22 326.85 325.32 334.72 380.81
Carnival 163.88 91.06 63.35 77.36 63.77 79.10 65.96 59.24
Bedroom 2.36 1.79 1.50 1.49 1.47 1.52 1.47 1.54
Shadow Overlap 0.24 0.23 0.22 0.22 0.21 0.21 0.21 0.21
Sponza 0.93 0.95 0.94 0.91 0.93 0.91 0.94 0.91
Ship 2.57 2.62 2.66 2.62 2.49 2.37 2.62 2.72
ARP 1.00× 1.23× 1.50× 1.44× 1.52× 1.44× 1.48× 1.48×
Single-ray kd-tree traversal
Mad Science 402.86 295.11 238.51 – 276.23 240.06 249.61 293.20
Carnival 102.53 59.06 67.22 – 61.48 65.24 59.01 58.29
Bedroom 1.08 0.86 0.82 – 0.89 0.81 0.89 0.90
Shadow Overlap 0.19 0.21 0.20 – 0.18 0.18 0.18 0.18
Sponza 0.46 0.47 0.48 – 0.48 0.47 0.46 0.48
Ship 1.14 1.16 1.08 – 1.12 1.09 1.14 1.14
ARP 1.00× 1.21× 1.25× – 1.23× 1.28× 1.26× 1.22×

Table 3: The number of traversal steps per ray (left) and the number of intersection tests per ray (right). Lower is better.

Front to back Random RTSAH Approx RTSAH PrimSATOAVG PrimSATOMAX NodeSATO PrimNum

Packetized BVH traversal
Mad Science 120.5 / 21.0 90.8 / 12.0 83.7 / 11.0 82.7 / 11.0 82.6 / 9.7 82.6 / 9.7 84.5 / 9.8 92.3 / 11.9
Carnival 378.8 / 24.6 297.2 / 17.5 204.6 / 14.3 257.1 / 13.5 205.5 / 15.9 236.5 / 18.5 207.4 / 15.9 206.7 / 9.4
Bedroom 100.7 / 12.6 65.1 / 8.5 64.9 / 7.3 64.7 / 6.8 64.0 / 6.4 65.7 / 7.1 64.5 / 6.6 64.3 / 7.0
Shadow Overlap 111.4 / 2.6 111.9 / 2.6 86.2 / 2.5 84.2 / 2.5 78.6 / 2.6 86.5 / 2.6 84.1 / 2.5 80.6 / 2.6
Sponza 276.3 / 11.2 273.8 / 10.9 273.7 / 11.1 267.7 / 11.1 270.4 / 11.1 267.7 / 11.2 278.3 / 11.3 265.3 / 10.8
Ship 50.3 / 27.1 51.0 / 28.5 51.2 / 30.6 51.8 / 29.0 47.6 / 27.6 50.0 / 24.9 48.4 / 31.8 49.2 / 32.2
Single-ray BVH traversal
Mad Science 57.1 / 8.5 45.4 / 6.0 36.2 / 4.0 35.2 / 4.3 40.4 / 3.7 40.5 / 3.7 41.1 / 3.7 47.3 / 4.5
Carnival 84.4 / 13.3 45.9 / 6.5 33.9 / 5.0 42.2 / 5.2 34.3 / 5.3 42.6 / 6.9 34.3 / 5.6 32.3 / 4.0
Bedroom 74.9 / 9.4 57.2 / 7.5 50.2 / 5.8 51.1 / 5.4 50.6 / 5.2 51.6 / 5.6 50.7 / 5.3 52.5 / 5.7
Shadow Overlap 28.6 / 1.7 27.3 / 1.5 27.7 / 1.6 27.5 / 1.6 27.4 / 1.6 27.7 / 1.7 27.0 / 1.6 27.3 / 1.5
Sponza 61.9 / 3.2 63.0 / 3.1 64.1 / 3.2 62.1 / 3.1 63.7 / 3.2 62.3 / 3.2 64.2 / 3.2 61.8 / 3.1
Ship 44.3 / 25.3 43.5 / 27.0 44.7 / 28.4 45.6 / 26.9 41.1 / 26.0 43.5 / 23.2 41.6 / 30.5 43.2 / 30.0
Single-ray kd-tree traversal
Mad Science 44.3 / 8.9 37.9 / 5.4 30.4 / 4.2 – 33.7 / 5.3 33.5 / 3.8 33.0 / 4.5 34.6 / 5.5
Carnival 52.6 / 9.8 37.3 / 5.3 37.1 / 5.3 – 34.6 / 4.8 36.1 / 5.3 32.7 / 4.4 32.6 / 4.0
Bedroom 41.1 / 8.3 32.5 / 6.1 31.2 / 6.5 – 36.0 / 6.3 30.2 / 6.0 35.8 / 6.7 35.8 / 6.8
Shadow Overlap 33.4 / 2.3 32.9 / 1.9 32.7 / 2.3 – 31.7 / 2.0 31.5 / 2.0 32.4 / 2.0 32.4 / 2.0
Sponza 37.5 / 3.0 36.9 / 2.8 38.4 / 3.0 – 38.2 / 3.0 37.6 / 3.0 38.1 / 2.9 38.2 / 3.0
Ship 33.2 / 6.8 32.7 / 7.2 31.0 / 6.4 – 31.7 / 6.8 31.5 / 6.5 32.6 / 7.4 34.0 / 6.9

