
Feedback Motion Planning for Liquid Pouring
Using Supervised Learning

Zherong Pan1 and Dinesh Manocha1

http://gamma.cs.unc.edu/RLFluid

Abstract— We present a novel motion planning algorithm for
pouring a liquid body from a source to a target container. Our
approach uses a receding-horizon optimization strategy that
considers liquid dynamics and various other constraints. To
handle liquid dynamics without costly fluid simulations, we use
a neural network to infer a set of key liquid-related parameters
from the observation of the current liquid configuration. To
train the neural network, we generate a dataset of successful
pouring examples using stochastic optimization in a problem-
specific search space. These parameters are then used in the
objective function for trajectory optimization. Our feedback
motion planner achieves real-time performance, and we observe
a high success rate in our simulated 2D and 3D liquid pouring
benchmarks.

I. INTRODUCTION

Robotic manipulation of non-rigid objects such as fluids,
elastic bodies, and strings is a challenging problem that
arises in different applications. In this paper, we address the
problem of pouring liquids, where the goal is to use a robot
to pour a liquid body from a source to a target container.
These tasks arise when industrial robots are used for painting,
cleaning, or dispensing lubricants. Other applications include
the use of service robots for cooking, cleaning, or feeding.

A key issue in such motion planning algorithms is to
satisfy the liquid dynamics constraints. The liquid body can
have a complex topology and undergo large deformations.
The underlying solvers tend to use a large number of
particles (tens of thousands) to model their motion. This
results in a very high-dimensional configuration space of
the liquid body and makes it hard to directly use sampling-
based motion planning algorithms. Other techniques based
on an optimization-based planner [1], [2] may not work well
because the free-surface of a liquid body introduces non-
smooth changes.

Prior planning algorithms for fluid manipulation are ei-
ther based on demonstration and learning methods, or use
dynamics constraints. The demonstration-based methods use
example trajectories and ignore all physical constraints so
that they may not generalize to new scenarios. On the other
hand, methods using reinforcement learning [3], [4] can
take physics constraints into consideration, but they require
a problem specific training dataset for each manipulation
task. Other techniques use trajectory optimization, which
takes into account a full-featured liquid dynamics model [5],
[6], but these techniques have a very high computational
overhead. This problem can be alleviated using reduced

1 Department of Computer Science, the University of North Carolina at
Chapel Hill {zherong,dm}@cs.unc.edu

....

....

....

....

....

....

....

In
co
m
pl
et
e
O
bs
er
va
tio
n

Dataset Generation Using Stochasic Optimization

Liquid Outflow
Location

Mean Trajectory Prior

Optimization-based
Feedback Motion Planner

(a)

(b) (c)

Fig. 1: An illustration of our feedback motion planning framework.
From the training dataset found by stochastic optimization (a), we
train a neural network that predicts liquid-related parameters: liquid
outflow curve and the mean trajectory prior (b). Our online planner
then computes the source container trajectory from an incomplete
observation (c), e.g., the liquid heightfield in red and the moving
speed of the source/target containers (the two arrows).

or simplified dynamics models [7], [8], [9], where many
liquid dynamics constraints are ignored, and these models
are combined with open-loop planners. However, open-loop
methods suffer from simulation bias.
Main Results: We present a feedback motion planning
algorithm to control the fluid flow for liquid pouring that
is subject to dynamics constraints. To handle the high di-
mensionality of fluids, we present a learning-based approach
to predict the liquid configurations based on low-dimensional
features. This is combined with a receding-horizon trajectory
optimization method for online planning. The main novel
components of our approach include:

● A supervised learning algorithm that enables the predic-
tion of the state of a high-dimensional liquid body using
low-dimensional features. We also describe an efficient
strategy to train the neural network.

● A feedback motion planning algorithm that solves
a spacetime optimization problem using the receding
horizon strategy. The objective function is guided by
the neural network, and this significantly increases the
efficiency of our planner, as we do not need to perform
the costly 3D fluid simulation step at each timestep.

Our neural network is trained using a large amount of
successful pouring trajectories. This dataset is automatically
generated offline using a large number of random config-
urations of liquid pouring problems. These configurations
are generated by changing the relative positions of two
containers, the amount of liquid in the source container, and
the speed of the target container movement. As a result, the

http://gamma.cs.unc.edu/RLFluid

trained neural network is robust to environmental changes.
We compute the optimal liquid pouring trajectory for each
configuration using stochastic optimizations with the help of
a fully-featured liquid simulator.

