
Accurate Minkowski Sum Approximation of Polyhedral Models

Gokul Varadhan Dinesh Manocha

University of North Carolina at Chapel Hill
{varadhan,dm}@cs.unc.edu

Brake Hub Rod Brake Hub⊕ Rod Bunny Bunny Offset
Figure 1. The images on the left show the Minkowski sum of Brake Hub and Rod models. The Minkowski sum is obtained by sweeping

one object around the other. The images on the right show the offset of the Bunny model. Offset of an object is obtained by sweeping

a sphere around the object. It is a special case of the Minkowski sum with a sphere.

Abstract

We present an algorithm to approximate the 3D
Minkowski sum of polyhedral objects. Our algorithm de-
composes the polyhedral objects into convex pieces, gener-
ates pairwise convex Minkowski sums and computes their
union. We approximate the union by generating a voxel
grid, computing signed distance on the grid points and per-
forming isosurface extraction from the distance field.

The accuracy of the algorithm is mainly governed by the
resolution of the underlying volumetric grid. Insufficient
resolution can result in unwanted handles or disconnected
components in the approximation. We use an adaptive sub-
division algorithm that overcomes these problems by gen-
erating a volumetric grid at an appropriate resolution. We
guarantee that our approximation has the same topology
as the exact Minkowski sum. We also provide a two-sided
Hausdorff distance bound on the approximation. Our al-
gorithm is relatively simple to implement and works well
on complex models. We have used it for exact 3D trans-
lation motion planning, offset computation, mathematical
morphological operations and bounded-error penetration
depth estimation.

1 Introduction
The problem of Minkowski sum computation arises in
many applications including solid modeling, digital geome-
try processing, robotics, dynamic simulation and computer

animation. The Minkowski sum of two setsP andQ is the
set of points{p + q | p ∈ P, q ∈ Q}. Minkowski sum
has a number of applications. They are useful as a tool
to compute collision-free paths in robot motion planning
[23], computer-aided design and manufacturing [21], satel-
lite layout [4], penetration depth computation and dynamic
simulation [19]. They have also been used for morphing
[18], offset computation [25] and mathematical morpholog-
ical operations [26].

Our goal is to compute the boundary of the 3D
Minkowski sum of two polyhedral models. The Minkowski
sum of two convex polytopes (withn features) can have
O(n2) combinatorial complexity and is relatively simple to
compute. On the other hand, the Minkowski sum of non-
convex polyhedra can have complexity as high asO(n6)
[15]. One of the commonly used approach to compute
Minkowski sums decomposes the two non-convex polyhe-
dra into convex pieces, computes their pairwise Minkowski
sums and finally the union of the pairwise Minkowski sums.
The main bottleneck in implementing such an algorithm is
computing the union of pairwise Minkowski sums. Given
m polyhedral primitives, their union can have combinato-
rial complexityO(m3) [2] andm can be high in the context
of Minkowski sum computation (e.g. a few thousand). Fur-
thermore, robust computation of the boundary of the union
and handling all degeneracies remains a major issue [15, 1].
As a result, no practical algorithms are known for robust
computation of exact Minkowski sum of complex polyhe-
dral models.

Main Results: We present a novel algorithm to approx-
imate the Minkowski sum of polyhedral models. In-
stead of computing the exact union, we use distance field-
based techniques to approximate the union of the pairwise
Minkowski sums. Our algorithm generates an adaptive vol-
umetric grid, computes a distance field, and performs iso-
surface extraction from it to obtain an approximation to the
Minkowski sum. The accuracy of the algorithm is mainly
governed by the rate of sampling, i.e., the resolution of the
underlying volumetric grid. Insufficient resolution can re-
sult in unwanted handles or disconnected components in the
approximation. Due to lack of resolution, the approxima-
tion may not capture many of the features, e.g. small holes,
present in the exact Minkowski sum. We use an adaptive
subdivision algorithm that generates a volumetric grid at a
sufficient resolution such that a faithful approximation can
be obtained by performing isosurface extraction on the re-
sulting grid. We ensure a good quality of approximation
by guaranteeing the correct topology as well as bounding
the two-sided Hausdorff distance between the approxima-
tion and the exact Minkowski sum.

In order to speed up the computation, we employ two
types of culling techniques during adaptive subdivision.
Our algorithm performscell culling to eliminate the grid
cells that do not contain a part of the Minkowski sum
boundary. Our algorithm also takes advantage ofprimitive
culling and performs efficient distance and inside/outside
queries by only considering a small subset of primitives,
while preserving the correctness of these queries. In prac-
tice, these culling techniques improve the performance of
the algorithm by more thantwo ordersof magnitude.

We have used our Minkowski sum approximation algo-
rithm for a number of applications. These include:

• Exact robot motion planning of robots with translation
degrees of freedom.

• Offsets and mathematical morphological operations.

• Penetration depth estimation between overlapping
polyhedra with tight error bounds.

Our algorithm is simple to implement and we have tested its
performance on a number of benchmarks. The underlying
polyhedral models consist of several hundreds of triangles.
The computation of Minkowski sum takes few minutes on
a 2 GHz Pentium IV processor.

Some of the novel results of our approach include:

• Approximate algorithm for computing Minkowski
sum of polyhedral models.

• Culling techniques to improve the performance of
adaptive subdivision and sampling scheme.

• Guaranteed topology and 2-sided Hausdorff distance
bounds on the approximation.

• Application to motion planning, offset, and penetration
depth computation.

