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Abstract— We present a novel motion planning algorithm for
pouring a liquid body from a source to a target container. Our
approach uses a receding-horizon optimization strategy that
considers liquid dynamics and various other constraints. To
handle liquid dynamics without costly fluid simulations, we use
a neural network to infer a set of key liquid-related parameters
from the observation of the current liquid configuration. To
train the neural network, we generate a dataset of successful
pouring examples using stochastic optimization in a problem-
specific search space. These parameters are then used in the
objective function for trajectory optimization. Our feedback
motion planner achieves real-time performance, and we observe
a high success rate in our simulated 2D and 3D liquid pouring
benchmarks.

I. INTRODUCTION

Robotic manipulation of non-rigid objects such as fluids,
elastic bodies, and strings is a challenging problem that
arises in different applications. In this paper, we address the
problem of pouring liquids, where the goal is to use a robot
to pour a liquid body from a source to a target container.
These tasks arise when industrial robots are used for painting,
cleaning, or dispensing lubricants. Other applications include
the use of service robots for cooking, cleaning, or feeding.

A key issue in such motion planning algorithms is to
satisfy the liquid dynamics constraints. The liquid body can
have a complex topology and undergo large deformations.
The underlying solvers tend to use a large number of
particles (tens of thousands) to model their motion. This
results in a very high-dimensional configuration space of
the liquid body and makes it hard to directly use sampling-
based motion planning algorithms. Other techniques based
on an optimization-based planner [1], [2] may not work well
because the free-surface of a liquid body introduces non-
smooth changes.

Prior planning algorithms for fluid manipulation are ei-
ther based on demonstration and learning methods, or use
dynamics constraints. The demonstration-based methods use
example trajectories and ignore all physical constraints so
that they may not generalize to new scenarios. On the other
hand, methods using reinforcement learning [3], [4] can
take physics constraints into consideration, but they require
a problem specific training dataset for each manipulation
task. Other techniques use trajectory optimization, which
takes into account a full-featured liquid dynamics model [5],
[6], but these techniques have a very high computational
overhead. This problem can be alleviated using reduced
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Fig. 1: An illustration of our feedback motion planning framework.
From the training dataset found by stochastic optimization (a), we
train a neural network that predicts liquid-related parameters: liquid
outflow curve and the mean trajectory prior (b). Our online planner
then computes the source container trajectory from an incomplete
observation (c), e.g., the liquid heightfield in red and the moving
speed of the source/target containers (the two arrows).

or simplified dynamics models [7], [8], [9], where many
liquid dynamics constraints are ignored, and these models
are combined with open-loop planners. However, open-loop
methods suffer from simulation bias.
Main Results: We present a feedback motion planning
algorithm to control the fluid flow for liquid pouring that
is subject to dynamics constraints. To handle the high di-
mensionality of fluids, we present a learning-based approach
to predict the liquid configurations based on low-dimensional
features. This is combined with a receding-horizon trajectory
optimization method for online planning. The main novel
components of our approach include:

● A supervised learning algorithm that enables the predic-
tion of the state of a high-dimensional liquid body using
low-dimensional features. We also describe an efficient
strategy to train the neural network.

● A feedback motion planning algorithm that solves
a spacetime optimization problem using the receding
horizon strategy. The objective function is guided by
the neural network, and this significantly increases the
efficiency of our planner, as we do not need to perform
the costly 3D fluid simulation step at each timestep.

Our neural network is trained using a large amount of
successful pouring trajectories. This dataset is automatically
generated offline using a large number of random config-
urations of liquid pouring problems. These configurations
are generated by changing the relative positions of two
containers, the amount of liquid in the source container, and
the speed of the target container movement. As a result, the
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trained neural network is robust to environmental changes.
We compute the optimal liquid pouring trajectory for each
configuration using stochastic optimizations with the help of
a fully-featured liquid simulator.

