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Figure 1: We present improved subdivision and isosurface reconstruction algorithms for polygonizing implicit surfaces
and performing accurate geometric operations. We highlight its performance on the “gun model” of the Bradley Fighting
Vehicle which is generated using 8 Boolean operations. The leftmost and center left images show an iso-surface reconstruction
using the dual contouring algorithm [Ju et al. 2002] on a distance field sampled on a uniform 64 × 64 × 64(≈ 262K) and
256× 256× 256(≈ 16.7M) grid, respectively. The center right image shows the improved iso-surface generated from our new
reconstruction on the uniform 64 × 64 × 64 grid. It can reconstruct thin features without creating additional handles, but
cannot reconstruct all the sharp features. We also present an algorithm to detect multiple sharp features in a cell and use it
to generate an adaptive grid. The rightmost image shows our reconstruction applied to a grid generated by our subdivision
algorithm. It can reconstruct all the sharp features, does not create any additional handles and uses only 313, 168 voxels.
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Abstract

We present improved subdivision and isosurface reconstruction al-
gorithms for polygonizing implicit surfaces and performing accu-
rate geometric operations. Our improved reconstruction algorithm
uses directed distance fields [Kobbelt et al. 2001] to detect multiple
intersections along an edge, separates them into components and
reconstructs an isosurface locally within each component using the
dual contouring algorithm [Ju et al. 2002]. It can reconstruct thin
features without creating handles and results in improved surface
extraction from volumetric data.

Our subdivision algorithm takes into account sharp features that
arise from intersecting surfaces or Boolean operations and gener-
ates an adaptive grid such that each voxel has at most one sharp
feature. The subdivision algorithm is combined with our improved
reconstruction algorithm to compute accurate polygonization of
Boolean combinations or offsets of complex primitives that faith-
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fully reconstruct the sharp features. We have applied these algo-
rithms to polygonize complex CAD models designed using thou-
sands of Boolean operations on curved primitives.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Curve, surface, solid, and object
representations

Keywords: Implicit modeling, Boolean operations, Marching
Cubes, Distance fields, Subdivision

1 Introduction

Implicit surface representations have become increasingly common
in computer graphics and geometric modeling. An implicit surface
is typically defined as an isosurface of a 3-dimensional scalar field.
It can be mathematically expressed by a functionf (p) = 0 wherep
is a point. Moreover,f (p) is often defined as the distance between
p and the surface of the object being represented.

In this paper, we mainly deal with geometric models that are im-
plicitly defined using a volumetric data set. Our main goal is to
compute an accurate polygonization of the implicit surface and use
these representations for geometric processing applications such as
Boolean operations (i.e. union, intersection and difference) or off-
set computations. The resulting algorithms use the following two
steps:

1. Generate a voxel grid and compute the signed distance field at
its corner grid points.

2. Reconstruct the isosurface using some variant of the Marching
Cubes algorithm.



Many issues arise when applying this approach to complex shapes
and reliably generating the boundary of the final surface. The ac-
curacy of the algorithm is mainly governed by the resolution of the
underlying grid and the choice of the reconstruction algorithm. If
the final surface has thin features, insufficient grid resolution can
create handles in the reconstructed surface (see Fig. 1). Moreover,
many geometric operations (e.g., Booleans) create new sharp fea-
tures or edges on the boundary of the final surface. Our goal is to
reconstruct them as faithfully as possible.

Recent work on implicit modeling techniques has addressed
some of these problems. These techniques include generating adap-
tive grids based on octrees or usingadaptively sampled distance
fields(ADFs) [Frisken et al. 2000]. However, a key challenge is de-
signing criteria for generating adaptive subdivision. Recently, two
improved isosurface extraction algorithms have been proposed:Ex-
tended Marching Cubes[Kobbelt et al. 2001] anddual contouring
[Ju et al. 2002]. Both algorithms use Hermite data and generate
isosurfaces that contain sharp features. In practice, they work well
when each cell contains no more than one sharp feature orcomplex
edges (i.e. edges with more than one intersection with a surface).
Our approach builds on the adaptive grid generation methods and
the improved isosurface extraction algorithms.