To the best of our knowledge, this is the first algorithm
that can compute a topologically accurate approximation of
Minkowski sum of complex polyhedral models.
Organization

The rest of our paper is organized as follows. In Section
2, we review the earlier work on Minkowski sum computa-
tion and isosurface reconstruction based on distance fields.
Section 3 gives an overview of our approach. In Section
4, we present our approximate algorithm to compute the
boundary of Minkowski sum. Sections 5 discusses its ap-
plication to motion planning, offsets and morphological op-
erations, and penetration depth computation. We highlight
its performance on various benchmarks in Section 6. Sec-
tions 7 discusses some limitations of our approach.

2 Previous Work
In this section, we give a brief survey of the work related
to Minkowski sum and isosurface reconstruction based on
distance fields.

2.1 Minkowski Sum
Many algorithms have been proposed for Minkowski sum
computation in computational geometry and solid modeling
[23, 14, 10, 13]. A survey can be found in [15].

Guibas and Seidel [14] proposed an output-sensitive al-
gorithm for Minkowski sum of convex polytopes. They de-
fined an operation, called convolution, on 2D planar trac-
ings. Basch et al. [3] extended the convolution computation
to 3D and defined it on polyhedral tracings. Convolution is
a superset of the Minkowski sum and the exact Minkowski
sum is extracted using arrangement computation.

Lee et al. [21] developed techniques for approximat-
ing convolution curves with polynomial/rational curves.
Seong et al. [28] proposed an algorithm to compute
Minkowski sum of surfaces generated by slope-monotone
closed curves. Flato and Halperin [11] presented algorithms
for robust construction of planar Minkowski sums and used
it for computing 2D configuration space obstacles.

Lozano-Perez [23] used Minkowski sum to construct
configuration space obstacles and used it for path planning.
Kaul and Rossignac [18] proposed use of Minkowski sums
for morphing and computer animation. They used weighted
Minkowski sum to construct a parameterized interpolating
polyhedron (PIP) that smoothly interpolates between two
polyhedra. When the two polyhedra are nonconvex, PIP’s
faces form a superset of the Minkowski sum boundary.

Ghosh [13] presented a unified algorithm for computing
2D and 3D Minkowski sum of both convex and non-convex
polyhedra based on aslope diagram representation. They
reduce the problem of Minkowski sum into computing the
slope diagrams of the two objects, merging their slope di-
agrams and extracting a boundary from the merged slope
diagram.

Many of the above algorithms compute only a superset
of surfaces that contribute to the Minkowski sum boundary
[18, 3]; they do not explicitly compute the boundary. Evans
et al. [10] present an approach for computing an explicit

Page 2 of 10

boundary of Minkowski sum of polyhedral models. Their
algorithm is based on decomposing the two polyhedra into
a collection ofaffinecells, computing pairwise Minkowski
sums between pairs oftransversalaffine cells, and comput-
ing their exact union. Affine cells correspond to features of
the polyhedron such as a face, vertex, or an edge, etc. They
have presented results on Minkowski sum of simple polyhe-
dral models with a low polygon count. Although our over-
all approach is similar in some respects, there are crucial
differences. We decompose the two polyhedra into convex
pieces instead of affine cells. This produces fewer pieces
compared to the number of affine cells. Moreover, instead
of computing an exact union, we compute an approximate
union. We believe this makes our algorithm applicable to
more complex models. To the best of our knowledge, none
of the previous algorithms can robustly compute Minkowski
sum of complex polyhedral models.

2.2 Distance Field Computation and
Isosurface Reconstruction

Recently, distance fields have been increasingly used as a
volumetric shape representation [12], in offset generation
and morphing [7], and swept volume computation [27].

Many of the common techniques for isosurface recon-
struction are based on Marching Cubes [22]. The Marching
Cubes algorithm can produce too many small and badly-
shaped triangles. Many researchers have proposed using
adaptive hierarchies to extract isosurfaces [30, 24].

The Marching Cubes algorithm is unable to extract iso-
surfaces with sharp features. Few extensions have been pro-
posed that can handle sharp features. These include Ex-
tended Marching Cubes [20] and dual contouring [17].

3 Minkowski Sum Computation
In this section, we present some background on Minkowski
sum computation and give a brief overview of our approxi-
mate approach.

3.1 Notation
We use lower case bold letters such asp, q to refer to points
in R3. We denote the complement of a setS asS. All our
primitives are closed solids. We use upper case letters such
asP,Q, P1, P2, to refer to them.∂P denotes the boundary
of a primitiveP . The letterC denotes a grid cell used for
sampling. The exact Minkowski sum and our approxima-
tion are denoted asM andA respectively.

3.2 Overview
The Minkowski sum,P ⊕Q, is defined as a set of pairwise
sums of points fromP andQ. In other words,P ⊕ Q =
{p + q| p ∈ P, q ∈ Q}.

It is relatively easier to compute Minkowski sums of con-
vex polytopes as compared to general polyhedral models.
Minkowski sum of two convex polyhedra can haveO(n2)
complexity. However, for non-convex polyhedra in 3D, the
Minkowski sum can haveO(n6) worst-case complexity [8].

One common approach for computing Minkowski sum
of general polyhedra is based onconvex decomposition

[23]. It uses the following property of Minkowski sum. If
P = P1 ∪ P2, thenP ⊕Q = (P1 ⊕Q) ∪ (P2 ⊕Q). The
resulting algorithm combines this property with convex de-
composition for general polyhedral models:

1. Compute a convex decomposition for each polyhedron

2. Compute the pairwise convex Minkowski sums be-
tween all possible pairs of convex pieces in each poly-
hedron.

3. Compute the union of pairwise Minkowski sums.

After the second step, there can beO(n2) pairwise
Minkowski sums. The pairwise convex Minkowski sums
are convex. Their union can haveO(n6) complexity [2].

Our algorithm for Minkowski sum computation is based
on the above framework. We now discuss each of the above
steps in detail.

