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Abstract
We address the problem of computing a topology preserving isosurface from a volumetric grid using Marching Cubes
for geometry processing applications. We present a novel topology preserving subdivision algorithm to generate an
adaptive volumetric grid. Our algorithm ensures that every grid cell satisfies two local geometric criteria: a complex
cell criterion and a star-shaped criterion. We show that these two criteria are sufficient to ensure that the surface
extracted from the grid using Marching Cubes has the same genus and connectedness as that of the exact isosurface.
We use our subdivision algorithm for accurate boundary evaluation of CSG combinations of polyhedra and low
degree algebraic primitives, translational motion planning, model simplification and remeshing. The running time
of our algorithm varies between a few seconds for simple models composed of a few thousand triangles to tens of
seconds for complex polyhedral models represented using hundreds of thousands of triangles.

Categories and Subject Descriptors(according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling

1. Introduction
Implicit surface representations have become increasingly
common in computer graphics and geometric modeling. An
implicit surface is typically defined as an isosurface of a scalar
field. Such representations are useful for different applications
including geometric modeling, volume rendering, morphing,
path planning, swept volume computation, and sculpting digi-
tal characters. Compared to other surface representations (e.g.
parametric surfaces), implicit surfaces offer many advantages
when performing geometric operations like union, intersec-
tion, difference, blending and warping.

Our goal is to use implicit surface representations for geo-
metric computations including Boolean operations (i.e. union,
intersection and difference), Minkowski sum computation,
simplification, and remeshing. In each case, we wish to ob-
tain an accurate polygonal approximation of the boundary of
the final solid. At a broad level, our algorithm performs three
main steps:

1. Sampling: Generate a volumetric grid and compute a
scalar field (e.g, a signed distance field) at its corner grid
points

2. Operation: For each geometric operation, perform an
analogous operation (e.g., min/max) on the scalar fields of
the primitives.

3. Isosurface Extraction: Perform isosurface extraction us-
ing Marching Cubes [LC87] or its variant to obtain an ap-
proximation of the final surface.

We refer to the boundary of the final solid as theexact iso-
surfaceand the output of Marching Cubes as theextracted
isosurface. Our goal is to ensure that the extracted isosurface
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Figure 1: This 1.7M triangle model of a turbine has a high genus
and many holes in the interior. We highlight the application of our
novel topology preserving voxelization, simplification and boundary
evaluation algorithms on this complex model. The simplified model
of the turbine has511K triangles and we show a zoomed view in the
center image. We perform five difference (Boolean) operations on the
turbine model and reconstruct the boundary of the final solid. Our
boundary evaluation algorithm preserves the topology of the final
solid and accurately computes all the components. Overall, our algo-
rithm can perform such geometric computations on complex models
in tens of seconds and give rigorous guarantees in terms of preserving
the topology of the final surface.

has the same topology as the exact isosurface. In particular, it
should have the same number of connected components and
genus as the exact isosurface. Preserving the topology is im-
portant in many applications. For example, a geometric model
designed using Boolean or offsetting operations can have a
different topology as compared to the original primitives. In
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CAD, accurately reconstructing all the features and holes in
the final solid is important. Many simplification algorithms
used for collision detection and finite element analysis need
to preserve the genus of the original model and compute a sur-
face approximation with tight bounds on the geometric error.
The geometric models used to represent the organs in medical
datasets consist of holes and handles. It is important to pre-
serve these topological features during visualization and anal-
ysis. The geometric model of a molecule consists of tunnels
and cavities. The tunnels often act as atomic sieves that can
aid the biochemical processes and preserving these features
can be important for rational drug design.

The topology of an isosurface reconstructed using March-
ing Cubes can differ from that of the exact isosurface. The ex-
tracted surface may have different genus, missing components
or unwanted handles. The main reason for these inaccuracies
is an inadequate sampling of the exact isosurface, i.e., the res-
olution of the volumetric grid. To overcome these topological
inaccuracy problems, many applications generate samples on
a fine grid. However, the use of a fine grid can result in other
problems. First, there may still be no guarantees on the topol-
ogy of the extracted isosurface. Second, a fine grid increases
the storage overhead and the extracted surface can have a high
number of polygonal primitives. Finally, it is computationally
expensive to use a fine grid. Recent work on adaptive grid gen-
eration and subdivision algorithms overcomes many of these
problems. However, none of the subdivision algorithms can
give rigorous guarantees on the topology of the reconstructed
isosurface.

Main Contributions: We present a novel approach to com-
pute a topology preserving isosurface using Marching Cubes
for geometry processing applications. We present a conserva-
tive sampling criteria such that if every cell in the volumet-
ric grid satisfies the criteria, then the extracted isosurface will
have the same topology as the exact isosurface. Our approach
is based on two geometric criteria:complex cellcriterion and
star-shapedcriterion. The complex cell criterion guarantees
that every intersection of an isosurface with that cell results in
some sign changes of the scalar field along the vertices of that
cell. The star-shaped criterion, as the name suggests, ensures
that the isosurface restricted to a cell isstar-shaped. We show
that if every cell in the grid satisfies these two criteria, then
the topology of the isosurface is preserved during isosurface
extraction.

We present an adaptive subdivision algorithm to generate a
volumetric grid such that every grid cell satisfies the above two
geometric criteria. We present efficient computational tech-
niques to check whether these two criteria are satisfied dur-
ing grid generation. We usemax-normdistance computation
to verify the complex cell criterion andkernel computation
to verify the star-shaped criterion. Our algorithm can easily
perform these computations on polyhedra, algebraic or para-
metric primitives and their Boolean combinations. We have
used our algorithm to perform accurate boundary evaluation
of CSG combinations of polyhedral and low degree alge-
braic primitives, model simplification and remeshing of com-
plex models. In each case, we compute a topology preserving

polygonal approximation of the final surface. We also have ap-
plied our algorithm to compute the Minkowski sum of polyhe-
dral models and used it for exact motion planning with transla-
tional degrees of freedom. The running time of our algorithm
varies between a few seconds for simple models consisting of
thousands of triangles and tens of seconds on complex primi-
tives represented using hundreds of thousands of triangles on
a Pentium IV PC.