Main Contributions: We present two new algorithms for ac-
curate polygonization of implicit surfaces from volumetric data:
feature-sensitive adaptive subdivisionand isosurface reconstruc-
tion. Our reconstruction uses directed distances, i.e., distance
along a direction [Kobbelt et al. 2001], to perform an exact edge-
intersection test. This edge intersection test can reliably detect in-
tersections of the edge with a surface. This test is combined with
the dual contouring algorithm [Ju et al. 2002] to obtain an improved
reconstruction algorithm,Extended Dual Contouring. It can recon-
struct thin features and avoids creation of additional handles. The
algorithm takes into account the characteristics of the grid and con-
siders complex edges. It enumerates all the intersections along the
edges, separates them into components and reconstructs the isosur-
face locally within each cell.

We present a novel subdivision algorithm that takes into account
sharp features in the original primitives as well as new sharp fea-
tures that are introduced by intersecting surfaces and Boolean op-
erations. We analyze the problem of accurately reconstructing the
sharp features and present a conservative test to check for multiple
sharp features in a cell. This test is used as a subdivision criterion
for ADF generation and geometry processing.

Our overall approach for polygonization uses two kinds of tests
to generate a more accurate approximation of the final surface: an
edge-intersection test for improved reconstruction of thin features
without creation of additional handles, and a multiple sharp feature
detection test for improved reconstruction of sharp features. We
have applied our algorithms to compute the boundary of implicit
surfaces and complex CAD models designed using Boolean oper-
ations and offsets. The underlying primitives consist of polyhedra,
quadrics and tori; our benchmark model (Bradley Fighting Vehicle)
is designed using thousands of Boolean operations. We also use
the graphics rasterization hardware to accelerate the computation
of distance fields. In practice, our algorithm is able to compute a
good approximation of the final surface (as shown in Fig. 1).

New Results:Novel aspects of our work include:

1. An improved reconstruction algorithm based on dual contour-
ing that can reconstruct thin features and takes complex edges
into account.

2. An exact edge-intersection test based on directed distance.

3. A conservative technique for detecting multiple sharp features
per cell that arise from intersecting surfaces or Boolean oper-
ations.

Organization: The rest of this paper is organized as follows. We
give a brief survey of prior work in Section 2. We present our im-
proved reconstruction algorithm to compute the isosurface in Sec-
tion 3. We present a technique for detecting multiple sharp features
in a cell and use it to perform adaptive subdivision in Section 4. We
describe the implementation of our algorithms and highlight their
performance on different benchmarks in Section 5. Finally, we an-
alyze the performance of our algorithms and discuss some of their
strengths and limitations in Section 6.

2 Prior Work and Preliminaries

In this section, we give a brief overview of prior work on generating
discrete samples and reconstruction algorithms.

2.1 Sample Generation

We mainly deal with generating distance samples of analytic func-
tions or geometric models. Many efficient algorithms are known to
compute the distance fields and their gradients at any point in space.
A good overview of these algorithms has been given in [Cuisenaire
1999].

A key issue in generating discrete samples is the underlying sam-
pling rate. Some of the common algorithms use an adaptive refine-
ment strategy based on an octree, and only split those cells that con-
tain a piece of the final surface in a top-down manner. Other tech-
niques have used curvature information in generating the distance
samples [Shekhar et al. 1996; Gibson 1998]. Moreover, [Frisken
et al. 2000; Perry and Frisken 2001] have presented bottom-up and
top-down methods for generating ADFs based on piecewise tri-
linear interpolation. Although, these algorithms optimize the spar-
sity of the octree representation, the approximation using a tri-linear
interpolation may not work well for curved primitives or when the
final surface has a lot of sharp features. [Huang et al. 2001] have
proposed a complete distance field representation (CDFR) to cap-
ture sharp features of an object.

2.2 Isosurface Extraction and Reconstruction

Given a volume grid, some of the most common techniques for iso-
surface reconstruction are based on Marching Cubes and its vari-
ants [Lorensen and Cline 1987]. These algorithms assume that
the surface samples are computed by an approximate intersection
of the edges of a cell with the underlying surface. The Marching
Cubes algorithm can produce too many small and badly-shaped tri-
angles which typically require improving the mesh with decima-
tion. Many authors have proposed using adaptive hierarchies to
extract isosurfaces that will have fewer triangles [Perry and Frisken
2001; Shekhar et al. 1996].