3.3 Convex Decomposition
The problem of computing an optimal convex decomposi-
tion of a non-convex polyhedron is known to be NP-hard.
Chazelle proposed one of the earliest convex decomposi-
tion algorithms [5], which can generateO(r2) convex parts
and usesO(nr3) time wheren andr the number of poly-
gons and notches in the original polyhedron. However, no
robust implementation of this algorithm is known. Most
practical algorithms for convex decomposition perform sur-
face decomposition or tetrahedral volumetric decomposi-
tion [16, 6, 9]. Typically, these methods can generateO(n)
convex parts and each of them has a few faces.

We used a modification of the convex decomposition
scheme available in a public collision detection library,
SWIFT++ [9]. This method is an implementation of the
algorithm presented in [6]. It performs surface decomposi-
tion and generates a set of convex patchesci’s of the object
boundary∂P . Furthermore, we compute a convex hull of
each surface patch,ci, and denote the resulting polytope by
Ci. TheCi’s constitute a convex decomposition of object
P . Ci’s consists of two types of faces:real facesthat be-
long to the original polyhedron andvirtual facesthat are
artifacts of the convex hull computation. In general, the
union ofCi’s need not cover the entire volume ofP . Ci’s
may create some undesirable voids in the interior ofP that
are bounded by the virtual faces. We disregard these voids
by explicitly checking for virtual faces in our distance and
inside/outside queries.

Given two polyhedraP and Q each withn triangles,
the convex decomposition method typically divides each
polyhedron intoO(n) convex parts. In practice, each con-
vex part usually has very few polygons (4 − 8 on an av-
erage). Computing pairwise Minkowski sums between all
pairs of convex pieces results inO(n2) pairwise Minkowski
sums. Although this quadratic complexity may seem high,
it should be viewed in context of the high complexity of
Minkowski sum (O(n6)). Even though we may need to

Page 3 of 10

Figure 2. This figure shows the different cases corresponding to the complex cell and star-shaped test. Figs (a), (b), (c) and (d)
show cases of complex voxel, complex face, complex edge, and topological ambiguity. The white and black circles denote positive
and negative grid points respectively. Fig. (e) shows the case where the surface is not star-shaped w.r.t a cell.

compute the union of a large number of primitives (pair-
wise Minkowski sums), the primitives themselves are rel-
atively simple and typically have low combinatorial com-
plexity. Our approximate algorithm is well suited to this
problem.

3.4 Pairwise Minkowski Sum Computation
We compute the pairwise Minkowski sums between all pos-
sible pairs of convex pieces,CP

i andCQ
j , belonging toP

andQ, respectively. Let us denote the resulting Minkowski
sum asMij . We use aconvex hull algorithmto compute
Mij . Its complexity isO(n2) wheren is the number of
polygons inCP

i andCQ
j . While more efficient (in terms

of time complexity) algorithms are known, e.g. [14], the
constant factors in the time complexity can be high and it is
non-trivial to implement them robustly. Moreover,CP

i , CQ
j

andMij usually have a constant combinatorial complexity.
Hence we use the simpler convex hull algorithm described
below.
Convex Hull Approach: It is based on the following
property:

P ⊕Q = CH({vi + vj |vi ∈ VP ,vj ∈ VQ}) (1)

Here,CH denotes the convex hull operator, andVP , VQ rep-
resent the sets of vertices, respectively in polyhedraP and
Q. Based on this fact, we compute the Minkowski sum as
follows:

1. Compute the vector sum between all possible pairs of
vertices from each polytope.

2. Compute their convex hull.

3.5 Union Computation
Our goal is to computeM, the boundary of the final solid
that corresponds to the result of the Minkowski sum.M
is given by the union of the pairwise Minkowski sums:
M = ∪i,jMij . However, computing an exact union of the
pairwise Minkowski sums is not practical. This is due to the
large number of pairwise Minkowski sums. In our bench-
marks,M is defined by union of tens of thousands of prim-
itives (pairwise Minkowski sums). Exact boundary evalua-
tion of this size is slow and prone to robustness problems.
Abrams and Allen [1] discuss these problems in context of
computing union of polyhedral models for swept volume
computation. The commercial CAD systems have not been

designed to perform Boolean operations on a high number
of primitives (e.g. thousands of polyhedra). As a result,
they are either not robust or too slow in terms of computing
the union of a high number of polyhedral models.

Instead of computingM exactly, we approximate it us-
ing distance field-based techniques. For each closed prim-
itive P , we compute a signed distance fieldD. A signed
distance fieldD(p) is a continuous function that at a point
p measures the distance betweenp and the surface ofP .
This value is positive or negative depending on whether the
point lies outside or inside the closed primitive. Distance
fields are attractive because they map geometric operations
such as union and intersection into min/max operations on
the distance fields of the primitives. Our overall approach
proceeds in the following steps:

1. Sampling: Generate an adaptive voxel grid and com-
pute the signed distance field at its grid points.

2. Operation: For each geometric operation (e.g.,
union), perform a min/max operation on the signed
distance field of the primitives.

3. Reconstruction: Use some variant of Marching Cubes
algorithm [22, 17] to perform isosurface extraction
from the distance field. The extracted isosurface is our
approximation to the boundary of the Minkowski sum.

4 Minkowski Sum Approximation
In this section, we present our approximation algorithm and
show its application to Minkowski sum computation.