c© 2014 The Authors
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Figure 4: The average surface area of primitives in one leaf node
per tree depth. The above figure indicates the result of the BVHs, and
the below figure indicates the result of the kd-trees. These results
support Assumption 1 in Section 3.

We first measure the TO calculation time of each method
(Table 1). This task was performed as a pre-process in static scenes,
and a single thread was used. For the RTSAH and approximate
RTSAH calculation, we have used a separate function implemented
in Manta [BSP06]. For NodeSATO, PrimSATO and PrimNumTO
calculations, we have implemented the TO calculation code in the
existing tree construction function. According to the results in Ta-
ble 1, PrimSATO is faster than RTSAH but slower than approximate
RTSAH. NodeSATO and PrimNumTO are the fastest method in kd-
trees and BVHs, respectively. The reason is that NodeSATO requires
an additional surface area calculation per node in BVH construction,
but does not require that computation in kd-tree construction.

In contrast to the embedded NodeSATO/PrimSATO calculation
codes in the tree build function, the RTSAH calculation code has
been implemented as a separate function. Thus, in this RTSAH im-
plementation, node data should be fetched again for the separate
function. However, even if we consider the implementation differ-
ence, the experimental result shows that the NodeSATO and Prim-
NumTO calculations are significantly faster than fast approximate
RTSAH calculation.

Second, we measure ray-tracing performance using render time
(Table 2). We also measure additional statistics for better analysis

Figure 5: Comparison of TO similarity between NodeSATO and
other metrics. This result supports Assumptions 2 and 3 in Section 3.

(Table 3). Among the metrics, PrimSATOAVG and PrimSATOMAX

demonstrate the highest speedups in BVHs and kd-trees, respec-
tively. These different speedups can be explained by the difference
between object hierarchies and spatial hierarchies. Each primitive
is located in a single BVH node if spatial splits are not used for
the BVH construction, so PrimSATOAVG is a more reasonable choice
in this case. In contrast, a primitive can be located in multiple kd-
tree nodes. That is, a ray can find the hit point on the outside of
the current node if a primitive intersects the current node and the
other nodes. Thus, for kd-trees, PrimSATOMAX can be more effi-
cient. Additionally, NodeSATO and PrimNumTO do not result in
the fastest performance, but exhibit performance that is comparable
to RTSAH and PrimSATO. The random TO exhibits lower speedups
than RTSAH and SATO.

The Sponza and Ship scenes demonstrate the limitations of each
method. Occluded shadow rays account for a small part of the total
rays in the Sponza scene, so all TO metrics do not result in a signif-
icant difference in the overall performance. In the Ship scene with
BVHs, only PrimSATO results in similar or faster performance than
front-to-back ordering. The reason is that PrimSATO based on ac-
tual primitives’ surface areas is robust for non-axis-aligned objects.