The Marching Cubes algorithm is unable to extract high qual-
ity triangle meshes with sharp features from the volumetric data.
Two kinds of algorithms have been proposed for accurate polygo-
nization of implicit surfaces with sharp features. The first set of
algorithms are based on an improved Marching Cubes based re-
construction. Kobbelt et al. [2001] proposed an enhanced distance
field representation and an Extended Marching Cubes algorithm to
perform feature sensitive sampling and reduce the aliasing artifacts
in the reconstructed model. This algorithm explicitly identifies and
processes sharp features. Ju et al. [2002] presented a Dual Con-
touring method for Hermite data which avoids the explicit identifi-
cation and processing. Both of these algorithms work well as long
as the grid contains at most one sharp feature. However, no good
algorithms are known for generating a grid with atmost one sharp
feature per cell. The second class of algorithms for sharp features
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Figure 2: Fig (a) shows a surface (shown in green) intersecting a
cell. The symbols,+ & − represent positive and negative signs of
distance at the grid points where the grid point outside the surface
is defined as having positive distance and vice versa. Fig (b) shows
reconstruction using dual contouring algorithm. Note that the re-
constructed surface has disjoint components. Fig (c) shows how
the directed distance can be used as a reliable edge intersection test.
The surface intersects edge AB if and only if| D ~AB

(A) |< D(A,B)

improve the output of Marching Cubes based on optimization tech-
niques and smoothing operations, as a post-processing step [Ohtake
et al. 2001; Ohtake and Belyaev 2003].

Often the surfaces reconstructed from a volume data using the
Marching Cubes algorithm have a higher genus than they should
have. Wood et al. [2002] and Bischoff and Kobbelt [2002] have
presented algorithms on isosurface topology simplification and iso-
surface reconstruction with topology control. These algorithms are
mainly targeted towards volume data generated from physical scan-
ning devices.

3 Extended Dual Contouring

In this section, we present our improved reconstruction algorithm,
Extended Dual Contouring. Given a volumetric grid with atmost
one sharp feature per cell, we apply this reconstruction algorithm
locally to each grid cell. The algorithm combines an exact edge-
intersection test based on directed distances with the dual contour-
ing algorithm.

We start with a brief description of the dual contouring algorithm
[Ju et al. 2002]. The dual contouring method operates on a uniform
grid in two steps. First, for each cell that exhibits a sign change
across the edges, this method examines the set of intersection points
and generates a vertex (per cell) such that a quadratic error function
is minimized. We refer to this vertex as theerror-minimizingvertex.
Second, for each edge that exhibits a sign change, the contouring
method generates a quad connecting the error-minimizing vertices
of the four cells sharing the edge. The dual contouring algorithm
detects whether the surface intersects the edge based on sign change
across the edge. However, when the surface has thin features, this
may not be a reliable intersection test. When a surface intersects
an edge an even number of times, the edge will not exhibit a sign
change. As a result, the reconstructed surface can have additional
handles or disjoint components (as shown in Fig. 2).

In this case, both the endpointsA and B have the same sign,
and the dual contouring algorithm considers the edge as non-
intersecting. We present an exact edge-intersection test that can
reliably detect edge intersection. We use this test to design an im-
proved reconstruction algorithm.

Figure 3: The primitive shown in green intersects cell ABCD such
that the edgeBC is complex. The intersection points (shown by
red cross)i1, i2, i3, i4 are enumerated and divided into a set of com-
ponents,{i1, i2} & {i3, i4}. Error-minimizing vertices (M1 & M2
shown by pink circles) are computed for each component indepen-
dently.

3.1 Edge Intersection Test

We use directed distances to reliably detect whether the surface in-
tersects an edge. Let the directed distance between a pointp and
a surface along a unit vectorv be denoted byD~v(p). Our test is
based on the following property: If an edgeAB intersects the sur-
face, then the directed distance atA along the direction vector,~AB,
will be strictly less than the Euclidean distance,D(A,B). Based on
this fact, we define an edgeAB to be intersecting if:

| D−→
AB

(A) | < D(A,B)

This is shown in Fig. 2. We define an edge to becomplexif it is
intersecting, but does not exhibit a sign change. The surface in-
tersects a complex edge more than once. Complex edges typically
arise when a cell contains a thin feature. The edges,AB, BC, DA
are classified as intersecting based on our edge intersection test. No
sign change occurs across the edgeAB, a complex edge.

We use directed distance not only to detect edge intersections
but also for computing intersection points. The directed distance at
the two endpoints provides information for two intersection points
along that edge.

3.2 Reconstruction from Complex Edges

A direct application of the dual contouring algorithm to a grid with
complex edges can lead to additional handles in the reconstruc-
tion due to the presence of complex edges (see Fig. 1 and Fig.
2(b)). In this section, we present our contouring algorithm that
takes complex edges into account. We enumerate all the cell in-
tersection points, separate them into components, and generate an
error-minimizing vertex for each component independently.