4.1 Approximate Algorithm
Varadhan et al. [33] have presented an algorithm for com-
puting topology preserving isosurfaces and have used it for
performing Boolean operations. We apply their algorithm
to the problem of Minkowski sum computation. We pro-
vide a brief description of their algorithm. It is based on the
sampling and reconstruction approach presented in Section
3.5. Given a Boolean expression defined over a set of prim-
itives, it generates an adaptive volumetric grid. LetE de-
note the boundary of the final solid defined by the Boolean
expression. The algorithm starts with a single grid cell that
enclosesE . It performs two tests,complex cell testandstar-
shaped test, to decide whether to subdivide a grid cell.

Complex Cell Test: A cell is complexif it has acomplex
voxel, face, edge, or anambiguous sign configuration. We

Page 4 of 10

define a voxel (face) of a grid cell to becomplexif it inter-
sectsE and the grid vertices belonging to the voxel (face) do
not exhibit a sign change (see Figs. 2(a) & 2(b)). The sign
of a vertex is positive if it lies withinE , negative otherwise.
An edge of the grid cell is said to becomplexif E intersects
the edge more than once. It is well known that Marching
Cubes produces topologically ambiguous output for certain
sign configurations [34] (see Fig. 2(d)). We classify grid
cells with such sign configurations as complex.

Intuitively, the complex cell criterion ensures that the
surface intersects the grid cell in a simple manner in most
cases. If a grid cell is complex, it is subdivided and the
algorithm is recursively applied to each of its children.

Star-shaped TestThis test ensures that the surfaceE re-
stricted to a cell isstar-shapedwithin that cell. LetS be a
nonempty subset ofRn. The set Kernel(S) consists of all
s ∈ S such that for anyx ∈ S, we haves + λ(x − s) ∈
S,∀λ ∈ [0, 1]. S is star-shapedif Kernel(S) 6= ∅. In-
tuitively, a star-shaped primitive has a representative point
(called the origin) such that all the points in the primitive
are visible from the origin. IfE is not star-shaped w.r.t the
cell (see 2(e)), the cell is subdivided and the algorithm is
recursively applied to the children cells.

In this manner, by applying the above two tests, the algo-
rithm generates a volumetric grid. It uses Marching Cubes
to perform isosurface extraction on the resulting grid. The
extracted surface is an approximation toE .

Varadhan et. al. [33] use max-norm distance com-
putation and linear programming to perform the complex
cell and star-shape tests respectively. Max-norm distance
computation is used to determine whetherE intersects a
voxel/face/edge of the cell or not. Linear programming is
used to check whetherE restricted to a cell is star-shaped
or not. Performing these tests does not require an explicit
representation ofE . They can be performed even whenE
is defined as a Boolean combination of a number of primi-
tives. We refer the reader to [33] for a detailed explanation.

4.2 Application to Minkowski Sum Computation

We use the approximate algorithm described above to the
problem of Minkowski sum computation. In particular, we
approximate the union of the pairwise Minkowski sums
Mij ’s. A naive application of the approximate algorithm
can result in poor performance. This is because in the con-
text of Minkowski sum computation, we are dealing with a
very large number of primitives (Mij ’s). We present a num-
ber of culling techniques to improve the efficiency of the
algorithm. Together, they improve the overall performance
significantly.

4.2.1 Cell Culling

During Boolean operations, only a subset of the bound-
aries of the primitives contribute to thefinal surface, the
boundary of the solid defined by the Boolean operation.
Let CMij be the set of cells intersecting the boundary of
a primitive Mij . Therefore∪CMij is the set of cells in-

tersecting the boundary of some primitive. Only a subset
of cellsCM ⊂ ∪CMij contain the final surface. Typically
|CM| << | ∪ CMij

|. We use max-norm distance to deter-
mine whether a cell intersects the final surface or not. Our
algorithm disregards those cells that lie inside a primitive
and are guaranteed not to intersect the final surface. This
process is cell culling. It considerably improves the perfor-
mance of our algorithm.

We use avoxel intersectiontest to determine whether the
final surface intersects a cell (cube-shaped voxel) or not.
Our test is based on the following fact: the surface intersects
a voxel if and only if the unsigned max-norm distance be-
tween the center of the voxel and the surface is less than half
the voxel length. This test can also be generalized to axis-
aligned cells by suitably defining a weighted max-norm.

Suppose a cellC lies within a primitiveMij . Let dij

denote the signed max-norm distance toMij at the cen-
ter of C. Let l denote the length of cellC. We have
dij < −l/2 < 0. This is becauseC is contained insideMij .
We obtain a lower boundδ on the distance toM by com-
putingminij dij . We haveδ < dij < −l/2 or |δ| > l/2.
As a result, our voxel intersection test guarantees that the
final surface does not intersectC. In this manner, our adap-
tive subdivision algorithm disregards cellC and does not
consider it for further subdivision.

4.2.2 Primitive Culling

To apply the complex cell and star-shaped tests, our algo-
rithm needs to perform two types of queries. These in-
clude distance and sign (inside/outside status) computation.
These queries are performed several times for each grid cell
and therefore impact the overall performance of the algo-
rithm. These queries areglobal in scope in that the answer
to the query depends on all the primitives (Mij ’s). For ex-
ample, to check whether a point lies outside the union, we
need to check if it lies outside every primitive. Given the
large number of primitives, this can slow down the overall
algorithm considerably.

Our objective is to performlocal queries such that the
answer to the query depends only on a small subset of prim-
itives. In particular, when performing a query within a cell,
we would like to inspect only those primitives that intersect
the cell. Of course, we have to do this in a manner that
preserves the correctness of the query.

Suppose we want to perform the inside/outside query
to determine whether a pointp lies inside the Minkowski
sum, i.e., ifp ∈ ∪Mij . We take advantage of the fact that
this query does not have to be performed within cells that
are eliminated due to cell culling. Supposep is contained
within a cell C. If C ⊂ Mij , thenC would have been
eliminated due to cell culling (see Sec. 4.2.1). Therefore it
suffices to consider the case whenC 6⊂ Mij for all prim-
itives Mij . For such a cell, it is sufficient to consider the
setMC consisting of primitivesMij that intersectC. The
following theorem guarantees the correctness of the query.
A similar result holds for the distance query.