To evaluate the performance of SATO, we perform two addi-
tional experiments. First, to verify Assumption 1 in Section 3 we
measure the average surface area of primitives in a leaf node per
tree depth (Figure 4). The results in Figure 4 explain the advantage
of PrimSATO. According to the results, the average surface area of
primitives in a leaf node is inversely proportional to the tree depth.
In other words, higher-level nodes have a higher probability of en-
closing larger primitives. Even though the kd-trees for the Sponza
and Bedroom scenes show gradual increases from specific depths,
these results can be explained by large primitives overlapped with
multiple nodes.

Second, we measure the traversal similarity between NodeSATO
and other metrics (Figure 5). To calculate the similarity, we compare
NodeSATO’s TO flag and the others’ TO flags at each traversal step.

c© 2014 The Authors
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Figure 6: Dynamic benchmark scenes: Funnel, Fairy Forest and Lion. The captured images were rendered with soft shadows.

The data in Figure 5 were collected by single-ray BVH and kd-tree
traversal. In the kd-tree traversal, NodeSATO exhibits higher simi-
larities with PrimSATOAVG and PrimNumTO. This result supports
Assumption 2. In contrast, PrimSATOMAX does not exhibit a high
similarity, because the surface area of a node can be smaller than that
of the primitive in the node. This situation occurs when a large prim-
itive overlaps multiple nodes. In the BVH traversal, NodeSATO has
a higher similarity with PrimSATOAVG and PrimSATOMAX. This
result supports Assumption 3; there is a high traversal similarity
between PrimSATO and NodeSATO.

4.2. Experimental results with dynamic scenes

We use the same rendering system and hardware configuration de-
scribed in Section 4.1 to evaluate our approach on dynamic scenes.
To deal with dynamic objects, we use the tree rotation algorithm
developed by Kopta et al. [KIS*12]. We have integrated Node-
SATO into the tree rotation function. We also evaluate the selective
NodeSATO update scheme (described in Section 3.3 and Appendix)
and measure its performance by enabling and disabling the scheme.
PrimSATO and PrimNumTO are excluded in this experiment, be-
cause they are difficult to integrate into the BV refit/rotation proce-
dure, as described in Section 3. For ray traversal, we use the ranged
BVH traversal algorithm [WBS07] with the 8×8 packet size. Both
tree updates (including the NodeSATO calculation) and ray tracing
were performed using eight threads with hyperthreading; the RT-
SAH and approximate RTSAH calculations were performed using
a single thread.

We test our method in four dynamic scenes (Figures 1(right)
and 6). The Funnel scene only consists of 18K triangles, so in
this scene, render time is much more important than tree update
and TO calculation time. The Fairy is a mid-sized game-like scene
with 174K triangles, and the Lion scene is a large scene with 1.6M
triangles. The Crowd Simulation scene [CGZM11] (Figure 1), with
10.9M triangles, is the largest scene in our test set; the tree update
and TO calculation times are significant in this scene.

We apply two different shadow settings to the test scenes: hard
shadows and soft shadows. For hard shadows, one point light source
is used. For soft shadows, one spherical area light source and four
samples per light are used. The soft-shadow setting increases the
proportion of shadow rays, so the performance improvements by
using an efficient TO also increase in this case.

Table 4 summarizes the experimental results in the dynamic
scenes. According to the results, NodeSATO achieves 4–18% per-
formance improvements in the total frame time (tree update+TO
calculation+rendering). Additionally, the selective NodeSATO

Table 4: Experimental results in dynamic scenes with soft and hard shadows
(unit: millisecond, lower is better). Note that the BVH update time includes
keyframe animation time, BV refitting time and rotation time. Note that the
RTSAH/approximate RTSAH TO was calculated using a single thread.