We have evaluated our algorithm on many new and chal-
lenging scenarios that are quite different from the training
dataset. In practice, our learning-based planner achieves
almost the same success rate as was obtained using the
groundtruth trajectories on our training dataset. Moreover,
we have also tested our planner in new and different envi-
ronments, including 3D workspaces, liquids with different
physical characteristics (e.g., varied the viscosities), and
different container shapes. Our results demonstrate that the
neural networking can be very robust when used with an
optimization-based motion planner, although our training
dataset uses a single low-viscous liquid material and a rect-
angular container shape. Furthermore, the online algorithm is
very fast and takes less than 10 milliseconds on a single core
of Intel CPU to plan the motion amongst dynamic obstacles.

II. ASSUMPTIONS AND PROBLEM
FORMULATION

In this work, we restrict ourselves to a simulated environ-
ment. The pouring problem is formulated in Section IV. Our
algorithm is composed of three components (see Figure 1).

In the preprocessing stage, we generate a large set of
random liquid pouring problems. For each problem, we find
a successful pouring trajectory using stochastic optimization
(see Section VI). We then extract a low-dimensional feature
of the liquid body and train a 4-layered neural network to
predict a set of key parameters in pouring (liquid outflow
curve and mean trajectory prior). We have not yet applied our
framework in a real-life robotic system and currently only
assume that the features can be acquired from the sensing
data. However, we propose two kinds of possible liquid
features to inspire future work on a real-life robotic system.
Other features can also be easily used with our method.

During the online stage, the predicted parameters are used
in the objective function of a receding-horizon optimization-
based motion planner (see Section V). The planner de-
termines the configuration of the source container at the
next timestep by minimizing an objective function that
encourages successful pouring while considering various
other constraints including collision avoidance and trajectory
smoothness.

III. RELATED WORKS

Our approach builds on three areas of prior work: motion
planning, planning for dynamic objects, and reinforcement
learning.

A. GENERAL MOTION PLANNING

A motion planning algorithm searches for a trajectory
that satisfies a set of constraints (collision-free, smoothness),
which may also be optimal under a given quality measure.
Many early motion planners such as [10] and its descendants

[11], [12], [13] consider only collision-free constraints. Un-
like these methods, which tend to compute a trajectory by
sampling in the space of possible trajectories, optimization-
based motion planners such as [2], [1], [14] can easily take
into account other constraints, such as dynamics, smooth-
ness, etc. Many of these approaches formulate the problem
as a spacetime continuous optimization. Such optimization
methods have also been used for liquid transfer [6], [9] based
on simplified dynamics when limited to static environments.

There is considerable work on feedback motion planning
that uses refinement schemes based on feedback control laws.
This can be performed using replanning [15], [16], [17] or
by formulating the problem as a Markov Decision Process
[18]. These ideas have been applied to high-dimensional
continuous systems such as humanoid robots [19], [20].
In this work, we present such a feedback motion planning
algorithm for liquid transfer.

B. PLANNING FOR DYNAMIC OBJECTS
The extension of conventional motion planning algorithms

to the manipulation of non-rigid objects has been addressed
in the context of virtual suturing [21], cloth folding [22],
and surgical simulation [23]. It can be challenging to deal
with non-rigid objects with high-dimensional configuration
spaces. This is especially the case with liquid manipulation
tasks, where the dimension can be as high as several million
(see [6] for a detailed discussion). For certain types of
fluids such as smoke and fire, optimization-based motion
planning can be adapted to solve the problem by exploiting
the special structure of the resulting fluid simulator [24],
[25]. However, it is non-trivial to extend these methods
to control liquid bodies with non-smooth, rapidly-changing
free surfaces. Moreover, prior methods are designed for
offline applications and computationally very costly. Previous
work [9] reduced the computational cost by using a much
simplified liquid model, dependent on just two variables.

C. IMITATION OR REINFORCEMENT LEARNING
Reinforcement and imitation learning have been shown

to be effective in terms of controlling high-dimensional
dynamic systems, e.g., a humanoid robot [19], [26]. Recently,
imitation learning has been used to perform liquid manipu-
lation using example container trajectories from a human
demonstrator [27], [28], [29]. However, the learning frame-
work in this work does not take fluid dynamics constraints
into account. Moreover, trajectories of liquid body shapes
from real-life experiments have to be captured and digitized
to construct the dataset, which is challenging in and of itself
(see [30], [31]). More recently, reinforcement learning has
also been used to learn pouring of granular materials in [4],
[3]. Our methods differ from these methods in that we only
use supervised learning, but we combine it with trajectory
optimization to enhance the robustness of our motion planner.

IV. OVERVIEW
In this section, we first introduce our formulation of the

liquid pouring problem and then outline our motion planning

S

T L

(a)

SS′

p
�

vx

vy

(b)

Fig. 2: (a): An illustration of our problem setting. We consider a
source container S in dark gray, a target container T in light gray,
and finally the liquid body L in blue. We use a particle-based spatial
discretization for both the rigid and liquid bodies. (b): The set of
learned parameters used for formulating Co: the mean trajectory
prior S′, the parameters of liquid outflow curve p; vx; vy , and the
outflow flux �.

algorithm.