Page 5 of 10

THEOREM 1
Given a point p contained within a grid cell C such that
C 6⊂ Mij for all primitives Mij , we have

p ∈ ∪{Mij} ⇐⇒ p ∈ ∪{Mij ∈ MC}
Proof: Consider any primitiveMkl /∈ MC . In other words,
the boundary ofMkl does not intersect cellC. Two cases
arise: eitherMkl lies completely outsideC or it enclosesC.
In the first case,p /∈ Mkl and so we have

p ∈ ∪Mij ⇐⇒ p ∈ ∪{Mij | i 6= k or j 6= l}
i.e., Mkl does not make a difference to the answer. In the
second case, we haveC ⊂ Mkl which is a contradiction.
This concludes the proof.

The above result is important for Minkowski sum com-
putation because we are dealing with a very large number of
primitives. For example, the Minkowski sum benchmarks
shown in Fig. 5 consist of tens of thousands of primitives.
Using the above theorem, each query only considers a small
subset — on an average around100 to 200 — of primitives.
This drastically improves the overall performance of the al-
gorithm.

We can extend the above result to perform additional
culling. Given a primitiveP intersecting cellC, we can de-
composeP into two primitivesP1 = P∩C andP2 = P∩C
whereC denotes the complement ofC. Given a pointp
contained withinC, we havep ∈ P ⇐⇒ p ∈ P1. In
other words the inside/outside status ofp depends only on
the subset of the primitive that is contained within the cell.

We use this property to achievetriangle culling. We
are dealing with triangulated primitives. An inside/outside
query for a triangulated primitive takes time proportional to
the number of triangles in the primitive. LetTij be the set
of triangles inMij andTC

ij ⊂ Tij be the subset of triangles
that lie withinC. TC = ∪ijT

C
ij is the set of all the trian-

gles contained withinC. To determine the inside/outside
status ofp, we only need to considerTC . In this manner,
our algorithm disregards triangles outsideC.

4.3 Geometric and Topological Guarantees
The following guarantees follow from the results in [33].
THEOREM 2
If all the cells in the volumetric grid satisfy the complex cell
and star-shape tests, then

1. Geometric Guarantee: Given any ε > 0, our algo-
rithm outputs a Minkowski sum approximationA such
that Two-sided Hausdorff Distance(A,M) < ε.

2. Topological Guarantee:Our Minkowski sum approx-
imation A has the same topology as the exact surface
M.

Together, the geometric and topological guarantees ensure
a good quality of the Minkowski sum approximation.

5 Applications
We describe three applications of our approximate algo-
rithm. These are motion planning, morphological opera-
tions, and penetration depth computation.

5.1 Motion Planning
Motion planning is an important problem in algorithmic
robotics. The basic problem is to find a collision-free path
for a robot among rigid objects. We consider the case of a
3D polyhedral robot undergoing translation motion among
3D polyhedral obstacles. This problem is often formulated
using a configuration space approach. The free configura-
tion space is the set of all possible positions in which the
robot avoids contact with the obstacles. It can be expressed
as the complement of the Minkowski sum of the robot and
the obstacles [23].

For the purpose of path planning, it suffices to have a rep-
resentation that captures the connectivity of the free config-
uration space. We have used our Minkowski sum approxi-
mation algorithm to compute such a representation and used
it for designing an exact path planner. Our planner is guar-
anteed to find a path, if one exists, even through narrow
passages. Details can be found in [32]. Fig. 3 shows appli-
cation of our algorithm to assembly planning. It consists of
two parts each with pegs and holes. The goal is to assemble
the two parts so that the pegs of one part fit into the holes
of the other. This problem can be reduced to a motion plan-
ning problem by treating one of the parts as a robot and the
other as the obstacle.

Figure 3. Assembly Planning: This benchmark shows
application of our algorithm to assembly planning. The
four images on the left shows a path that the robot can take
so that the two parts could be assembled. The rightmost im-
age shows the Minkowski sum and the path of the robot in
configuration space. This is a challenging example because
the goal configuration is lodged within a narrow passage in
the configuration space. Our algorithm took12 secs to find
a valid path (shown in blue).

5.2 Offsets and Mathematical Morphological Opera-
tions

We apply our approximation algorithm to perform mathe-
matical morphological operations. Mathematical morphol-
ogy has been used in image analysis for a long time. A
systematic treatment is given in [29]. Morphological op-
erators have also been used in digital geometry processing
[26]. The primary morphological operations, from which
many others are constructed, are dilation and erosion. Dila-
tion of an objectP by an objectQ is same as the Minkowski
sumP ⊕ Q. Q is usually referred to as the structuring el-
ement. Erosion of an objectP by structuring elementQ
selects the locus of points swept by the origin ofQ whereP
entirely contains the translatedQ. Erosion can be expressed

in terms of the Minkowski sum operation as:P ⊕Q′ where

Page 6 of 10

Cup (1, 000 tris) Cup⊕ Sphere Gear (2, 382 tris) Gear⊕ Sphere

Figure 4. Offsets: The figures show two models, Cup and Gear, with1, 000 and2, 382 triangles respectively. Our approximation
algorithm computed their offsets by computing their Minkowski sum with a sphere. It took33 and84 secs to compute the offsets for
the two models. The approximate boundary consisted of14, 895 and22, 742 triangles.

Q′ denotes a copy ofQ reflected about the origin. Our
Minkowski sum approximation algorithm can be used to
perform morphological operations on polyhedral models.