We have evaluated our algorithm on many new and chal-
lenging scenarios that are quite different from the training
dataset. In practice, our learning-based planner achieves
almost the same success rate as was obtained using the
groundtruth trajectories on our training dataset. Moreover,
we have also tested our planner in new and different envi-
ronments, including 3D workspaces, liquids with different
physical characteristics (e.g., varied the viscosities), and
different container shapes. Our results demonstrate that the
neural networking can be very robust when used with an
optimization-based motion planner, although our training
dataset uses a single low-viscous liquid material and a rect-
angular container shape. Furthermore, the online algorithm is
very fast and takes less than 10 milliseconds on a single core
of Intel CPU to plan the motion amongst dynamic obstacles.

II. ASSUMPTIONS AND PROBLEM
FORMULATION

In this work, we restrict ourselves to a simulated environ-
ment. The pouring problem is formulated in Section IV. Our
algorithm is composed of three components (see Figure 1).

In the preprocessing stage, we generate a large set of
random liquid pouring problems. For each problem, we find
a successful pouring trajectory using stochastic optimization
(see Section VI). We then extract a low-dimensional feature
of the liquid body and train a 4-layered neural network to
predict a set of key parameters in pouring (liquid outflow
curve and mean trajectory prior). We have not yet applied our
framework in a real-life robotic system and currently only
assume that the features can be acquired from the sensing
data. However, we propose two kinds of possible liquid
features to inspire future work on a real-life robotic system.
Other features can also be easily used with our method.

During the online stage, the predicted parameters are used
in the objective function of a receding-horizon optimization-
based motion planner (see Section V). The planner de-
termines the configuration of the source container at the
next timestep by minimizing an objective function that
encourages successful pouring while considering various
other constraints including collision avoidance and trajectory
smoothness.

III. RELATED WORKS

Our approach builds on three areas of prior work: motion
planning, planning for dynamic objects, and reinforcement
learning.

A. GENERAL MOTION PLANNING

A motion planning algorithm searches for a trajectory
that satisfies a set of constraints (collision-free, smoothness),
which may also be optimal under a given quality measure.
Many early motion planners such as [10] and its descendants

[11], [12], [13] consider only collision-free constraints. Un-
like these methods, which tend to compute a trajectory by
sampling in the space of possible trajectories, optimization-
based motion planners such as [2], [1], [14] can easily take
into account other constraints, such as dynamics, smooth-
ness, etc. Many of these approaches formulate the problem
as a spacetime continuous optimization. Such optimization
methods have also been used for liquid transfer [6], [9] based
on simplified dynamics when limited to static environments.

There is considerable work on feedback motion planning
that uses refinement schemes based on feedback control laws.
This can be performed using replanning [15], [16], [17] or
by formulating the problem as a Markov Decision Process
[18]. These ideas have been applied to high-dimensional
continuous systems such as humanoid robots [19], [20].
In this work, we present such a feedback motion planning
algorithm for liquid transfer.

B. PLANNING FOR DYNAMIC OBJECTS
The extension of conventional motion planning algorithms

to the manipulation of non-rigid objects has been addressed
in the context of virtual suturing [21], cloth folding [22],
and surgical simulation [23]. It can be challenging to deal
with non-rigid objects with high-dimensional configuration
spaces. This is especially the case with liquid manipulation
tasks, where the dimension can be as high as several million
(see [6] for a detailed discussion). For certain types of
fluids such as smoke and fire, optimization-based motion
planning can be adapted to solve the problem by exploiting
the special structure of the resulting fluid simulator [24],
[25]. However, it is non-trivial to extend these methods
to control liquid bodies with non-smooth, rapidly-changing
free surfaces. Moreover, prior methods are designed for
offline applications and computationally very costly. Previous
work [9] reduced the computational cost by using a much
simplified liquid model, dependent on just two variables.