A. PROBLEM FORMULATION
In each problem, we consider a source container denoted

by rigid body S, a target container denoted by T, and the
liquid body denoted by L. Without ambiguity, we reuse these
symbols to denote their spacetime trajectory S(t), T(t),
and L(t), where t is the time index. Among these three
trajectories, the liquid body trajectory L(t) is constrained by
the Navier-Stokes equation, the governing PDE of the liquid
body. Therefore, the configuration of L evolves as L(t +
�t) = f(S(t);T(t);L(t)), taking S(t);T(t) as boundary
conditions. Here f is a time-integration of the Navier-Stokes
equation over timestep size �t.

In practice, we define a discrete version of the problem us-
ing a particle-based spatial discretization scheme, the finite-
difference temporal discretization scheme, and the same
particle-based fluid simulator as [6]. As a result, all three
bodies, S;T, and L, become a set of particles, as illustrated
in Figure 2 (a). Their corresponding trajectories are sampled
uniformly in time with timestep size �t. In this setting, the
time-integration function f can be approximately evaluated
using a discrete version of the Navier-Stokes equation.

In our problem setting, the target container trajectory T(t)
is given. The goal of our feedback motion planner is then
to determine the source container trajectory S(t), so that the
induced liquid body trajectory L(t) will have the liquid body
end up inside the target container T.

V. FEEDBACK MOTION PLANNING
In order to find an entire trajectory S(t), our motion plan-

ner iteratively solves the following spacetime optimization
problem:

argmin
S(t+�t);⋯;S(t+K�t)

∑
1≤k≤K

C(S(t + k�t)) (1)

C(S(t)) ≜ Cl(S(t)) +Cr(S(t)) +Co(S(t));

over a horizon of K�t and then only adopts the control S(t+
�t), i.e., using the receding horizon strategy. The objective
function C involves three terms: the first term Cl encourages
the liquid body to fall inside T, Cr is a regularization term
that prefers smooth trajectories, and finally Co penalizes any
collisions between S and T or any other obstacles in the
environment.

We can use the same Co as [14], [6] for collision avoid-
ance. Specifically, we define Co as:

Co(S(t)) = ∥D(S(t))∥2 + ∥ _D(S(t))∥2;

where D is the maximal penetration depth between S and any
obstacle. To accelerate collision detection, each rigid object
is approximated using a set of spheres. Note that we penalize
both the D and _D to encourage smooth movements when S
is in the vicinity of boundaries. The regularization term Cr

is the Laplace of the trajectory:

Cr(S(t)) = ∥S(t + �t) − 2S(t) + S(t − �t)∥2:

In order to define Co such that it encourages success-
ful liquid pouring, a naive and straightforward formulation
would be to reconstruct L(t) from S(t);T(t) using a liquid
simulation function f , then to measure the amount of liquid
that falls outside the target container and makes Co propor-
tional to this amount. However, this formulation has two clear
drawbacks. First, reconstructing L(t) using liquid simulation
function f is computationally costly, making it impossible
for the motion planner to respond in real-time. Second, the
function f involves a lot of non-smooth operators, making
it difficult for numerical optimizers to find a good local
minimum of Equation 1.

Our solution is to base Co on a set of low-dimensional
parameters that can be inferred from an observation of
the current configuration of the liquid body L(t) without
resorting to its predicted future configurations. This idea is
like the temporal decomposition method [4]. We assume that
two kinds of parameters are crucial to the task of pouring
liquids. First, in most human pouring examples, the pattern
is that the source container S moves closer to the target
container T, simultaneously increasing its turning angle so
that liquid can flow out. This common pattern is encoded as
mean trajectory prior S′(t). In addition, after liquid leaves
the source container S, the flow can be approximated as a
quadratic curve, as shown in [9]. This quadratic curve could
be used to guide the motion planner so that the curve is
centered around the target container opening, thus avoiding
spillage. In a 2D workspace, this curve is characterized by
its starting point p on S and its leaving velocity vx; vy , as
illustrated in Figure 2 (b). In summary, the required liquid-
related parameters are (S′(t); p; vx; vy) and we then define
Cl as:

Cl(S(t)) = ∥dist(T(t); p; vx; vy)∥2max(�;0) +
∥S(t) − S′(t)∥2;

where the first term measures the distance between liquid
outflow curve and the center of the target container opening,

OˆL ˆ t••
Sˆ t•

T ˆ t•

ˆp; vx ; vy ; � •

Sœ̂t•

Fig. 3: Our 4-layer neural network structure for parameter estima-
tion. The input is an observation of the current liquid con�guration
OˆL ˆ t•• and other rigid body con�gurationsSˆ t• ; T ˆ t• , where we
assume the rigid body con�gurations are fully observable. We use
the ReLU activation function for all internal layers and the sigmoid
activation function for the output layer of mean trajectory prior
Sœˆ t• , and linear function for the output layer of liquid out�ow
curve parameters. Each of the four hidden layers has 32 hidden
units.

while the second term measures the discrepancy between the
current source container con�guration and mean trajectory
prior, leading to a successful pour. Note that we added a
weightingmax ˆ �; 0•, where� is the predicted out�ow �ux.
Therefore, we only apply the �rst term if liquid is �owing
out. This� is added to the required set of parameters. These
parameterŝSœ̂t• ; p; vx ; vy ; � • are predicted ef�ciently using
supervised learning introduced in Section VI.