Somenovel aspectsof our work include:

• Conservative sampling criteria —complex celland star-
shapedcriteria — for the volumetric grid such that the
topology of the isosurface is preserved.

• An efficient topology preserving subdivision algorithm to
generate an octree satisfying the above criteria.

• A fast algorithm to compute topology preserving simplifi-
cations of a complex polygonal model.

• Efficient and accurate algorithms for boundary evaluation,
remeshing, and translational motion planning.

As compared to prior work, the main benefits of our algorithm
are its speed, simplicity, accuracy and reliability. It not only
offers the efficiency and simplicity of Marching Cubes based
reconstruction, but also the ability to guarantee the topology
of the isosurface with limited additional overhead.

2. Previous Work
We give a brief overview of prior work on isosurface extrac-
tion for geometric applications. Marching Cubes, proposed
by Lorensen and Cline [LC87], is a standard approach to ex-
tract an isosurface from a volume raster of scalar values. It
is well known that there are certain grid cell configurations
that result in topologically ambiguous output. Many exten-
sions to the original Marching Cubes reconstruction algorithm
have been proposed that resolve these ambiguities and gen-
erate topologically consistent isosurfaces [WG90, CGMS00].
Most of these algorithms deal with the problem of extracting
a surface from a fixed volumetric dataset, or a given sampled
scalar field. These approaches modify Marching Cubes to pro-
duce a topologically consistent surface. However, to the best
of our knowledge, none of the previous algorithms on topolog-
ical considerations for Marching Cubes provide guarantees on
preserving topology of the exact isosurface.

[SH97, BCSV04] provide guarantees on the topology of
implicit surface polygonization based on critical point anal-
ysis. These approaches assume that the implicit surface is
smooth and require a priori knowledge of all the critical
points. It is not clear how to apply these approaches to perform
Boolean combinations where the final surface is not smooth
and whose topology can be very different from those of the
input primitives.

The original Marching Cubes algorithm is unable to ex-
tract high quality triangle meshes with sharp features from
the volumetric data. Recently, few extensions have been pro-
posed that can reconstruct sharp features and reduce alias-
ing artifacts in the reconstructed model [KBSS01, JLSW02].
The Marching Cubes algorithm can produce meshes with too
many small and skinny triangles, which typically require im-
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Figure 2: This figure shows the different cases corresponding to the complex cell and star-shaped test. Figs (a), (b), (c) and (d) show cases
of complex voxel, complex face, complex edge, and topological ambiguity. The white and black circles denote positive and negative grid points
respectively. Fig. (e) shows the case where the surface is not star-shaped w.r.t a voxel. In Fig (f), the restriction of the surface to the right face of
the cell is not star-shaped.

provement using decimation, smoothing, or remeshing. Algo-
rithms based on adaptive hierarchies can overcome some of
these problems and result in isosurfaces with fewer triangles
[FPRJ00, SFYC96]. However, these algorithms do not pro-
vide guarantees on the topology of the reconstructed surface.

Many volumetric approaches have used the topological
properties for model repair and simplification of polyg-
onal models [NT03] or generating an isosurface with-
out additional handles or cavities for scanned datasets
[GW01, WHDS02, BK02]. Often their input data contains
noise due to the scanning process. They use a priori knowledge
about the topology of the input data to eliminate the topolog-
ical artifacts that arise from the noise. These approaches are
complementary to our work. Moreover, in case of Boolean
operations, we may not have a priori information about the
topology of the final solid.

Since we are building upon our previous work [VKK ∗03],
we would like to make our contribution clear. We had pro-
posed an adaptive grid generation algorithm in [VKK ∗03]
based on acomplex celltest. However, the complex cell test
by itself is insufficient; as a result, the previous algorithm did
not provide any topological guarantees on the output. In our
current work, we show that by using an additionalstar-shaped
test, it is possible to ensure the correct topology.

3. Notation and Preliminaries
We assume that the isosurface is a closed manifold and is free
from artifacts such as self intersections. The isosurface is de-
fined as the zero set of a scalar field, usually a distance field
or a function of distance fields defined over a set of primi-
tives. All our primitives are assumed to be closed and compact
solids, whose boundary is a manifold.

We present the notation used in the rest of this paper. The
exact isosurface and our approximation are denoted asE and
A respectively. The letterC denotes a grid cell used for sam-
pling. We assume a cell consists of a cube-shaped voxel, six
faces, twelve edges, and eight vertices. Given a cellC, we de-
noteEC = E ∩C (E restricted to the cell) andAC = A ∩C.
We use upper case letters such asP,Q,P1, andSto refer to the
geometric primitives. We use lower case bold letters such as
p,q to refer to points inR3.

Let Sbe a nonempty subset ofRn. The set Kernel(S) con-
sists of alls∈Ssuch that for anyx∈S, we haves+λ (x−s)∈
S,∀λ ∈ [0,1]. Sis star-shapedif Kernel(S) 6= /0. We call a point
belonging to Kernel(S) as Origin(S).