C. IMITATION OR REINFORCEMENT LEARNING
Reinforcement and imitation learning have been shown

to be effective in terms of controlling high-dimensional
dynamic systems, e.g., a humanoid robot [19], [26]. Recently,
imitation learning has been used to perform liquid manipu-
lation using example container trajectories from a human
demonstrator [27], [28], [29]. However, the learning frame-
work in this work does not take fluid dynamics constraints
into account. Moreover, trajectories of liquid body shapes
from real-life experiments have to be captured and digitized
to construct the dataset, which is challenging in and of itself
(see [30], [31]). More recently, reinforcement learning has
also been used to learn pouring of granular materials in [4],
[3]. Our methods differ from these methods in that we only
use supervised learning, but we combine it with trajectory
optimization to enhance the robustness of our motion planner.

IV. OVERVIEW
In this section, we first introduce our formulation of the

liquid pouring problem and then outline our motion planning
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Fig. 2: (a): An illustration of our problem setting. We consider a
source container S in dark gray, a target container T in light gray,
and finally the liquid body L in blue. We use a particle-based spatial
discretization for both the rigid and liquid bodies. (b): The set of
learned parameters used for formulating Co: the mean trajectory
prior S′, the parameters of liquid outflow curve p, vx, vy , and the
outflow flux ρ.

algorithm.

A. PROBLEM FORMULATION
In each problem, we consider a source container denoted

by rigid body S, a target container denoted by T, and the
liquid body denoted by L. Without ambiguity, we reuse these
symbols to denote their spacetime trajectory S(t), T(t),
and L(t), where t is the time index. Among these three
trajectories, the liquid body trajectory L(t) is constrained by
the Navier-Stokes equation, the governing PDE of the liquid
body. Therefore, the configuration of L evolves as L(t +
∆t) = f(S(t),T(t),L(t)), taking S(t),T(t) as boundary
conditions. Here f is a time-integration of the Navier-Stokes
equation over timestep size ∆t.

In practice, we define a discrete version of the problem us-
ing a particle-based spatial discretization scheme, the finite-
difference temporal discretization scheme, and the same
particle-based fluid simulator as [6]. As a result, all three
bodies, S,T, and L, become a set of particles, as illustrated
in Figure 2 (a). Their corresponding trajectories are sampled
uniformly in time with timestep size ∆t. In this setting, the
time-integration function f can be approximately evaluated
using a discrete version of the Navier-Stokes equation.

In our problem setting, the target container trajectory T(t)
is given. The goal of our feedback motion planner is then
to determine the source container trajectory S(t), so that the
induced liquid body trajectory L(t) will have the liquid body
end up inside the target container T.

V. FEEDBACK MOTION PLANNING
In order to find an entire trajectory S(t), our motion plan-

ner iteratively solves the following spacetime optimization
problem:

argmin
S(t+∆t),⋯,S(t+K∆t)

∑
1≤k≤K

C(S(t + k∆t)) (1)

C(S(t)) ≜ Cl(S(t)) +Cr(S(t)) +Co(S(t)),

over a horizon of K∆t and then only adopts the control S(t+
∆t), i.e., using the receding horizon strategy. The objective
function C involves three terms: the first term Cl encourages
the liquid body to fall inside T, Cr is a regularization term
that prefers smooth trajectories, and finally Co penalizes any
collisions between S and T or any other obstacles in the
environment.

We can use the same Co as [14], [6] for collision avoid-
ance. Specifically, we define Co as:

Co(S(t)) = ∥D(S(t))∥2 + ∥Ḋ(S(t))∥2,

where D is the maximal penetration depth between S and any
obstacle. To accelerate collision detection, each rigid object
is approximated using a set of spheres. Note that we penalize
both the D and Ḋ to encourage smooth movements when S
is in the vicinity of boundaries. The regularization term Cr

is the Laplace of the trajectory:

Cr(S(t)) = ∥S(t +∆t) − 2S(t) + S(t −∆t)∥2.

In order to define Co such that it encourages success-
ful liquid pouring, a naive and straightforward formulation
would be to reconstruct L(t) from S(t),T(t) using a liquid
simulation function f , then to measure the amount of liquid
that falls outside the target container and makes Co propor-
tional to this amount. However, this formulation has two clear
drawbacks. First, reconstructing L(t) using liquid simulation
function f is computationally costly, making it impossible
for the motion planner to respond in real-time. Second, the
function f involves a lot of non-smooth operators, making
it difficult for numerical optimizers to find a good local
minimum of Equation 1.