BVH update TO calculation Render time Total time
time time (hard/soft) (hard/soft)

Funnel (18K triangles)
Front to back 0.6 0.0 13.7/33.5 14.3/34.1
Random 0.6 0.0 13.8/34.7 14.4/35.3
RTSAH 0.6 11.8 12.8/27.3 25.2/39.7
Approx RTSAH 0.6 0.9 13.5/31.1 15.0/32.6
NodeSATO 0.6 <0.1 13.0/31.4 13.6/32.0
NodeSATO 0.6 <0.1 12.6/28.5 13.2/29.1
(selective)
Fairy forest (174K triangles)
Front to back 6.1 0.0 57.7/167.4 63.8/173.5
Random 6.1 0.0 49.2/152.2 55.3/158.3
RTSAH 6.1 95.6 51.1/155.5 152.8/257.2
Approx RTSAH 6.1 3.3 49.5/149.2 58.9/158.6
NodeSATO 6.1 <0.1 48.3/149.1 54.4/155.2
NodeSATO 6.1 <0.1 47.7/149.6 53.8/155.7
(selective)
Lion (1.6M triangles)
Front to back 52.2 0.0 58.2/158.5 110.4/210.7
Random 52.2 0.0 58.4/163.6 110.6/215.8
RTSAH 52.2 950.9 54.8/122.5 1057.9/1125.6
Approx RTSAH 52.2 37.5 54.1/119.6 143.8/209.3
NodeSATO 52.2 1.2 54.3/125.5 107.7/178.9
NodeSATO 52.2 0.1 53.4/129.3 105.7/181.6
(selective)
Crowd simulation (10.9M triangles)
Front to back 369.1 0.0 201.7/442.5 570.8/811.6
Random 369.1 0.0 203.2/442.4 572.3/811.5
RTSAH 369.1 5389.5 167.7/385.9 5926.3/6144.5
Approx RTSAH 369.1 208.5 166.9/384.7 740.5/958.3
NodeSATO 369.1 8.2 172.1/379.7 549.4/757.0
NodeSATO 369.1 1.6 169.8/375.3 540.5/746.0
(selective)
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update scheme is effective in reducing the TO calculation time.
This is possible because the rotation percentage in the Funnel, Fairy
Forest, Lion and Crowd Simulation scenes is only 4.8%, 8.4%,
7.4% and 6.4%, respectively. The render time with and without the
selective NodeSATO update scheme is similar even though the se-
lective update scheme partially reuses the TO calculated during the
previous frame. Due to the parallelization and the selective update
schemes, NodeSATO could achieve very low TO calculation times
in a large scene (1.6 ms in the Crowd Simulation scene).

In contrast, RTSAH increases the total frame time in all scenes
due to the additional TO calculation time; fast approximate RTSAH
also increases the total frame time in the Lion scene with hard
shadows and the Crowd Simulation scene. This overhead can be
lowered by parallelization of RTSAH calculation and code in-lining,
as NodeSATO does. However, NodeSATO is still faster than the
parallelized RTSAH and approximate RTSAH methods in terms
of TO calculation time. Additionally, random TO does not yield
noticeable performance improvements except for the Fairy Forest
scene.

Because of tree update overheads and simple shadow settings
in the dynamic scenes, the relative performance improvements of
NodeSATO in dynamic scenes are lower than those in the static
scenes. However, in cases where we apply both faster tree update
methods and complex shadows, we expect that NodeSATO will
exhibit similar performance improvements on static and dynamic
scenes, because NodeSATO has negligible TO calculation overhead.
Also, we expect that performance gap between NodeSATO and
approximate RTSAH will increase in more complex dynamic scenes
because of the TO calculation overhead.

4.3. Analysis and limitations

4.3.1. Comparison to SRDH

NodeSATO and PrimSATO would not be faster than SRDH [FLF12]
in static scenes. This is because our metric only determines the
TO, but SRDH affects both tree construction and TO. However,
the SRDH increases tree construction time by up to 20 s for
pre-rendering using representative ray sets. In contrast, NodeSATO,
with its selective update scheme, only requires less than 2 ms to
determine the TO. Therefore, we believe that NodeSATO is better
suited for dynamic scenes than SRDH.