VI. SUPERVISED LEARNING

In this section, we present our preprocessing algorithm,
which uses supervised learning to predict the liquid-related
parameters.

As part of the objective function, the learning algorithm
needs to infer the parametersˆSœ̂t• ; p; vx ; vy ; � • from the
observationsOˆL ˆ t•• of a liquid body and the con�gurations
of the two rigid bodiesSˆ t•; T ˆ t• . The inference is accom-
plished with a neural network trained from a set of successful
liquid pouring trajectories. See Figure 3 for a speci�cation
of our neural network.

The problem of inferring mean trajectory priorSœ̂t•
from the current con�guration makes our neural network
a control policy representation that can be optimized using
reinforcement learning as in [4], [32]. Optimized this way,
the policy will predict Sœ̂t• such that it can be realized
directly. Instead, only supervised learning is used in our
work, so the learned policy may suffer from simulation-bias
issues and have a limited ability to generalize to new environ-
ments. However, we can solve this problem by plugging the
predictedSœ̂t• into Equation 1 to further adjust the predicted
result.

The observation functionO, or the input feature for the
neural network, can be de�ned in several ways depending on
the available sensors in a certain application. In this work, we
consider two kinds of observations. In a simulated environ-
ment, we use the height�eld of the liquid surface (which can
be easily computed from an exact geometrical representation

(a)

(b)

(c)

�

W dist ˆp•

p

�ll level

S � T

speed ofT

Fig. 4: The two kinds of features we use. (a): The height�eld of
the liquid free-surface (red). This feature is used as groundtruth
in a simulated environment. (b): The height of liquid at the lip
of source containerS (red). This feature makes it easier to apply
our method on a real-life robotic system and on different container
shapes. (c): The variables that de�ne one instance of our pouring
problem: relative positionS � T , speed ofT , and �ll level. We
also illustrate the variables that de�ne our reward functionR: the
container opening widthW and the distance from a particle to a
center pointdist ˆp• .

of L , such as a set of particles). However, the dynamics of the
liquid body are captured largely by the velocity �eld instead
of its shape. To recover this information, we maintain a short
memory of the height�eld over the past 4 frames as input
to the neural network so that velocity information can be
recovered by �nite difference. This is illustrated in Figure 4
(a). Longer-term memory can also be recovered using, e.g.,
a recurrent neural network or LSTM. However, according to
the de�nition of velocity as the derivative of positions, only
the most recent memory is needed and these structures are
therefore unnecessary. In a real-life robotic system, acquiring
the height�eld may be very dif�cult. As a result, we also
experimented with a simpli�ed feature, which is the height
of a liquid surface only at the lip of source containerS,
as illustrated in Figure 4 (b). A common drawback of the
height�eld feature is that we can only represent laminar �ow
without internal air bubbles in the liquid. However, we can
carefully design our training dataset to contain only laminar
�ow (see Section VII for more details).

A. TRAINING DATA GENERATION

The dataset used to train the neural network is dif�cult to
acquire. This dataset should contain only successful pouring
trajectories. Moreover, the neural network should be expres-
sive enough to regenerate these trajectories. Previous works
[33], [34] address this problem for some applications by
modifying the dataset during training. [33] assumes there
is an expert who can provide additional training samples for
error recovery on request. However, our approach does not
assume the presence of any such expert. A human demon-
strator may serve as an expert, but digitizing or capturing
the liquid shape trajectory can be very challenging. On the
other hand, [34] assumes that the governing equation is
differentiable with respect tou. This assumption does not
hold due to the non-smooth free-surface changes. Moreover,
the computational complexity of [34] makes it infeasible for
the high-dimensional con�guration space of a liquid body.

	INTRODUCTION
	ASSUMPTIONS AND PROBLEM FORMULATION
	RELATED WORKS
	GENERAL MOTION PLANNING
	PLANNING FOR DYNAMIC OBJECTS
	IMITATION OR REINFORCEMENT LEARNING

	OVERVIEW
	PROBLEM FORMULATION

	FEEDBACK MOTION PLANNING
	SUPERVISED LEARNING
	TRAINING DATA GENERATION

	ANALYSIS AND RESULTS
	LIMITATIONS AND CONCLUSIONS
	References