Our solution is to base Co on a set of low-dimensional
parameters that can be inferred from an observation of
the current configuration of the liquid body L(t) without
resorting to its predicted future configurations. This idea is
like the temporal decomposition method [4]. We assume that
two kinds of parameters are crucial to the task of pouring
liquids. First, in most human pouring examples, the pattern
is that the source container S moves closer to the target
container T, simultaneously increasing its turning angle so
that liquid can flow out. This common pattern is encoded as
mean trajectory prior S′(t). In addition, after liquid leaves
the source container S, the flow can be approximated as a
quadratic curve, as shown in [9]. This quadratic curve could
be used to guide the motion planner so that the curve is
centered around the target container opening, thus avoiding
spillage. In a 2D workspace, this curve is characterized by
its starting point p on S and its leaving velocity vx, vy , as
illustrated in Figure 2 (b). In summary, the required liquid-
related parameters are (S′(t), p, vx, vy) and we then define
Cl as:

Cl(S(t)) = ∥dist(T(t), p, vx, vy)∥2max(ρ,0) +
∥S(t) − S′(t)∥2,

where the first term measures the distance between liquid
outflow curve and the center of the target container opening,
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Fig. 3: Our 4-layer neural network structure for parameter estima-
tion. The input is an observation of the current liquid configuration
O(L(t)) and other rigid body configurations S(t),T(t), where we
assume the rigid body configurations are fully observable. We use
the ReLU activation function for all internal layers and the sigmoid
activation function for the output layer of mean trajectory prior
S′(t), and linear function for the output layer of liquid outflow
curve parameters. Each of the four hidden layers has 32 hidden
units.

while the second term measures the discrepancy between the
current source container configuration and mean trajectory
prior, leading to a successful pour. Note that we added a
weighting max(ρ,0), where ρ is the predicted outflow flux.
Therefore, we only apply the first term if liquid is flowing
out. This ρ is added to the required set of parameters. These
parameters (S′(t), p, vx, vy, ρ) are predicted efficiently using
supervised learning introduced in Section VI.

VI. SUPERVISED LEARNING

In this section, we present our preprocessing algorithm,
which uses supervised learning to predict the liquid-related
parameters.

As part of the objective function, the learning algorithm
needs to infer the parameters (S′(t), p, vx, vy, ρ) from the
observations O(L(t)) of a liquid body and the configurations
of the two rigid bodies S(t),T(t). The inference is accom-
plished with a neural network trained from a set of successful
liquid pouring trajectories. See Figure 3 for a specification
of our neural network.

The problem of inferring mean trajectory prior S′(t)
from the current configuration makes our neural network
a control policy representation that can be optimized using
reinforcement learning as in [4], [32]. Optimized this way,
the policy will predict S′(t) such that it can be realized
directly. Instead, only supervised learning is used in our
work, so the learned policy may suffer from simulation-bias
issues and have a limited ability to generalize to new environ-
ments. However, we can solve this problem by plugging the
predicted S′(t) into Equation 1 to further adjust the predicted
result.

The observation function O, or the input feature for the
neural network, can be defined in several ways depending on
the available sensors in a certain application. In this work, we
consider two kinds of observations. In a simulated environ-
ment, we use the heightfield of the liquid surface (which can
be easily computed from an exact geometrical representation

(a)

(b)

(c)
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W dist(p)

p

fill level

S −T
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Fig. 4: The two kinds of features we use. (a): The heightfield of
the liquid free-surface (red). This feature is used as groundtruth
in a simulated environment. (b): The height of liquid at the lip
of source container S (red). This feature makes it easier to apply
our method on a real-life robotic system and on different container
shapes. (c): The variables that define one instance of our pouring
problem: relative position S − T, speed of T, and fill level. We
also illustrate the variables that define our reward function R: the
container opening width W and the distance from a particle to a
center point dist(p).