3.2.1 Intersection Points

We initially consider edges that exhibit a sign change and complex
edges that have positive signs at both the endpoints. For each edge
of a cell, the directed distances at the two endpoints provide us in-
formation for two intersection points. For edges that exhibit a sign
change we consider one intersection point for that edge, while for
complex edges two intersection points are considered. We enumer-
ate all the intersection points for each edge of the cell. Consider
cell ABCD in Fig. 3. EdgesAB & CD each have one intersection
point. EdgeBC is complex and has two intersection points.

3.2.2 Component Separation

The set of intersection points enumerated above may belong to
more than one surface component. A component refers to a sheet
of the surface within the cell. For example, cellABCD in Fig. 3
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Figure 4: Figs (a) & (c) shows reconstruction using extended dual contouring method applied to different benchmarks with thin features on
an adaptive grid. Figs (b) & (d) show reconstruction of the models using dual contouring on the same grid. Note that the reconstruction
produced by dual contouring has many topological artifacts.

has two components. Next, we present a technique to separate the
set of intersection points into components. Given a grid cell, letI
be the set of intersection points. Each intersection pointi ∈ I , is
associated with a unique grid point with a positive sign. We refer to
this grid point as theparentof i, denoted asP(i). See Fig. 3. We
haveI= {i1, i2, i3, i4}, P{i1, i2} = B, P{i3, i4} = C. Given two
intersection points,i, j ∈ I , we define the following equivalence
relation:

i → j if and only if there is a path betweenP(i) andP(j )
consisting of only non-intersecting edges in the cell.

The equivalence class defined by this relation induces a partition
of I into separate components. In the case of cellABCD, we have
i1 → i2 and i3 → i4. There is no non-intersecting path betweenB
andC. As a result,I gets divided into two components:{i1, i2} &
{i3, i4}. It is important to note that the components that result from
the above method are accurate only because the edge intersection
test is reliable. We compute an error-minimizing vertex for each
component separately. Given an intersection pointp along an edge
of the cellC, let MC(p) be its error-minimizing vertex within the
cell C.

Figure 5: Contouring: Within each cell, an error-minimizing vertex
(shown by pink circles) is computed for each component indepen-
dently. The reconstructed surface (shown in brown) is obtained by
connecting the error-minimizing vertices.

3.2.3 Contouring algorithm

The resulting contouring algorithm is very similar to the dual con-
touring algorithm, but it must consider that an edge can have up
to two intersection points and that there can be multiple error-
minimizing vertices per cell. Our overall contouring algorithm pro-
ceeds in the following manner:

1. for each cell, separate the intersection points into components
and generate an error-minimizing vertex for each component
independently.

2. for each intersecting edge,
• for each intersection pointp on the edge

– for each cellCi , i = 1, . . . ,4, that shares the
intersecting edge, selectMCi

(p) as the error-
minimizing vertex

– Generate a quad by connecting the selected ver-
tices

Fig. 5 is a 2D illustration of our contouring algorithm. This
contouring algorithm also extends to adaptive grids, based on the
approach presented in [Ju et al. 2002].

The grid can also have complex edges with negative signs at both
the endpoints. Our component separation technique easily extends
to handle them. We define the equivalence relation in terms of grid
points with a negative sign. The partition induced by this relation
separates the intersection points into components. The rest of the
algorithm is similar to that of complex edges with positive signs at
both the endpoints.

The intuition behind the equivalence relation is that if we walk
across the edges of the cell without any intersections, we are always
on the exterior (or interior) of the surface. We treat this as a hint to
the local topology inside the cell. Figs 1 & 4 show reconstruction
using the extended dual contouring algorithm applied to different
benchmarks and compare it with dual contouring. The reconstruc-
tion produced by dual contouring algorithm has many topological
artifacts.

Our reconstruction algorithm requires that there is atmost one
sharp feature per grid cell. Next, we present a subdivision algorithm
that generates a grid satisfying this requirement.

4 Feature-Sensitive Subdivision

Many geometric processing applications like surface intersection
and Boolean operations result insharp featureson the bound-
ary of the surface. In the context of this paper, points of non-
differentiability (either along a curve or isolated surface points)
constitutes a sharp feature. Examples include vertices and edges of
polyhedra, or the intersection curve of two smooth surfaces. When
we generate the voxel grid for these geometric models, some of
the voxels can have more than one sharp feature. In order to use
our reconstruction algorithm, we present a new algorithm to detect
multiple sharp features per cell.