An interesting case of morphological operations is where
the structuring elementQ is a sphere. In this special case,
dilation reduces to theoffsetoperation [25]. The offset of a
solid is obtained by adding to the solid all the points that
lie within a distancer. Mathematically it is defined as
Offset(P) = {p | ∃ q ∈ P, ||p − q|| ≤ r}. Offset is a
special case of Minkowski sum – it can be expressed as the
Minkowski sum with a sphere. The exact computation of
the offset is difficult because it requires union computation
of a large number of higher order surfaces.

The offset of a triangulated objectP consists of three
types of regions:

• A spherical region around a vertexvi of P . This region
is part of a sphereSi of radiusr centered atvi.

• A cylindrical region around an edgeej of P . This re-
gion is part of a cylinderCj of radiusr and whose axis
is same asej .

• A planar region due to a triangletk of P obtained by
displacingtk along its outward normal by a distancer.
This results in a triangular prismPk.

Let O = ∪i Si

⋃
∪jCj

⋃
∪kPk. The dilationP ⊕ S is

same as offset ofP and is given byP
⋃

O. The erosion
P 	 S is given byP \ O. In case of erosion, the triangular
prismsPk are obtained by displacing the triangle along the
inward normal.

In this manner, the problem of performing mathematical
morphological operations (with sphere as the structuring el-
ement) reduces to performing Boolean operations on poly-
hedra, triangular prisms, spheres, and cylinders. We use
our approximation algorithm described in Sec. 4 to perform
these Boolean operations. Note that this approach does not
require convex decomposition of the object. For an object
with n triangles, we perform a Boolean on3 ∗ n + 1 primi-
tives. Figure1 shows the offset of theBunnymodel. Fig. 4
shows offsets of two models.

5.3 Penetration Depth Computation
We use our Minkowski sum approximation algorithm to es-
timate the penetration depth between two polyhedral mod-
els. We guarantee that our estimate of penetration depth is
arbitrarily close to the actual value. The penetration depth
of two intersecting polyhedraP andQ, PD(P,Q), is the
minimum translational distance that one of the polyhedra
must undergo to render them disjoint. It is well known that
one can reduce the problem of computing the PD between
P andQ to a minimum distance query on the surface of
their Minkowski sum ,P ⊕−Q.

Based on this approach, [19] presented an approximate
algorithm to estimate the PD using graphics hardware. This
approach is very efficient and can compute penetration
depth of complex models quickly. One limitation of this
approach is that due to the limited precision of the raster-
ization hardware, the estimated PD can be very different
from the actual PD and there are no tight error bounds on
the estimate.

We can use our Minkowski sum approximation al-
gorithm to obtain a penetration depth estimate that
is arbitrarily close to the actual value. Given any
ε > 0, we compute an approximationAε, such that
Two-sided Hausdorff Distance(Aε,M) < ε (Theorem
2). Our penetration depth estimateδ is given by δ =
D(OQ−P ,Aε). It is easy to prove that our estimateδ is
close to the actual PD. In particular, we can show that
δ− ε < PD(P,Q) < δ + ε. Thusα = δ− ε andβ = δ + ε
provide bounds on the PD. By decreasingε, we can obtain
arbitrarily tight bounds on the actual PD.

In addition to the penetration depth estimate, the above
boundsα and β can be used to obtain a potential set of
penetrating features. Due to space limitations, we skip the
details. The potential set of penetrating features is obtained
by considering a set of features belonging to the pairwise
Minkowski sums that lie within an annulus of radiiα andβ
centered at the origin.

6 Implementation and Performance
In this section, we describe the implementation of our ap-
proximation algorithm and demonstrate its performance on
different benchmarks.

Page 7 of 10

Anvil (144 tris) Spoon (336 tris) Anvil ⊕ Spoon (Union of4, 446 prims,15K tris)

Wrench (772 tris) Spiral (500 tris) Wrench⊕ Spiral (Union of38, 703 prims,25K tris)

Knife (516 tris) Scissors (636 tris) Knife⊕ Scissors (Union of62, 790 prims,26K tris)

Figure 5. Benchmarks: This figure shows three different benchmarks. The left two columns show the two primitives whose
Minkowski sum is being computed. The triangle counts for the two primitives are shown in brackets. Two views of the approx-
imation computed by our algorithm are shown in the right. For the three models, the Minkowski sum reduced to computing the
union of4, 446, 38, 703 and62, 790 primitives respectively. Our algorithm took63, 316 and778 secs respectively to generate an
approximation. The approximate boundary consists of15K, 25K and26K triangles respectively (see Table 1).

6.1 Implementation

We implemented our algorithms on a 2 GHz Pentium IV PC
with 1 GB main memory. We used the Extended Marching
Cubes (EMC) algorithm [20] to perform the isosurface ex-
traction. It requires computing directed distance at the grid
points. Our algorithm is simple to implement. It only re-
quires performing distance and inside/outside queries. Di-
rected distance [20] and max-norm distances [31] to convex
primitives can be computed efficiently.

6.2 Performance

We tested our algorithm on a number of complex models.
The model complexity (Table 1) varied from several hun-
dred to few thousand triangles. Figures1 and 4 show the
offset of three models:Bunny, Cup and Gear. Figure1
shows the Minkowski sum ofBrake HubandRodmodels.
The final Minkowski sum has a number of narrow holes that
contribute to a high genus. Our algorithm produces an ap-
proximation with the correct topology. Fig. 5 shows the
Minkowski sum of a number of CAD models. Fig. 6 shows
a complex benchmark consisting of twoGrates. This is a
very challenging scenario as the resulting Minkowski sum
has very high complexity. It has numerous thin and needle-

like features. Our algorithm was able to reconstruct all the
complex features. Fig. 3 shows an application to motion
planning. Table 1 shows the model complexity and perfor-
mance of our algorithm on these benchmarks. Sampling is
the most time consuming step in the algorithm. Fig. 7 high-
lights the performance of our algorithm on different bench-
marks, showing the level of subdivision.