A surface is a topological disk if it isconnectedas well
assimply connected. A manifold isconnectedif for any two
points on the manifold, there exists a path between them in the
set. A manifold is said to besimply connectedif any simple
closed curve on the manifold can be shrunk to a point con-
tinuously in the set. A homeomorphism is a continuous bijec-
tive mapping with a continuous inverse. Two objects are topo-
logically equivalent if there exists a homeomorphism between
them.

We define a curveI embedded in a planar face bounded by
a set of edgesG to be aboundary curveif I ∩G 6= φ . In other
words,I cannot lie completely inside the face.

4. Topology Preserving Surface Extraction
Our goal is to design a criterion to sample a scalar field so that
reconstruction methods like Marching Cubes and its variants
preserve the topology of the isosurface. In the rest of the paper,
we refer to Marching Cubes and its variants asMC-like algo-
rithmsand their output asMC-like reconstructionto simplify
the exposition. In this section, we present a conservative cri-
terion for sampling and prove the topological guarantees they
provide.

4.1. Overview of Marching Cubes Algorithm

The Marching Cubes algorithm [LC87] generates a polygonal
reconstruction of an isosurface of a sampled scalar field inR3.
It operates on each grid cell of the volume dataset indepen-
dently. It tests if the isosurface intersects the cell by compar-
ing the scalar field values at the vertices of the grid cell with
the isovalue. We assume the isovalue to be zero in the rest of
the paper. If the grid vertices of a cell have different signs,
Marching Cubes estimates intersection points along the cell
edges and connects them to obtain a polygonal reconstruction
within the cell. If all the grid vertices of a cell have the same
sign, then it assumes that the isosurface does not intersect the
cell and does not perform a reconstruction within the cell.

The accuracy of the extracted surface is governed by the
rate of sampling, i.e., the resolution of the underlying volu-
metric grid. Due to insufficient resolution, the isosurface may
have features smaller than the grid cell size or may have a
complicated topology within a grid cell. This results in a re-
constructed surface that can miss small surface features, have
unwanted handles or multiple components, and hence incor-
rect topology. In addition, there are certain grid cell sign con-
figurations that result in topologically ambiguous output (see
Fig. 2(d)).
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4.2. Topological Reliability of MC-Like Reconstruction

Our goal is to ensure that MC-like reconstruction algorithms
generate an approximate surfaceA that is topologically
equivalent to the exact surfaceE . This can be guaranteed by
making sure that the assumptions made by these algorithms
are valid — that the exact surface should intersect each grid
cell in a simple manner, and should have a simple topology
within each cell. In particular, we ensure that the exact surface
within each cell is a topological disk. We first present suffi-
cient criteria to ensure this property. Then we show that this
property can be used to guarantee the correct topology ofA .
We start by defining two properties of the exact surface,E ,
inside each cell.

Complex cell: A cell is complexif it has a complex voxel,
face, edge, or anambiguous sign configuration. We define a
voxel (face) of a grid cell to becomplexif it intersectsE and
the grid vertices belonging to the voxel (face) do not exhibit a
sign change (see Figs.2(a) & 2(b)). An edge of the grid cell
is said to becomplexif E intersects the edge more than once
(see Fig.2(c)).

As mentioned earlier, MC-like algorithms cannot handle
certain sign combinations in a topologically reliable manner.
There are two types of ambiguity —face ambiguityandvoxel
ambiguity[WG90]. When the signs at the vertices of a single
face alternate during counterclockwise (or clockwise) traver-
sal, the resulting configuration is a face ambiguity. A voxel
ambiguity results when any pair of diagonally opposite ver-
tices have one sign while the other vertices have a different
sign (see Fig.2(d)). Either of these cases is defined as an am-
biguous sign configuration.

Intuitively, the complex cell criterion ensures that the sur-
face intersects the grid cell in a simple manner in most cases.
However, this criterion alone is not sufficient. There are cases
where the cell may not be complex, but the isosurface may
have a complicated topology within the cell (see Figs.2(e)
& 2(f)). We circumvent such situations by enforcing a star-
shaped criterion within all the grid cells.

Star-shaped w.r.t. cell: Let S be a nonempty subset ofRn.
S is star-shapedif Kernel(S) 6= /0. Intuitively, a star-shaped
primitive has a point (called the origin) such that all the points
in the primitive are visible from the origin (see Fig.3(a)). Let
P⊆ R3 denote the closed solid defined by the isosurfaceE . P
is the set of points that lie insideE . We defineE to bestar-
shaped with respect to(w.r.t) a voxel V if PV = P∩V is star-
shaped. Similarly, we defineE to bestar-shaped w.r.t a face
F if the two-dimensional set,PF = P∩F , is star-shaped.E is
said to bestar-shaped w.r.t a cellif it is star-shaped w.r.t the
cell’s voxel, and each of its six faces. Figs.2(e) & 2(f) show
two cases where the surface is not star-shaped w.r.t a voxel or
a face of the cell.

DEFINITION 1 A cell C isMC-compatibleif it is not com-
plexandE is star-shapedw.r.t. C.

We start by listing few known properties of MC-like recon-
struction algorithms and MC-compatible cells.

• Property 1. The signs of the scalar field at all the grid ver-

(a)
Star-shaped object

(b) Intersection Curves

Figure 3: Fig. (a) shows a star-shaped primitive and its kernel
(shaded region in the middle). P is an origin of the kernel. Fig (b)
supports proof of Lemma1. It shows a grid cell face F and the inter-
section of the exact surfaceE with F. The figure on the left shows the
intersection curve (in blue) consisting of two curve components, one
of which is closed. As a result, it is not star-shaped. The figure on the
right shows the case where the curve has two boundary curves. This
results in a face ambiguity.

tices are preserved in the surface reconstructed by a MC-
like algorithm.