of L, such as a set of particles). However, the dynamics of the
liquid body are captured largely by the velocity field instead
of its shape. To recover this information, we maintain a short
memory of the heightfield over the past 4 frames as input
to the neural network so that velocity information can be
recovered by finite difference. This is illustrated in Figure 4
(a). Longer-term memory can also be recovered using, e.g.,
a recurrent neural network or LSTM. However, according to
the definition of velocity as the derivative of positions, only
the most recent memory is needed and these structures are
therefore unnecessary. In a real-life robotic system, acquiring
the heightfield may be very difficult. As a result, we also
experimented with a simplified feature, which is the height
of a liquid surface only at the lip of source container S,
as illustrated in Figure 4 (b). A common drawback of the
heightfield feature is that we can only represent laminar flow
without internal air bubbles in the liquid. However, we can
carefully design our training dataset to contain only laminar
flow (see Section VII for more details).

A. TRAINING DATA GENERATION

The dataset used to train the neural network is difficult to
acquire. This dataset should contain only successful pouring
trajectories. Moreover, the neural network should be expres-
sive enough to regenerate these trajectories. Previous works
[33], [34] address this problem for some applications by
modifying the dataset during training. [33] assumes there
is an expert who can provide additional training samples for
error recovery on request. However, our approach does not
assume the presence of any such expert. A human demon-
strator may serve as an expert, but digitizing or capturing
the liquid shape trajectory can be very challenging. On the
other hand, [34] assumes that the governing equation is
differentiable with respect to u. This assumption does not
hold due to the non-smooth free-surface changes. Moreover,
the computational complexity of [34] makes it infeasible for
the high-dimensional configuration space of a liquid body.



Our solution is to use stochastic optimization to automati-
cally search for successful pouring trajectories similar to [5]
in 2D workspaces. We introduce several kinds of variations
so that the learned neural network can be generalized to
different problems. As illustrated in Figure 4 (a), each
pouring problem can be specified by three variables:

● The relative position S −T in range [−3,0] × [−3,3](m).
● The constant moving speed of T in range [−5,5]2(m/s).
● The liquid fill level of S in range [0.3,0.8], where 1 means

fully filled.
To quickly find a large number of successful pouring trajec-
tories, we design a problem specific search space and reward
function. Our liquid simulator requires very small timestep
size (∆t < 0.01s) to ensure accuracy, leading to a large
number of timesteps. We first limit the number of variables
by using spline interpolation with 6 control points for source
container trajectory S(iK∆t/5), where 0 ≤ i ≤ 5. In 2D
workspaces, each rigid configuration of S consists of 2-
dimensional translation and orientation (xS,yS, θS), leading
to a 15 dimensional search space (the initial control point
is fixed). However, we found that this is still too large of a
search space in practice because the optimizer can frequently
generate zig-zag trajectories, contrary to our intuitive obser-
vation of human pouring behaviour. Therefore, we further
restrict the search space by observing that source container
S is always moving closer to T and its turning angle is
always increasing. This gives the following relationship:

(αi ≜
∣xS − xT ∣i

∣xS − xT ∣i−1

,βi ≜
∣yS − yT ∣i

∣yS − yT ∣i−1

, γi ≜
∣θmax − θ∣i

∣θmax − θ∣i−1

).

We propose to search in the transformed coordinates
(αi, βi, γi) ∈ (0,1]3 using the CMA-ES algorithm [35].
Although this is still a 15 dimensional search space, much
fewer random samples are needed in each iteration with such
a transformation. Finally, we use the following reward func-
tion for CMA-ES optimization, which encourages particles
to pass through the center of a target container’s opening and
penalizes spillage:

R =∑
p

Rp Rp = {
W−dist(p)

W
, if dist(p) <W

−100, otherwise

where p loops over all particles, dist(p) is its distance to
the center of the opening of T, and W is half the width of
the opening, as illustrated in Figure 4 (b).