The culling techniques improve the performance signifi-
cantly. We applied our algorithm without any culling tech-
niques to the Anvil and Spoon benchmark (Figure1). It
took more than7 hours to generate an approximation, as
compared to63 secs using culling techniques.

7 Limitations
The complex cell and star-shaped criteria are conservative.
As a result, the sampling algorithm may result in conserva-
tive subdivision. Our algorithm may not be able to handle
all degenerate configurations in the input model. These in-
clude cases when the model has artifacts such as self inter-
sections. Our algorithm can only generate manifold bound-
aries and is not applicable to the cases where the exact
boundary is non-manifold. Our sampling algorithm cannot
handle cases where two primitives (the pairwise Minkowski

Page 8 of 10

Grate 1 (444 tris)

Grate 2 (1, 134 tris)
Grate 1⊕ Grate 2 (Union of66, 667 prims,358K tris)

Figure 6. The left figure show two grates with444 and 1, 134 triangles respectively. We decomposed them into163 and 409
convex pieces respectively and computed the pairwise Minkowski sums between the convex pieces. The final Minkowski sum is given
by the union of66, 667 pairwise Minkowski sums. Our approximation algorithm computed an approximation (shown in the right)
in 3, 162 secs (52 minutes). It was able to reconstruct the complex features present on the boundary.

Figure 7. The histogram shows the number of voxels in
our adaptive voxel grid for different benchmarks. It high-
lights the number of voxels at each level of subdivision.

sums) are touching tangentially. One way of resolving this
problem is by choosing an alternative way of subdividing
the grid cells (instead of octree subdivision). We are ex-
ploring this alternative in our ongoing work [32].

The main bottleneck in our approach is the convex de-
composition method. Typically, it producesO(n) convex
pieces. Given two polyhedra each withn triangles, we usu-
ally obtainO(n2) pairwise convex Minkowski sums whose
union needs to be computed. Since this set of pairwise con-
vex Minkowski sums is an input to our approximation al-

gorithm, its large size impacts the performance of the over-
all algorithm. Although our algorithm is able to approxi-
mate their union much faster and robustly compared to ex-
act union algorithms, it still needs to pay the penalty for the
large input size. It takes few minutes to compute Minkowski
sums of models composed of hundreds of triangles. Using a
better convex decomposition method can alleviate this prob-
lem.

8 Conclusion and Future Work
We have presented an algorithm to approximate the 3D
Minkowski sum of polyhedral objects. Our algorithm guar-
antees that the approximation has the correct topology and
provides two-sided Hausdorff distance bounds on the ap-
proximation. We employ cell and primitive culling tech-
niques to improve the performance of our algorithm. We
have applied our algorithm to offset computation, morpho-
logical operations, and penetration depth computation of
complex polyhedral models. We have also used it for ex-
act motion planning with translational degrees of freedom.

As part of future work, we would like to improve our
sampling algorithm to make it less conservative and thereby
improve its performance. We would like to use better con-
vex decomposition algorithms. It is well-known that the
Minkowski sum of two star-shaped polyhedra is a star-
shaped polyhedra. We could exploit this property and de-
sign our overall approach based on star-shaped decomposi-
tion instead of convex decomposition. The main advantage

Page 9 of 10

Primitive 1 Primitive 2 Num Convex Performance (sec) Output
Num Tris Num Pieces Num Tris Num Pieces Prims Convex Mink Sampling Recons Num Tris

Cup 1000 338 Sphere - 1 338 1.2 32 0.08 14,895
Gear 2,382 744 Sphere - 1 744 3.6 81 0.09 22,742

Brake Hub 4,736 1777 Rod 24 1 1,777 4.3 135 0.04 45,753
Anvil 144 57 Spoon 336 78 4,446 3.9 59 0.02 15,638

Wrench 772 291 Spiral 500 133 38,703 27 289 0.06 25,280
Knife 516 273 Scissors 636 230 62,790 36 742 0.06 26,038

Grates 1 444 163 Grates 2 1134 409 66,667 40 3120 1.5 358,030

Table 1. Benchmarks: This table shows the performance of our algorithm on different models. The columns on the left show
the statistics of the two primitives whose Minkowski sum is computed. They show the number of triangles in each primitive and
the number of convex pieces generated by convex decomposition. The column, Num Convex Prims, shows the number of convex
Minkowski sums generated. The right three columns show the time taken to generate the convex Minkowski sums, sampling (grid
generation) and isosurface reconstruction.

of this approach is that the star-shaped decomposition of a
polyhedron would typically result in fewer primitives. Fur-
thermore, we would like to develop similar algorithms for
arrangement and envelope computation.

References
[1] S. Abrams and P. Allen. Computing swept volumes.Journal of Visualization

and Computer Animation, 11, 2000.

[2] B. Aronov, M. Sharir, and B. Tagansky. The union of convex polyhedra in three
dimensions.SIAM J. Comput., 26:1670–1688, 1997.

[3] J. Basch, L. Guibas, G. Ramkumar, and L. Ramshaw. Polyhedral tracings
and their convolutions. InProc. Workshop on the Algorithmic Foundations
of Robotics, 1996.

[4] J.-D. Boissonnat, E. de Lange, and M. Teillaud. Minkowski operations for
satellite antenna layout. InSymposium on Computational Geometry, pages 67–
76, 1997.