• Property 2. The reconstructed surface,AC, inside any MC-
compatible cell is a topological disk. After eliminating the
topologically ambiguous sign configurations, the remaining
sign configurations always result in reconstruction homeo-
morphic to a disk.

We now present our main result related to topology-
preserving reconstruction. If all the cells boundingE are MC-
compatible, then the reconstructed surface,A , has the same
topology asE . In order to prove this result, we first show that
the exact surface within each cell is a topological disk. This
property is then used to establish topological equivalence. We
begin by presenting few lemmas.

LEMMA 1 Let C be a MC-compatible cell with faces Fi , i =
1, . . .6. ThenEC ∩ Fi is either empty or a single boundary
curve.

Proof: Consider a faceF on C such thatI = EC ∩F is not
empty.I can have no closed component. We prove this by con-
tradiction. SupposeI has a closed component. ThenI cannot
have any other curve component because it will contradict the
fact thatI is star-shaped w.r.tF (see Fig.3(b)-left). But if I is a
single closed component, thenF is a complex face. Therefore
I cannot have any closed components.

Let us assume thatI has multiple boundary curves. The
complex-edge criterion ensures that a boundary curve inter-
sects exactly two edges of the faceF . It also ensures that two
boundary curves cannot intersect the same edge. Therefore,I
can have at most two boundary curves, each intersecting two
edges ofF . However, this results in a face ambiguity (see Fig.
3(b)-right). Hence,I can have only a single boundary curve.

LEMMA 2 Let C be a MC-compatible cell. IfEC is not
empty, then it is a connected surface with boundary.

Proof: LetC enclose a voxelV. We prove thatEC cannot con-
tain any closed component. Similar to the previous proof, the
presence of a closed component would imply that either the
primitive is not star-shaped w.r.t.V, orV is a complex voxel.

Let EC have multiple surface components with boundary.
The boundary of each surface component corresponds to a
boundary curve on the faces of the cell. From the result of
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Lemma1, each face contains only one boundary curve. Fur-
thermore, the complex face and complex edge criteria pre-
clude the boundary curve from intersecting one or two faces.
Therefore, each boundary curve intersects at least three faces.
Since each face can have at most one boundary curve,EC can-
not have more than two surface components. The only way
there can be two surface components is if two diagonally op-
posite cell vertices are inside the primitive while the others
are outside (see Fig.2(d)). This is the case of a voxel ambigu-
ity. Therefore,EC has at most one surface component with a
boundary and is connected.

LEMMA 3 Let C be a MC-compatible cell. IfEC is not
empty, then it is a topological disk.
Proof: The result from Lemma2 shows thatEC has a sin-
gle connected component with boundary. To show that it is
a topological disk, we show thatEC is a simply connected
surface. Let us assume thatEC is not simply connected. This
means thatEC has two or more boundaries. The remainder
of the proof is very similar to the argument in the proof of
Lemma2. Existence of two boundaries results in a voxel am-
biguity. Therefore,EC is simply connected. This proves that it
is a topological disk. This concludes the proof.

We now show that bothE andA intersect the grid cells in
an identical fashion. Consider a MC-compatible cellC. Given
any surface, suppose we associate a bitv with a voxel whose
value is 1 or 0 depending on whether the voxel is intersected
by the surface or not. Similarly, we can associate such a bit
with each face and edge of the cell. Letfi , i = 1, . . . ,6 and
ej , j = 1, . . . ,12 denote the bits associated with the ith face
and jth edge respectively. These bits reflect theintersection
statusof the voxel, faces, and edges of the cell. We define the
intersection patternof cell C w.r.t the surface as the 19-bit
tuple(v, f1, . . . , f6,e1, . . . ,e12).

LEMMA 4 A MC-compatible cell has an identical intersec-
tion pattern w.r.t bothE andA .
Proof: An edge/face/voxel of a MC-compatible cellC is in-
tersected byE if and only if it is intersected byA . This is
because the intersection status of an edge/face/voxel in a MC-
compatible cell is solely determined by the signs at the grid
vertices of the cell. For example, if an edge is intersected by
E , then the edge endpoints must exhibit a sign change because
otherwise it is complex. Thus the signs at the endpoints of the
edge capture its intersection status. This is also true in case
of the faces and the voxel of cellC. Moreover, signs are pre-
served during surface reconstruction. This is due to Property
1. It follows that the intersection pattern is also preserved.

THEOREM 1 If all the cells bounding E are MC-
compatible, then the reconstructed surface,A , has the same
topology asE .
Proof: Lemma3 and Property 2 show thatEC and AC are
topological disks inside cellC. Furthermore, Lemma4 shows
that the intersection pattern ofE andA within each grid cell
is identical. Using these two facts, we can define a homeo-
morphism betweenE andA . This mapping can be extended
to define a homeomorphism between the solids corresponding
to E andA . Consequently,A is topologically equivalent to
E .

4.3. Isosurface Extraction on Adaptive Grids

Applying Marching Cubes to an adaptive grid can result in
cracks in the regions where grid cells at different resolutions
meet. This becomes an issue when defining a homeomorphism
betweenE andA . We employ crack patching to overcome
this problem. We perform crack patching by modifying the ex-
tracted isosurface within the larger cell to match the extracted
surface within the smaller cell. In this way, we ensure that our
approximationA is continuous. While this step may not pre-
serve the star-shaped property within the grid cell, it maintains
the property thatA is a topological disk within the cell and
preserves the intersection pattern. As a result, we can define a
homeomorphism betweenE andA .

We also considered dual methods such as Dual Contour-
ing [JLSW02] for isosurface extraction. The advantage of this
method is that it obviates the need for crack patching. How-
ever, we cannot apply Dual Contouring directly. This is be-
cause we require the contouring method to satisfy Property 1
in Section4.2. Dual Contouring when applied to an adaptive
grid may not satisfy this property. It is possible to extend the
dual contouring method to overcome this problem. We plan to
use this modified method for isosurface extraction in future.