Sharp features can arise in a number of ways: from polyhedral
primitives, as a result of performing geometric operations involv-
ing intersecting surfaces or Boolean operations, or due to singular-
ities such as self-intersections. In case of polyhedron, we detect
sharp features by tracking vertices and edges of the polyhedron.
The problem of computing the intersection curve between two sur-
faces has been well studied. However, current algorithms are unable
to robustly evaluate the intersections or handle degenerate cases for
general models [Hoffmann 2001]. As a result, our goal is to develop
good approximation algorithms.

In this section, we address the problem of detecting sharp fea-
tures that are created as a result of geometric operations involving
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Figure 6: Fig (a) shows our reconstruction algorithm applied to a
32×32×32(≈ 32K) uniform grid. Some of the cells in the grid
have multiple sharp features. As a result, the reconstruction suffers
from aliasing. Fig (b) shows our reconstruction applied to an adap-
tive grid generated by our adaptive subdivision algorithm that uses
37,456 voxels. It was able to reconstruct sharp features.

surface intersection between primitives. We also present an approx-
imate technique to compute the number of sharp features per cell
and use it for performing adaptive subdivision.

4.1 Sharp Features from Intersecting Surfaces

Consider the case when we are trying to compute the union of two
objectsS1 andS2. Let the continuous signed distance field corre-
sponding to the two objects bed1(x) andd2(x), respectively. The
distance field,d(x), for S1∪S2 is given by

d(x) = min(d1(x),d2(x)).

This function can also be written asH (d1,d2) (refer to Fig. 7),
where

H (p,q) =
(p+q)

2
+

(q− p)
2

sgn(p−q). (1)

The function (sgn(.) : R→{−1,0,1}) is the standardsignfunction.
All Boolean operations can be expressed using linear combinations
of the operand distance fields along with the sgn(.) function. From
the point of view of signal processing, the presence of the sgn(.)
function in the above expression can result in sharp features during
Boolean operations. It is known that this function is not bandlim-
ited. As a result, even if the primitive distance fields are bandlimited
signals, a single Boolean operation can destroy this property.

d1

d2

min(d1, d2)
d1 - d2

sgn(d1- d2)

Figure 7: This figure shows a union operation between two func-
tions,d1 andd2, and their union expressed as min(d1,d2). The sharp
features in the union occur where the function (d1-d2) changes sign
i.e., at the zero crossing of the sign function sgn(.) We use this as a
test to detect sharp feature.

We use this formulation to provide a test that detects presence
of sharp features within a cell. Since the sgn(.) function changes
value at the zero crossing of its argument, the sharp features of the

D C
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Figure 8: Illustration of our subdivision algorithm in presence of
multiple sharp features. SurfacesS1 andS2 intersect inside the cell
ABCDwhereS2 already has a sharp feature. Our algorithm subdi-
vides the cell until it has no more than one sharp feature

original operation can be characterized by tracking the zeros of its
argument. Let us consider the union operation described above.
For distance fields (defined by a metric),d1 andd2, we must track
the zero-level surface of the function(d1−d2) (called thebisector
surface) (see Fig. 7 for a one-dimensional example). An alternate
geometric justification for this exists. Given two smooth primitives,
the sharp features produced as a result of a Boolean operation occur
only where the surfaces intersect. The intersection curve between
the two solids is strictly contained in the zero set of(d1−d2), where
d1 andd2 are the distance fields of the two solids.

A simple test to detect the presence of a sharp feature is to track
the presence of the bisector surface using its signed values at the
grid points. However, this test can be conservative, and even the
absence of sharp features can lead to unnecessary subdivisions.

4.2 Detecting Multiple Sharp Features

We present an algorithm to estimate whether a cell has more than
one sharp feature. We further subdivide a cell based on the outcome
of this test.