After we find the optimal S(t) in our search space,
we extract the groundtruth observation O(L(t)) and label
(S′(t), p, vx, vy, ρ) for each spline interpolated timestep.
To extract the quadratic curve parameters, we use the
same greedy quadratic curve fitting method as [6]. Fi-
nally, our neural-network outputs the transformed coordi-
nates (αi, βi, γi), instead of (xS,yS, θS), which fit in the
range of sigmoid activation function.

VII. ANALYSIS AND RESULTS
In this section, we evaluate the online and offline phases

in Figure 1 from different aspects.
Quality of Dataset: All the trajectories in our dataset

reside in 2D workspaces. The computational complexity of
generating these trajectories is O(I × R × K × P ), where
I is the number of iterations needed in each CMA-ES
optimization, R is the number of random samples used in
each CMA-ES iteration, K is the number of timesteps in
each fluid simulation, and finally P is the number of tra-
jectories S(t) we want to generate. In all the optimizations,
we set I = 200, R = 30, K = 500, and ∆t = 0.01(sec).

(a)

(b)

(c)(d) (e)
(f)

Fig. 6: We illustrate an exemplary trajectory of TRANS-
FER+FOLLOW (a) and TRANSFER+ZERO (b). On convergence
of CMA-ES optimization, the liquid flow is well centered around
the opening of T (c). TRANSFER+ZERO encourages spillage at
an early stage of pouring (d), so that S must move and turn slowly
(e). For each timestep in each trajectory, we extract the groundtruth
water heightfield and liquid outflow curve as in training dataset (f).
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Fig. 5: The scaled reward
function R/#Particle for a
set of transfer problems in
TRANSFER+FOLLOW (blue)
and TRANSFER+ZERO (red).
These values are all positive,
meaning that very little spillage
happens and particles are well
centered around OT.

In other words, each tra-
jectory lasts for K∆t =
5(sec). The computational
complexity of dataset gener-
ation is also proportional to
the overhead of performing
liquid simulation, i.e., eval-
uating function f , which in
turn is proportional to the
number of particles. In 2D
workspaces, we use approx-
imately 105 particles and
each evaluation of f takes
2.5(sec) while the number of
particles in 3D workspaces
is 107 and each evaluation
takes 345(sec). Therefore, generating a 3D dataset is orders
of magnitude more expensive than generating a 2D dataset.

We generated two datasets named TRANSFER+FOLLOW
and TRANSFER+ZERO, each containing P = 1000 success-
ful pouring trajectories. We first sample the fill level with
interval 0.12 and then select 200 relative positions S − T
and select a moving speed of T for each fill level using
uniform random sampling in the given range. The generation
of TRANSFER+FOLLOW and TRANSFER+ZERO involves
a total of 6 × 109 evaluations of f . TRANSFER+FOLLOW
and TRANSFER+ZERO differ in their initial liquid configu-
ration. In TRANSFER+FOLLOW, the initial liquid velocity
follows that of S, which is typical if the liquid has moved
with S for a certain distance and reached equilibrium.
However, in TRANSFER+ZERO, the initial liquid velocity is
zero, which is typical if we start the transfer from a stationary
scenario. Problems in TRANSFER+ZERO are considered
more difficult than those in TRANSFER+FOLLOW, as mov-
ing S too quickly will lead to spillage and thus negative
reward. These two datasets can be downloaded at our project
page and are illustrated in Figure 6.

Figure 5 shows the distribution of scaled reward func-
tion R/#Particle in TRANSFER+FOLLOW and TRANS-
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Fig. 7: The average convergence history of the CMA-ES algorithm
over 1000 problems. This algorithm converges equally well for
TRANSFER+FOLLOW (a) and TRANSFER+ZERO (b).
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Fig. 8: We picked 100 random trajectories in TRANS-
FER+FOLLOW (blue) and TRANSFER+ZERO (red) datasets, and
visualized the temporal change of the relative strength of the vortical
velocity component (the numerator inf∥v−∇ψ∥2). Since this value
is always less than 0.2, the flow is very close to a potential flow
(inf∥v−∇ψ∥2 = 0). Since problems in the TRANSFER+FOLLOW
dataset are less difficult, the pouring is usually completed faster,
which is consistent with the early termination of the blue curve.