In the rest of the paper, we use MC-compatibility as the con-
servative criterion for adaptive grid generation and computing
a topology preserving isosurface.

5. Topology Preserving Subdivision
In this section, we provide adaptive subdivision criteria to gen-
erate a grid such that each grid cell is MC-compatible. Our
sampling algorithm performs two tests on each grid cell. We
first test check if a cell is complex using max-norm distance
computation. Our second test checks if the surface is star-
shaped using kernel computation. We first describe compu-
tational techniques for polyhedral models and their Boolean
combinations and later extend them to higher order primitives.
We also present the adaptive subdivision algorithm.

5.1. Max-Norm Distance Computation

We use max-norm distance computation to test if a primitive
intersects the voxel, face, or edge of a cell. Under this norm,
the distance between two pointsx andy (in 3 dimensions) is
represented asD∞(p,q) and is defined as

D∞(p,q) = max
i
|pi − qi |, i = 1,2, . . . ,3 (1)

We can extend this definition in case of distance between a
point p and a setQ ⊆ Rd. The iso-distance ball, i.e., the set
of points at a constant distance from the origin, under max-
norm is a cube; so it is a natural metric for cubical cells. We
use the algorithm presented by Varadhan et al. [VKK ∗03] for
max-norm distance computation. This algorithm is applicable
to a wide variety of primitives such as polyhedra, algebraic
primitives, etc.

When the isosurfaceE is defined by a Boolean expression
involving a number of primitives, we estimate the max-norm
distance to the isosurface by evaluating an equivalent expres-
sion involving min/max operators on the signed distances to
the primitives. It is possible that the min/max operators can
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produce incorrect distances at some points. However, this dis-
tance value will always be less than the exact distance to
the surface boundary and is used for Boolean operations. We
use max-norm distances to verify the complex cell criterion,
which is presented in Section5.3.1. For this test, these values
are conservative and preserve correctness.

5.2. Kernel Computation
The exact kernel computation of a closed orientable surface
primitive involves the intersection of halfspaces. These halfs-
paces are determined by the tangent plane at each point on the
surface. Using the point-hyperplane duality, this reduces to a
convex hull computation. InR3, for a polyhedral surface with
n facets, this can be performed inO(nlogn). However, for the
star-shaped test, it suffices to check if the kernel is empty or
not.

For the sake of simplicity, we first consider kernel computa-
tion for polyhedral primitives. We discuss extension to higher
order primitives in Section5.4. For a polyhedral primitive,
testing for a non-empty kernel reduces to linear programming
(LP). If p is a point belonging to the kernel, then each face of
the polyhedron with centroidc and outward normaln defines
the linear constraintn ·(c−p) > 0 onp. As a result, the kernel
is non-empty if the set of constraints admits a feasible solution
for p. In fixed dimensions, LPs can be solved in linear time,
and a number of efficient public domain implementations are
available.

When the isosurfaceE is defined by a Boolean expression
involving a number of primitives, a sufficient condition for
the star-shapedness of the isosurface is that the intersection
of all the primitive kernels is non-empty. IfS1 andS2 are two
star-shaped primitives with a common origin, thenS1�S2 is
also star-shaped where� denotes a Boolean operation such as
union and intersection. This is because

Kernel(S1)∩Kernel(S2)⊆ Kernel(S1�S2)

For polyhedral primitives, we check for the above condition
by combining the linear constraints defined by the individual
primitives and testing for feasibility by solving the resulting
LP. The difference operation can be rewritten as an intersec-
tion by inverting the linear constraints of the negated primi-
tive. We note here that the above condition is sufficient, but
not necessary.

5.3. Adaptive Subdivision Algorithm
We start with a single grid cell that is guaranteed to boundE .
We perform two tests,complex cell testandstar-shaped test,
to decide whether to subdivide a grid cell. We now describe
each test.

5.3.1. Complex Cell Test
To check whether a cell is complex, we perform the following
tests:

• Complex Voxel/Face: We use max-norm distance compu-
tation to check whether the surface intersects a voxel or face
of the cell. We use the fact that a voxel (face) is intersected
by the surface if and only if its (unsigned) three- (two-) di-
mensional max-norm (l∞) distance from the center of the

Figure 4: Adaptive Subdivision:This figure is an illustration of our
adaptive subdivision algorithm, The algorithm performs adaptive sub-
division until the surface within each cell is a topological disk (in 3D).
It ensures this by testing whether a cell is complex and if the surface is
star-shaped with respect to the cell. In this figure, cell ABCD was sub-
divided because it corresponds to a complex voxel, cells AEFG and
FNCP were subdivided because the curve within the cell was not star-
shaped and FKLM was subdivided because of topological ambiguity.
Edge IJ is complex; as a result, cells AHIJ and JIQG are subdivided.

voxel (face) is less than half the size of the cell. We deter-
mine if the voxel (face) is complex by checking for the sign
change at its vertices and the result of the max-norm test.
A voxel (face) is complex if it is intersected by the surface
and does not exhibit a sign change.

• Complex Edge: We use directed distances [KBSS01] to
test if an edge is complex. An edge is complex if the sum
of the directed distances (along the edge) from the two end-
points of the edge is less than the edge length.

• Ambiguity : We use the signs at the grid vertices to re-
solve cases corresponding to face and voxel ambiguity (see
Fig. 3(b) and Fig.2(d)).

If any of these tests results in the affirmative, the cell is com-
plex and we subdivide it and apply the algorithm recursively
to the new cells.