We assume that at most one new sharp feature is created due
to intersecting surfaces or a Boolean operation between a pair of
primitives inside a cell. Whenever such an operation is performed
between two objects, the number of sharp features inside a cell re-
sulting from the operation is bounded by the number of sharp fea-
tures of the individual objects (prior to the operation) inside the cell
and any extra features created as a result of the intersection between
them. We use this property in our algorithm. The main advantages
of this approach lie in its simplicity, and its natural extension to a
nested sequence of geometric or Boolean operations, say all within
the same cell. Let us denote the number of sharp features of an ob-
ject inside a cell using the #(.) operator. If� is the geometric or
Boolean operation between two objects,S1 andS2, then we define
it as

#(S1�S2) = #(S1)+#(S2)+I (S1,S2),where

I (S1,S2) =

{
1 if S1 andS2 intersect,
0 otherwise

(2)

Since the definition of the #() function is recursive, we must
compute the sharp feature counts of all the leaf-level primitives.
This computation is not difficult when dealing with linear and
quadric primitives. As we mentioned earlier, in case of polyhedron,
we detect sharp features by tracking vertices and edges of the poly-
hedron. We assume that smooth primitives such as ellipsoids and
tori do not have any sharp features. A cylinder has two sharp fea-
tures corresponding to the edges of its bottom and top caps. How-
ever, the main issue is how well we can computeI (., .) inside a
cell. We choose thebisector surfacetest to determineI (., .). Even
though this test can be conservative, we perform cell subdivision
only if #() for the cell is greater than 1. This process is illustrated
in Fig. 8. Figs. 1 and 6 show the benefit of our subdivision algo-
rithm.
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Figure 9: Benchmarks: Fig. (a) Turret is composed of 41 solids, where each solid defined using 2− 19 Boolean operations. Fig. (b)
Drivewheel composed of 30 solids, each defined using 2−7 Boolean operations. Fig. (c) Hull in the Bradley model composed of 36 solids,
each defined using 2−12 Boolean operations.

Figure 10: Bradley Model: This figure shows a view of the Bradley
Fighting Vehicle. This model consists of 1,296 solids and each
solid is defined using 2−20 CSG operations, for a total of 8,456
CSG operations for the entire model. It took about 3.5 hours, in-
cluding subdivision, distance field computation and reconstruction,
to generate the approximate boundary on a 2 GHz Pentium 4 PC.

5 Implementation and Performance

In this section, we describe the implementation of our subdivision
and reconstruction algorithms and highlight their performance on
different applications.

5.1 Implementation

We used C++ programming language with the GNU g++ compiler
under Linux operating system. For the choice of GUI implementa-
tion, GLUT and OpenGL were used. We represented all our primi-
tives in an implicit form and computed distances to the primitives in
a lazy manner. We used two types of distances: Euclidean distance
to perform the sharp feature test during subdivision and directed
distance for reconstruction. As part of the edge intersection test, we
perform an inequality test on distances. The correctness of this test
depends on the precision of distance computation. To test whether
the edge intersects the surface, we first test for a sign change across
the edge endpoints and apply our edge intersection test only if no
sign change occurs.

5.2 Applications

We used three different applications to test the performance of our
algorithms. These include boundary evaluation of complex CAD
models, offset computations and polygonization of general implicit

Figure 11: Offset: The left image shows the spoon model and the
right image is its offset surface. We decompose the spoon model
into 25 convex polytopes, and reduced the problem to computing
union of 25 pairwise Minkowski sums. It took about 13 secs to
compute the boundary including distance field computation, adap-
tive subdivision and reconstruction.

models. In case of boundary evaluation of CAD models and off-
set computation, the problem reduces to performing many Boolean
operations on the primitives. Even though the problem of Boolean
operations and boundary evaluation has been extensively studied
in solid modeling, no good algorithms are known for efficient and
robust computation, especially for curved primitives [Hoffmann
2001]. Some recent algorithms based on exact computation [Keyser
et al. 2002] can produce accurate results. However, they cannot
handle degenerate configurations that arise in real-world applica-
tions. We used a number of benchmarks to test the performance of
our algorithms and to compute an approximation to the final bound-
ary.

Boundary Evaluation of Bradley Fighting Vehicle: We used the
model of a Bradley Fighting Vehicle defined using Boolean oper-
ations. It consists of 1,296 solids and each solid is defined using
2− 20 Boolean operations. The total number of Boolean opera-
tions is 8,456 and the primitives consist of polyhedra, quadrics and
tori. A view of the Bradley Fighting Vehicle is shown in Fig. 10.
Some of the solids are shown in Fig. 9.