4.3.2. Limitations

Our SATO metric does not guarantee performance improvements in
all situations. First, NodeSATO, PrimSATO and PrimNumTO only
accelerate occluded shadow rays, just as RTSAH [IH11] does. Thus,
if most shadow rays are not occluded or the fraction of shadow rays
is relatively low, performance improvements from using our metric
would decrease.

Second, NodeSATO and PrimNumTO assume that the tree is
constructed or updated by the SAH. If the tree is constructed by ei-
ther spatial median or object median, NodeSATO and PrimNumTO
might not work well. Additionally, if BV refitting is used for BVH
updates, NodeSATO’s efficiency can be degraded due to large BVs.

Thus, additional tree update approaches based on the SAH, such as
the tree rotation algorithm [KIS*12] or treelet restructuring [KA13],
should be used if BV refitting significantly degrades the tree quality.

Third, the SATO metric’s efficiency is influenced by the scene
characteristics. For example, if there are a large object that con-
sists of many highly tessellated triangles and a small object that
consists of a few large triangles, NodeSATO will pick the for-
mer object for giving traversal priority and cannot accelerate the
shadow ray traversal. In this case, PrimSATO and PrimNumTO
will be more effective. However, if variability in scene primitive
size is very small, all our metrics (NodeSATO, PrimSATO and
PrimNumTO) may not find an optimal traversal route, because
they are designed to quickly find large occluders in the upper-level
nodes.

5. Conclusions and Future Work

We have presented the SATO metric to accelerate shadow ray trac-
ing. To determine the TO between two child nodes, the SATO com-
pares each node’s surface area (NodeSATO), the surface areas of the
primitives in the node (PrimSATO) or the number of primitives in
the node (PrimNumTO); NodeSATO and PrimSATO assign higher
traversal priority to a node with larger surface area, and PrimNumTO
gives traversal priority to a node with fewer primitives. Each metric
has its own strength. NodeSATO can be easily implemented in exist-
ing SAH-based tree construction or update methods. Additionally,
NodeSATO has negligible calculation overheads, so it is very useful
in dynamic scenes. PrimSATO is competitive with other metrics
when compared on the basis of traversal performance, particularly
with scenes including non-axis-aligned triangles. PrimNumTO has
the fastest TO calculation time with BVH construction.

In terms of future work, we would like to combine the SATO
with other methods and measure the effects of the combination.
First, if static and dynamic scenes are handled separately [SBSK03,
KNPY13], the SRDH can be used for high-quality static tree/subtree
construction, as well as TO determination, while the SATO can
be used for dynamically updating trees or subtrees. Additionally,
we are interested in combining the SATO with lazy tree construc-
tion [DHW*11] and AAC BVH construction [GHFB13]. Because
the AAC algorithm lifts large occluders to higher levels of the
BVH [GHFB13], this could be a synergistic combination. Also, the
combination of SATO and an ordered depth-first layout [NPK*10,
NPP*11] could provide both lower traversal steps and cache-miss
rates in kd-tree traversal. Finally, an extension of the tree quality
metric [AKL13] to the special case of shadow rays can be a future
research topic, as described in [AKL13].
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Appendix: Pseudo-Code of the NodeSATO Metric

1) NodeSATO calculation in tree construction

find the best split plane

if (the split can minimize the SAH cost)

make an inner node

compare each child node’s SA

set isLeftCheaper of the node

else

make a leaf node

2) Selective NodeSATO calculation with a tree rotation

if (a rotation can decrease the SAH cost)

do the rotation

compare the SAs of the rotated inner nodes

set isLeftCheaper of the nodes

else

skip the TO calculation and keep the isLeftCheaper flag

3) BVH traversal using the SATO

(same as the RTSAH traversal)

if (a shadow ray intersects with an inner node)

front son = node.isLeftCheaper? 0 : 1;

do an intersection test with node.child+front son

do an intersection test with node.child+1-front son
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