5.3.2. Star-shaped Test

Linear programming (LP) is used to test for the star-
shapedness of a polyhedral primitive. As described earlier in
this section, the isosurface described by a single primitive or
implicitly by a collection of primitives can be conservatively
checked for the star-shaped property. We need to perform two
tests at each cell on the isosurface – (a) star-shaped w.r.t voxel,
and (b) star-shaped w.r.t. each face.

For each polyhedral primitive, we consider only those faces
of the polyhedron that intersect the voxel. This set of faces de-
fines the constraints for an LP inR3, whose solution answers
the test (a). For each face of the cell, we consider those faces
of the polyhedron that intersect it. These faces result in a col-
lection of piecewise linear segments on the face of the cell.
Solving a similar LP defined by these linear curves inR2 an-
swers test (b). When there are multiple primitives intersecting
the cell, we combine their linear constraints and then solve the
resulting LP. Since we are only dealing with linear programs
in two and three dimensions, a dual formulation of constraints
and objective function is much more efficient in practice. We
use such a formulation to perform the star-shaped test.

If either of these tests turns out to be negative, we subdivide
the cell. Fig.4 illustrates the working of the algorithm on an
example.
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(a) Hand Model (b) Coarse Approximation (c) Fine Approximation (d) Adaptive Subdivision (e) Closeup

Figure 5: Topology-Preserving Simplification: Figs (a),(b),(c) show the original model along with a coarse and fine approximation generated
using our topology preserving simplification algorithm. The original model has654K triangles, while the two approximations consist of27K and
58K triangles respectively at Hausdorff error bounds of1 and 1/128. Fig (d) shows the adaptive grid generated for the coarse approximation.
The colors, green, blue, and red in that order, indicate the increasing level of subdivision. Fig (e) shows a closeup view of a part of the fine
approximation. It highlights the features in the original model and our algorithm is able to reconstruct all these features accurately. It took36secs
to generate the approximation.

5.3.3. Termination

The subdivision algorithm will terminate if the isosurface is a
closed manifold, free from artifacts such as self intersections
and if there is no tangential contact between the primitives.
The algorithm does not terminate when there are two primi-
tives in tangential contact within a voxel, face or edge. It may
be possible to use different spatial subdivision schemes (in-
stead of octree) or perturbation techniques to overcome them.
One possible approach is to subdivide using supporting planes
that arise from the individual primitives themselves. This is
akin to binary space partitioning (BSP) technique. Cells gen-
erated by this approach are no longer cubical, but general con-
vex polyhedra. It is not difficult to prove that such a technique
will always terminate. However, issues regarding isosurface
extraction from such a grid and topological guarantees need
to be explored further.

5.3.4. Hausdorff Error

Our subdivision algorithm can be used to generate bounded-
error approximation to the exact isosurfaceE . Given an error
toleranceε > 0, we can augment the subdivision algorithm
with an additional criterion – that the diameter of all the grid
cells be less thanε. Let Aε denote the resulting approxima-
tion. This gives us an upper bound on the two-sided Hausdorff
error betweenE andAε .

5.4. Extension to Higher Order Primitives

The results presented in section4 are general and are ap-
plicable to a wide variety of primitives. While techniques for
max-norm computation presented in [VKK ∗03] are applicable
to a wide variety of primitives, our method for kernel com-
putation using linear programming was restricted to polygo-
nal meshes. In this section, we will describe methods to ex-
tend this computation to nonlinear primitives. Exact methods
for kernel computation of higher order primitives usually in-
volves solving a system of nonlinear equations and curve trac-
ing which can be computationally expensive. We present an
approach that avoids exact kernel computation. As previously
observed, the star-shaped test is reduced to testing whether the
kernel is empty or not. Therefore, all we need is a point that
is witness to the actual kernel. We provide a simple way to
conservatively performs this test.

Our approach starts by performing a dense tessellation of
the original primitive. This is done as a pre-processing step.
We use the surface triangulation to determine an approximate

kernel using linear programming. If such a kernel exists, we
determine a point in it that is the best candidate to belong to
the kernel of the exact curved primitive. As a candidate, we
choose a point that is roughly in the center of the approximate
kernel. To find this point, we augment the linear program by
adding a slack variableδ to each of the constraints and set the
objective function to maximizeδ . A detailed explanation of
this technique is provided in [VKSM04b].

This point is expected to lie inside the exact kernel (if it
exists) with high probability. The probability depends on the
approximation incurred in tessellation - the tighter the approx-
imation, the higher the probability. However, we need to check
if this point is actually a witness to the exact kernel. Such
a witnessp would satisfyn(x)T(x−p) > 0, for all pointsx
on the primitive wheren(x) is the normal to the surface at
x. For an algebraic surfacef (x,y,z) = 0, the expression be-
comes5 f T(x−p). We can derive a similar expression for
parametric surfaces. Given such an expression and an axis-
aligned cell, we need to verify if it is positive inside the cell.
We use interval arithmetic to perform this test reliably on the
interval determined by the cell. If the expression turns out to
be positive inside the cell,p is a witness to the exact kernel
and we stop subdivision. Otherwise, the cell is subdivided and
the tests are repeated on each child cell. The performance of
the interval arithmetic depends on the degree of the expres-
sion and the tightness of the interval used. Details of our tech-
nique to optimize the interval arithmetic step are presented in
[VKSM04b].

The above approach is conservative and can result in some
unnecessary subdivision. This is because interval arithmetic
tests the above expression forx belonging to the entire interval
rather than considering only points belonging to the algebraic
surface. The main benefit of our method is that it is very simi-
lar in flavor to the test for polyhedral primitives and this makes
it efficient. One requirement of this approach is the need for an
explicit expression for the normal field of the surface. This is a
reasonable assumption because such expressions are available
for the class of surfaces representable in algebraic or paramet-
ric form.