Offset Computation: The offset of a surface is defined by taking a
fixed offset along the normal direction at each point and computing
the envelope of the resulting set of points. We formulate it as the
Minkowski sum with a sphere. Given a primitivePand a sphereSof
radiusr centered at the origin, the set of points in the offset surface
are given as:P⊕S= {p+s| p∈ P,s∈ S}. No good algorithms are
known for exact computation for any arbitrary primitive,P. One ap-
proach for approximating the offset surface is based on computing
a convex decomposition ofP and using thedecomposition property
of Minkowski sums. Computing the Minkowski sum of a convex
polytope and a sphere is relatively simple. IfP is decomposed into



convex pieces, there can beO(n) pairwise Minkowski sums and the
problem reduces to computing their union. We applied our adaptive
subdivision and reconstruction framework to approximate a bound-
ary of the union of convex primitives. We used a model of a spoon
(shown in Fig. 11) decomposed it into 25 convex polytopes and
computed the boundary using 25 union operations.

Polygonization of General Implicit Models: We used our recon-
struction algorithm to polygonize the surface of general implicit
models. In Fig. 12, we show the image of a heart-shaped im-
plicit model polygonized using extended dual contouring. This
model is represented mathematically by a sixth order polynomial,
(2x2 +y2 +z2−1)3− (0.1x2 +y2)z3 = 0.

Figure 12: General Implicit Model: The image shows a heart-
shaped implicit model polygonized using extended dual contour-
ing. This model is represented as a sixth order implicit polynomial
function.

5.3 Performance

We have applied our algorithms to perform 8,456 Boolean opera-
tions in 1,296 solids in the Bradley model, offset computations and
polygonization of implicit models. In our implementation, more
than 90% of the time is spent in distance computation; applying
the multiple sharp features subdivision criteria and computing the
isosurface using extended dual contouring algorithm takes the re-
maining time. On average, it took about 12-15 secs to compute
an approximation to each solid in the Bradley model of which 10-
12 secs were spent in distance computation. The remainder of the
time was spent on adaptive grid generation and iso-surface recon-
struction. We accelerated distance computation by computing a dis-
tance field (directed as well as Euclidean) at a minimum resolution
of 64×64×64 using a hardware-based approach similar to [Hoff
et al. 1999] and adaptively computing additional distance values in
software. The hardware generated distance values are obtained by
rendering a polygonal approximation of distance functions. The av-
erage time to generate a grid for each solid using our multiple sharp
features test varied from 0.7-0.9 secs. The average time to compute
a boundary representation of each solid using the extended dual
contouring algorithm was about 1 sec. Table 1 shows timings for
the extended dual contouring algorithm applied to different bench-
marks.

Dual Contouring Ext Dual Contouring
Model N = 64 N = 128 N = 64 N = 128

(s) (s) (s) (s)
Gun (Fig 1) 0.61 2.14 1.14 2.57

Turret (Fig. 9) 0.72 2.55 0.89 2.72
Drivewheel (Fig. 9) 0.85 3.32 1.03 3.56

Hull (Fig. 9) 0.81 3.12 0.95 3.41

Table 1: Performance: This table compares the performance of ex-
tended dual contouring algorithm with that of dual contouring on
different benchmarks at different grid resolutions (N×N×N)

We represent the adaptive grid using an octree. For all our bench-
marks, we generated an adaptive grid with a minimum resolution of
64 in each dimension and subdivide it in an adaptive manner, such
that the maximum resolution in each dimension is bounded by 512.
Fig. 13 highlights the performance of our adaptive subdivision al-
gorithm on different benchmarks, showing the level of subdivision.

5.4 Comparison with Previous Approaches

Figs. 1 & 4 show a comparison between the extended dual con-
touring and dual contouring. Our algorithm produces better recon-
structions with fewer levels of subdivision. Table 1 compares the
performance of the extended dual contouring algorithm with that of
the dual contouring. On an average, it is 10-20% slower compared
to dual contouring algorithm. Our algorithm behaves differently
from dual contouring only in the cells with complex edges. Be-
cause the gun model has many complex edges at a coarse resolution
of 64×64×64, our algorithm takes more time.

Figure 13: This figure shows the total number of voxels in our adap-
tive grid for different benchmarks (shown in Fig. 1 and Fig. 9. It
highlights the number of voxels generated by our adaptive subdivi-
sion algorithm at different resolutions. Note that a very small frac-
tion of the voxels at 64×64×64 resolution are further subdivided
by our algorithm.