FER+ZERO. Figure 7 shows the CMA-ES convergence
history. These figures show that our stochastic optimization
algorithm can efficiently find successful transfer trajectories.
Furthermore, we need to verify that the generated trajecto-
ries always transfer liquid using laminar flow, rather than
turbulent flow, so that a heightfield feature can represent the
shape of L. We note that the velocity field of a laminar flow
should have no internal vortex. Therefore, we compute the
vortical velocity component and plot its strength relative to
the original velocity field in Figure 8. This figure clearly
shows that the trajectories in both TRANSFER+FOLLOW
and TRANSFER+ZERO use only laminar flow.

Accuracy of Neural Network: Our neural network serves
two purposes, which are verified by separate experiments.

We first verify the accuracy of the liquid outflow curve
predictor by testing it on 100 randomly selected trajectories
in TRANSFER+FOLLOW/TRANSFER+ZERO, i.e., we test
it using the training dataset. Next, we test it on 100 new
trajectories, P , held out from training data. Figure 9 (a)
plots the average accuracy against the turning angle α. This
plot reveals that our predictor has low accuracy at a small
turning angle (up to 0.46% at 40○±10○). The average relative
accuracy throughout the pouring process is 15% using the
heightfield feature, Figure 4 (a), and 24% using the height at
lip feature, Figure 4 (b). At a small turning angle, using
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Fig. 9: Relative error of predicted liquid outflow curve parameters
(∥vx, vy, p∥2) using the heightfield feature (a) and the height at lip
feature (b). The error is plotted against the turning angle of S.
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Fig. 10: (a): The relative error of predicted S(t) plotted against the
turning angle. (b): The predicted turning angle of S against timestep
index; the mean trajectory prior predictor trained using TRANS-
FER+ZERO dataset (red) learns to turn S slowly to avoid spillage,
compared with the predictor trained using TRANSFER+FOLLOW
dataset (blue). We also show such difference using one exemplary
frame of a testing problem.

the height at lip feature increases the error by 36% for
TRANSFER+FOLLOW dataset, while the performance is
almost the same for TRANSFER+ZERO dataset. At a larger
turning angle, using the height at lip feature only increases
the error by 10%, at most.

We further validate the accuracy of the mean trajectory
prior predictor. Figure 10 (a) illustrates the relative accuracy
of S(t) compared with the groundtruth. The error is higher
than that of the liquid outflow curve predictor. One of
the main purposes of our online feedback motion planner
is to compensate for this error. In addition, we conduct
another experiment to see if our predictor has the ability to
avoid spillage. Since we know that TRANSFER+FOLLOW
does not model spillage but TRANSFER+ZERO can model
spillage, we plot the predicted temporal change of α us-
ing TRANSFER+FOLLOW and TRANSFER+ZERO as the
training dataset. Our predictor trained using the TRANS-
FER+ZERO dataset prefers a lower α̇ at small α, which
implies that our network can learn the ability to avoid
spillage.

Performance of Feedback Planner: In the online phase,
we solve Equation 1 using a horizon length of 1.25(sec),
with K = 25 and ∆t = 0.05(sec). This requires querying
the neural network 25 times and performing an optimization
using the LBFGS optimizer, which is very efficient due to
the small size of our neural network and the optimization
formulate. We tested our feedback controller on 30 new
problems. For each testing problem, we experimented with
three different container shapes, as illustrated in Figure 11
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Fig. 11: Performance of the feedback planner. (a): The fraction of spilled particles using rectangular container S, two kinds of datasets
and features. (b): The fraction of spilled particles using the height at lip feature and three different container shapes. (c): Average reward
of particles that fall into T in experiment (a). (d): Average reward of particles that fall into T in experiment (b).

(d). We use the same set of 30 experimental problems, which
are not covered in the datasets. If the training is accomplished
using TRANSFER+ZERO dataset, then we set the initial
velocity to be zero and vice versa. For experiments using
new container shapes, we use TRANSFER+ZERO dataset.