6. Implementation & Applications

In this section, we describe the implementation of our algo-
rithm and highlight four different applications of our adap-
tive subdivision algorithm. These are boundary evaluation
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Figure 6: Boolean operations on complex models and curved
primitives: The left figure shows the result of the union of two drag-
ons. Each dragon is represented using850K triangles. Our algorithm
computes a topology preserving approximation of the final boundary.
It took95secs to compute an approximation with118K triangles at a
Hausdorff error bound of1/128. The right figure shows the result of
100 difference operations between a polyhedron and100 ellipsoids.
The resulting surface has a complex topology; it has a genus of208.
Our algorithm took16 secs to generate an approximation with the
correct topology at a Hausdorff error bound of1/64.

on geometric primitives, motion planning, simplification, and
remeshing.

We used C++ programming language with the GNU
g++ compiler under Linux operating system. We used
a freely available linear programming package,QSOPT
(http://www.isye.gatech.edu/~wcook/qsopt/
index.html ), to implement the star-shaped test. We use
a dual formulation of the linear program for computational
efficiency. We demonstrate the performance of our algorithm
on many complex models. Table1 highlights the performance
of our algorithm on these models. All timings are on a 2 GHz
Pentium IV PC with a GeForce 4 graphics card and 1 GB
RAM.

In all our applications, we first generate an adaptive grid on
the primitives using our subdivision algorithm. We compute
a polyhedral approximation to the boundary of the final solid
using Extended Marching Cubes (EMC) algorithm [KBSS01]
along with crack patching (as discussed in Section4.3). The
output surface in all our reconstructions is a manifold.

6.1. Boundary Evaluation

Boolean operations are frequently used to design complex
solid models out of simple shapes. The solid objects are spec-
ified as constructive solid geometry (CSG) expressions and
represented hierarchically using boolean operations on primi-
tive solids. Our goal is to compute its boundary representation
(B-rep). The topology of the resulting surface can be quite
different from that of the individual primitives. As a result, it
is important to accurately compute the boundary of the final
solid with the correct topology. Analytic algorithms for exact
boundary evaluation of CSG primitives are susceptible to ro-
bustness and accuracy problems. We assume that the B-rep is
a manifold and limit ourselves toregularizedboolean opera-
tions.

Figure6 shows the union of two Dragon models. The sec-
ond example is obtained by performing 5 difference opera-
tions on the Turbine Blade model (see rightmost image in Fig.
1). The model has more than 1.7 million triangles. The final
surface has multiple components and a higher genus. Figure

Figure 7: This figure shows the remeshing of aBrake Hubmodel.
The center and right images show the triangulation of the original
model and the remeshed model. The original brake hub model has
14K triangles. Our algorithm took1.85 secs to perform remeshing
and generate a mesh with7K triangles at a Hausdorff error of1/32.

6 highlights application of our algorithm to perform Boolean
operations on curved primitives. It shows a challenging sce-
nario where we perform 100 difference (Boolean) operations
between a polyhedron and 100 ellipsoids. The resulting sur-
face has a very complex topology with numerous small holes;
it has a genus of 208.

Our algorithm generates an approximate surface that has
the same topology as the exact boundary. Although volumet-
ric approaches have been widely used for boolean operations
[BMW00], earlier algorithms do not give any guarantees on
the topology.

We have applied our algorithm to compute the Minkowski
sum of polyhedral models and used it for exact motion plan-
ning with translational degrees of freedom. We consider the
case of a 3D polyhedral robot undergoing translation mo-
tion among 3D polyhedral obstacles. This problem can be ex-
pressed in terms of the Minkowski sum of the robot and the
obstacles. Minkowski sum of polyhedral models can be re-
duced to a union operation. However, exact computation of
this union is not practical as it can have a complexity as high
asO(n6). In [VKSM04a], we show how to use our topology
preserving subdivision algorithm to compute an approximate
Minkowski sum representation and use it for designing an ex-
act path planner. Our planner is guaranteed to find a path, if
one exists, even through narrow passages.

6.2. Topology Preserving Simplification

Given a polygonal object, model simplification algorithms
produce a lower polygon count approximation that preserves
its shape or appearance. Simplification techniques have been
used for fast display and simulation. In order to compute a
drastic simplification for interactive visualization, many algo-
rithms do not preserve the topology. On the other hand, pre-
serving the topology of the original object during simplifica-
tion is important in some applications like CAD, collision de-
tection, medical visualization and molecular modeling. Volu-
metric approaches have been proposed for model simplifica-
tion [NT03]. These algorithms are quite fast in practice and
are applicable to all kind of models. However, none of these
approaches preserve the surface topology.

We use our algorithm to perform topology preserving volu-
metric simplification. We compute a discrete sampling of the
distance field by applying our subdivision algorithm presented
in Section5. Different levels of detail are generated by chang-
ing the threshold value for 2-sided Hausdorff approximation.
The reconstruction algorithm generates an isosurface that has
the same topology as the original model. Our metric of Haus-
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Combinatorial Complexity Performance (secs)

Model Input Tri Count Output Tri Count Complex Cell Test Star-shaped Test Subdivision Total