We have presented an algorithm for generating an adaptive grid
that takes into account the number of sharp features per cell. To
the best of our knowledge, none of the previous approaches for grid
generation took this into account; consequently, we cannot directly
compare those approaches to ours. Previous algorithms [Frisken
et al. 2000; Perry and Frisken 2001] based on tri-linear interpolation
may not work well for curved primitives or when the final surface
contains many sharp features. Comparing the performance of our
grid generation algorithm with these algorithms proves difficult be-
cause distance computation time depends highly on the primitives
and the number of Boolean operations per solid. Our benchmarks
include curved objects such as quadrics and tori and our solids are
generated by performing 2-20 Boolean operations. Moreover, our
implementation can be sped up by cache coherence techniques pre-
sented in [Perry and Frisken 2001].

Optimization based algorithms [Ohtake et al. 2001; Ohtake and
Belyaev 2003] can recover sharp features in many cases, though
their applicability to complex models defined using hundreds of
Boolean operations and whose final boundary consists of multiple
sharp features close to each other is not clear. [Huang et al. 2001]
have used aComplete Distance Field Representation(CDFR) to
capture sharp features of an object. However, it is unclear if the
CDFR representation can be used to consistently capture sharp fea-
tures generated from geometric operations such as Boolean opera-
tions.

6 Discussion

In this section, we analyze our algorithms and discuss some of its
strengths and limitations. The techniques presented in this paper



address the problem of sampling and reconstruction using distance
fields. We address two main issues with respect to generating accu-
rate reconstructions. These are sharp features and additional han-
dles that can arise in Marching Cubes based reconstruction algo-
rithms.

Main Benefits: One of the main challenges with Marching Cubes-
based algorithms is accurate reconstruction of all the sharp features.
Fundamentally, the problem of computing sharp features based on
discrete sampling can be ill-posed. In practice, this imposes a limit
on the performance of any algorithm based on a subdivision and
reconstruction framework. However, the use of sharp feature test
gives us certain properties which can generate better reconstruc-
tions. Overall, our algorithm for subdivision and reconstructing
surfaces with sharp features is more general and less restrictive than
earlier techniques like Extended Marching Cubes or Dual Contour-
ing, which assume at most one sharp feature per cell. The method
works quite well on our benchmarks.

Our reconstruction algorithm detects surface features that cannot
be found purely based on sign changes along an edge. One alter-
native to our subdivision and reconstruction approach would have
been to subdivide the grid adaptively until there are no complex
edges and use dual contouring for reconstruction. However, such a
subdivision algorithm can be very conservative and can result in a
very high number of cells. One of our major goals is to use fewer
grid cells, if possible.
Limitations: Our reconstruction algorithm uses information along
the edges of the cell to make a guess about the local topology within
the cell. This is not a fool-proof test; in some cases, the topology
within the cell can be different. Thus, although it produces better
results as compared to earlier algorithms, it is not completely im-
mune from topological inconsistencies. It does not handle edges
with more than two intersection points. The algorithm doesn’t han-
dle cases where a surface lies completely within a cell or passes
through a face of the cell without intersecting any edges. To de-
tect such cases, [Varadhan et al. 2003] have presented an efficient
voxel-intersection testbased on max-norm computation to reliably
test whether the surface intersects a voxel. Furthermore, our as-
sumption of two primitives intersecting in only one sharp feature
per cell may not hold in some configurations of the primitives. In
such cases, our approach may not reconstruct all the sharp features.

7 Conclusion and Future Work

We have presented a novel reconstruction algorithm for extracting
isosurfaces from volume data. Our reconstruction algorithm can re-
construct thin features without creation of additional handles. We
presented an exact edge-intersection test which can reliably detect
intersections of the edge with a surface. We presented new tech-
niques to handle problems related to multiple sharp features. We
have applied the results to generate an approximate boundary of a
Bradley Fighting Vehicle described using more than 8000 Boolean
operations on curved primitives.

Many avenues for future work lie ahead. We have applied our ap-
proach to reconstruct the boundaries generated from Boolean oper-
ations and implicit functions defined using polynomials. We would
like to apply it to inputs defined using blends and warping. We
would like to incorporate the voxel-intersection test [Varadhan et al.
2003] in our adaptive subdivision algorithm. We would also like to
extend our sharp feature computation algorithm to handle primi-
tives that can intersect in more than one sharp feature per cell. We
could use more efficient algorithms for distance field computation
[Sud and Manocha 2003]. Finally, we would like to extend our
approach to compute good approximations for arrangement com-
putation problems (e.g. envelope computation, cell decomposition,
swept volume [Kim et al. 2003], etc.).
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