The performance of our planner is summarized in Fig-
ure 11, where we plot the spilled fraction of liquid and
the average reward. Note that the average is taken over
particles that fall into T (i.e., excluding the spilled parti-
cles), which is different from Figure 5, where the average
includes negative values (spilled particles). We can thus
analyze spillage avoidance and the accuracy of liquid flow,
respectively. From Figure 11 (a), we can see that the fraction
of spilled particles is less than 5% in 28 of 30 problems
for both features in Figure 4. We also see that using the
lip height feature increases the spillage by 4%, at most,
and 0.32% on average. From Figure 11 (b), we find that,
although our datasets use only rectangular containers, the
spillage fraction is also very small if we test on a conic
container, which results in a spillage fraction over 5% for
only 2 problems. However, some containers, such as the
conic container, encourage spillage and we have seen over
5% spillage in 10 problems. From Figure 11 (c), we can
see that the liquid flow is generally well centered around the
center opening of T, with a mean reward of Rp = 0.82. If
we generalize to new container shapes, the mean reward is
still over Rp = 0.8. However, the variance is larger especially
for the conic container, as illustrated in Figure 11 (d).

Generalizing to New Problems: Our motion planner
is only experimented on liquid bodies of fixed material
parameters, on a 2D workspace, and with two rigid bodies.
Some of these limitations can be relaxed.

First, although our dataset considers only a liquid material
with low viscosity, applying it to pour more viscous liquids
is possible. As illustrated in Figure 12, we experimented
the planner on these liquids. As we increase the viscosity,
the fraction of spillage decreases and the average reward
increases accordingly. This is because viscosity suppresses
turbulence flow and makes our quadratic curve assumption
more accurate.

Moreover, we can also relax the assumption of 2D
workspaces and apply the method to 3D workspaces. As
illustrated in Figure 12 (c), this is done by applying the
method to only the symmetric cross section. A drawback

of this treatment is that fluid may spill from directions other
than the 2D plane and our method cannot avoid such spillage.

Finally, a major benefit of the optimization-based formula-
tion, Equation 1, is that we can naturally take other dynamic
obstacles into consideration without retraining or regener-
ating the dataset, as illustrated in Figure 12 (b). However,
current obstacle avoidance term only takes rigid bodies into
consideration, and collisions between liquid and rigid bodies
are not considered. As a result, when the obstacle blocks the
pouring, more spillage happens.

VIII. LIMITATIONS AND CONCLUSIONS

In conclusion, we present a feedback motion plan-
ner for liquid transfer problems. Our formulation uses
an optimization-based receding horizon planner, which is
guided by a machine learning model that provides clues
for global movements (mean trajectory prior) and local
adjustments (liquid outflow curve). Our experiments show
that the planning framework can achieve promising online
performance and the machine learning model gains important
skills such as spillage avoidance and liquid position predic-
tion. However, the current system also introduces a series of
limitations, which we discuss below. We refer readers to our
extended paper [36] for a thorough discussion.

First, although the spillage fraction in our dataset is almost
zero, the spillage fraction can be as high as 5% in our
30 testing problems. We believe better performance can
be achieved by using imitation learning [33] instead of
supervised learning. Moreover, it is inherently difficult to
generalize our method to discrete material types, such as a
bunch of rigid bodies or granular materials as in [28], [3].
In addition, we only consider the problem of pouring the
entire liquid body from S to T. Other requirements might
arise, e.g., if only some of liquid is needed in T due to
the small volume of T. Finally, two problems need to be
addressed for extension to real robotic systems. We must
be able to efficiently acquire liquid-related features and we
must be able to extend the entire planning pipeline to 3D
workspaces.
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Fig. 12: (a): We tested our feedback controller on new fluid materials with higher dynamic viscosity (kg/(ms)). In this case, we achieved
even higher online reward. (b): The controller can also account for dynamic obstacles. (c): In a 3D workspace, the controller only sees
the 2D cross section. REFERENCES
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