Hand Simplification (Fig.5) 654,666 58,966 4.3 8.1 23 36

Turbine Simplification (Fig.1) 1,765,388 511,182 14.1 31.3 65.8 110

Turbine Blade Boolean (Fig.1) 1,765,388 319,074 16.8 29.1 70.4 116

Union of Dragons (Fig.6) 1,714,920 118,214 10.2 21.1 63.6 95

Curved Boolean (Fig.6) - 57,286 5.4 5.1 5.5 16

Brake Hub Remeshing (Fig.7) 14,208 7,056 0.38 0.55 0.90 1.85

Table 1: This table highlights the complexity of our input models and performance of our algorithm. The columns on the left shows the the
triangle count of the input and triangle count in our reconstruction. The columns on the right show the cumulative time taken by the complex cell
test, star-shaped test and adaptive subdivision over all the grid cells. The rightmost column shows the total execution time.

dorff error can be easily combined with other metrics such as
curvature, quadric error, etc, to guide the simplification. Fig-
ure 5 shows our simplification algorithm applied to a medi-
cal dataset, a 650K triangle Hand model. This model has a
number of topological features that need to be preserved in
order to maintain the anatomical structure of the hand. Figure
1 shows our simplification algorithm applied to the Turbine
Blade model. Note that our method has preserved the complex
topological features in the simplified model.

Some prior surface simplification methods can be
adapted to perform topology preserving simplification
[CVM∗96, ZG02]. However, one limitation of these ap-
proaches is that they can produce self intersections. In order to
avoid self-intersections, surface decimation algorithms need
to perform global tests and this can result in considerable over-
head. For example, simplification envelopes [CVM∗96] can
take 3− 5 hours on models composed of few hundred thou-
sand triangles on a SGI R10000 processor.

Our subdivision criterion ensures that the isosurface is a
topological disk within each grid cell by satisfying the com-
plex cell and star-shaped criteria. In case of simplification, a
simpler test exists. We can ensure the topological disk prop-
erty by computing the Euler characteristic of the original poly-
gonized surface within the grid cell and testing if it is equal to
1. However, this test is not applicable in case of Boolean op-
erations where we do not have a polygonization of the final
surface (in fact, our goal is to compute a polygonization). The
test is also not applicable to motion planning.

6.3. Topology Preserving Remeshing

Volumetric approaches have been used for remeshing and re-
pair of polygonal models [KBSS01, NT03]. In many appli-
cations, the polygonal models can have degenerate triangles,
flipped normals, or triangles with bad-aspect ratios. The goal
is to compute a valid manifold representation of the underly-
ing closed solid and ensure that the resulting triangles have a
good aspect ratio. The manifold representation generated after
resampling can be used for multiresolution analysis or simpli-
fication. Earlier algorithms generate a volumetric representa-
tion by sampling the distance field on a uniform grid and ex-
tracting a surface with sharp features [KBSS01] or with a sim-

plified topology [NT03]. However, these methods provide no
guarantees on the genus or the number of connected compo-
nents. We have applied our subdivision algorithm to compute
a topology preserving remeshing of CAD models (see Fig.7).
The Euler characteristic test (see Section6.2) could also be
used for remeshing.

6.4. Performance

Table1 highlights the performance of our algorithm on these
models. It also provides a breakup of the total time spent in
performing the complex cell test, star-shaped test, and adap-
tive subdivision. The complex cell and star-shaped tests are
very efficient. On an average, the complex cell and star-shaped
tests account for 10−15% and 20−25% of the total time re-
spectively. The remainder of time is spent on adaptive sub-
division. This correspond to the time taken to push the input
triangles down the octree data structure. For each octree cell,
we maintain a list of triangles that intersect it. As we subdi-
vide the octree cell, we partition it into 8 children and compute
their triangle lists. For large input models, this takes substan-
tial fraction of the total time.

7. Limitations
In this section, we discuss some of the limitations of our algo-
rithm. Our adaptive subdivision algorithm may not be able to
handle all degenerate configurations in the input model. These
include cases when the model has artifacts such as self in-
tersections or when two primitives are touching tangentially.
Our algorithm can only generate manifold boundaries and is
not applicable to the cases where the exact boundary is non-
manifold. Our adaptive subdivision criteria is conservative.
Within a cell, we require all the primitives should be star-
shaped with respect to a common origin. The isosurface de-
fined by the Boolean expression over the primitives can be
star-shaped within the cell even though this condition may
not be satisfied. This can result in additional subdivision and
lead to higher polygon counts in the approximation. Our topol-
ogy preserving simplification algorithm cannot perform dras-
tic simplifications. This is due to our conservative subdivision
and also the fact that volumetric approaches can not produce
drastic simplifications [ESV97]. Moreover, for a fixed poly-
gon budget, approaches based on surface decimation opera-
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tions like edge collapses or vertex removal [CVM∗96] will
generate a higher quality simplification.

8. Conclusions and Future Work
In this paper, we describe a novel approach to compute topol-
ogy preserving isosurfaces that arise in a variety of geomet-
ric processing applications. We present a sufficient condition
based on thecomplex celland star-shapedcriteria for sam-
pling a distance field so that the reconstruction maintains the
topology of the original isosurface. We also provide an adap-
tive subdivision algorithm which is very efficient and easy
to implement. We have applied our subdivision criterion to
boundary evaluation, motion planning, topology preserving
simplification and remeshing on a number of complex exam-
ples successfully.

There are many avenues for future work. In applications
such as laser scanning, the input data often contains topolog-
ical noise due to inaccuracies in the scanning and merging
process. We would like to investigate whether our results can
be combined with the algorithms presented in [GW01, BK02]
and used to perform topological reasoning for noise removal.
Our current implementation supports polyhedral and low or-
der algebraic primitives. We would like to apply our algorithm
to the class of NURBS and subdivision surfaces. We would
also like to use our subdivision algorithm to improve the ac-
curacy of swept volume computation algorithms. Finally, we
would like to improve our current subdivision criteria so that
it is less conservative, and yet preserves topology.
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