[5] B. Chazelle. Convex decompositions of polyhedra. InACM Symposium on
Theory of Computing, pages 70–79, 1981.

[6] B. Chazelle, D. Dobkin, N. Shouraboura, and A. Tal. Strategies for polyhe-
dral surface decomposition: An experimental study.Computational Geometry:
Theory and Applications, 7:327–342, 1997.

[7] S. M. D. E. Breen and R. T. Whitaker. 3d scan conversion of csg models into
distance volumes.Proc. of ACM 1998 Symposium on Volume Visualization,
1998.

[8] D. Dobkin, J. Hershberger, D. Kirkpatrick, and S. Suri. Computing the
intersection-depth of polyhedra.Algorithmica, 9:518–533, 1993.

[9] S. Ehmann and M. C. Lin. Accurate and fast proximity queries between poly-
hedra using convex surface decomposition.Computer Graphics Forum (Proc.
of Eurographics’2001), 20(3):500–510, 2001.

[10] R. C. Evans, M. A. O’Connor, and J. R. Rossignac. Construction of minkowski
sums and derivatives morphological combinations of arbitrary polyhedra in
cad/cam systems.US Patent 5159512, 1992.

[11] E. Flato and D. Halperin. Robust and efficient construction of planar minkowski
sums. InAbstracts 16th European Workshop Comput. Geom., pages 85–88,
2000. Eilat.

[12] S. Frisken, R. Perry, A. Rockwood, and T. Jones. Adaptively sampled distance
fields: A general representation of shapes for computer graphics.Proc. of ACM
SIGGRAPH, pages 249–254, 2000.

[13] P. Ghosh. A unified computational framework for minkowski operations. In
Computers and Graphics, 17(4), pp.357-378, 1993.

[14] L. Guibas and R. Seidel. Computing convolutions by reciprocal search.Dis-
crete Comput. Geom, 2:175–193, 1987.

[15] D. Halperin. Robust geometric computing in motion.International Journal of
Robotics Research, 21(3), 2002.

[16] B. Joe. Geompack. A software package for the generation of meshes using
geometric algorithms.Advances in Engineering Software and Workstations,
13(5–6):325–331, Sept. 1991.

[17] T. Ju, F. Losasso, S. Schaefer, and J. Warren. Dual contouring of hermite data.
ACM Trans. on Graphics (Proc. SIGGRAPH), 21(3), 2002.

[18] A. Kaul and J. Rossignac. Solid-interpolating deformations: Construction and
animation of PIPs. In W. Purgathofer, editor,Eurographics ’91, pages 493–505.
North-Holland, Sept. 1991.

[19] Y. Kim, M. Otaduy, M. Lin, and D. Manocha. Fast penetration depth compu-
tation using rasterization hardware and hierarchical refinement.Proc. of Work-
shop on Algorithmic Foundations of Robotics, 2002.

[20] L. Kobbelt, M. Botsch, U. Schwanecke, and H. P. Seidel. Feature-sensitive
surface extraction from volume data. InProc. of ACM SIGGRAPH, pages 57–
66, 2001.

[21] I.-K. Lee, M.-S. Kim, and G. Elber. Polynomial/rational approximation of
Minkowski sum boundary curves.Graphical Models and Image Processing,
60(2):136–165, 1998.

[22] W. E. Lorensen and H. E. Cline. Marching cubes: A high resolution 3D surface
construction algorithm. InComputer Graphics (SIGGRAPH ’87 Proceedings),
volume 21, pages 163–169, 1987.

[23] T. Lozano-Ṕerez. Spatial planning: A configuration space approach.IEEE
Trans. Comput., C-32:108–120, 1983.

[24] R. Perry and S. Frisken. Kizamu: A system for sculpting digital characters. In
Proc. of ACM SIGGRAPH, pages 47–56, 2001.

[25] J. Rossignac and A. Requicha. Offsetting operations in solid modeling.Com-
put. Aided Geom. Design, 3:129–148, 1986.

[26] C. Rossl, L. Kobbelt, and H.-P. Seidel. Extraction of feature lines on triangu-
lated surfaces using morphological operators.Proceedings of the 2000 AAAI
Symposium, 2000.

[27] W. Schroeder, W. Lorensen, and S. Linthicum. Implicit modeling of swept
surfaces and volumes. InProceedings of Visualization’94, IEEE Computer
Society, Los Alamitos, CA, 1994.

[28] J.-K. Seong, M.-S. Kim, and K. Sugihara. The minkowski sum of two simple
surfaces generated by slope-monotone closed curves.Geometric Modeling and
Processing: Theory and Applications, 2002.

[29] J. Serra. Image Analysis and Mathematical Morphology. Academic Press,
London, UK, 1982.

[30] R. Shekhar, E. Fayyad, R. Yagel, and F. Cornhill. Octree-based decimation of
marching cubes surfaces.Proc. of IEEE Visualization, pages 335–342, 1996.

[31] G. Varadhan, S. Krishnan, Y. J. Kim, S. Diggavi, and D. Manocha. Efficient
max-norm distance computation and reliable voxelization.Eurographics Sym-
posium on Geometry Processing, 2003.

[32] G. Varadhan, S. Krishnan, T. Sriram, and D. Manocha. A simple algorithm for
complete motion planning of translating polyhedral robots. Technical report,
UNC Technical Report, 2004.

[33] G. Varadhan, S. Krishnan, T. Sriram, and D. Manocha. Topology preserving
isosurface extraction using adaptive subdivision. Technical report, UNC Tech-
nical Report, 2004.

[34] J. Wilhelms and A. V. Gelder. Topological considerations in isosurface genera-
tion extended abstract.Computer Graphics, 24(5):79–86, 1990.

Page 10 of 10

