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Abstract— We present a novel, real-time algorithm to extract
the trajectory of each pedestrian in moderately dense crowd
videos. In order to improve the tracking accuracy, we use a
hybrid motion model that combines discrete and continuous
flow models. The discrete model is based on microscopic agent
formulation and is used for local navigation, interaction, and
collision avoidance. The continuum model accounts for macro-
scopic behaviors, including crowd orientation and flow. We use
our hybrid model with particle filters to compute the trajec-
tories at interactive rates. We demonstrate its performance in
moderately-dense crowd videos with tens of pedestrians and
highlight the improved accuracy on different datasets.

I. INTRODUCTION
Tracking of pedestrians in a crowded scene is important

to ensure safe navigation of autonomous mobile robots
and vehicles. With recent advances in self-driving vehicles
and autonomous wheelchairs, it is important to track the
pedestrians to compute smooth, collision-free trajectories [1],
[13]. As self-driving cars are increasingly deployed on urban
streets and autonomous wheelschairs are used in public
places (e.g. malls or airports), it is important to accurately
compute the pedestrian trajectories at interactive rates (e.g.
tens of milliseconds).

Besides robotics, pedestrian tracking is also used for
surveillance, disaster prevention, and data-driven crowd sim-
ulation in virtual environments. This problem has been
extensively studied in robotics, computer vision, and image
processing. Despite recent advances, it remains difficult to
track pedestrians at interactive rates in real-world videos,
especially for moderately dense crowds. Some of the chal-
lenges in pedestrian tracking arise due to inter-pedestrian
occlusion, changes in lighting conditions or pedestrian ap-
pearance, accurate modeling of intent or goal position of each
pedestrian. In this paper, we restrict ourselves to online and
realtime trackers [8], [10], [22]–[24], [33], which compute
the trajectories based on current and prior frames. Many of
these trackers use motion priors to update the trajectories of
the pedestrians between successive frames, then propagate
the search space from one frame to the next. The simplest
algorithms to model the motion are based on constant ve-
locity or constant acceleration formulations. However, these
techniques are unable to model the interaction between the
pedestrians, as the crowd density (i.e. the number of human
agents per squared meter) increases.

In real-world scenarios, the trajectory of each pedestrian is
governed by its intermediate goal location, crowd flow, and
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Fig. 1: (Top) The colored lines represent the previous
and current frame positions; the dotted lines represent the
corresponding predicted future positions using the discrete
motion models used by prior pedestrian tracking algorithms.
(Bottom) The colored dots represent pedestrians belonging
to the same crowd “cluster”; we track the movement of
each cluster using continuum methods. Our overall hybrid
algorithm combines discrete and continuous motion models
and can result in tracking accuracy of more than 70%.

by interactions with other pedestrians and obstacles in the
scene. In a dense crowd, the behavior of each pedestrian
changes in response to the environment, including crowd
density and overall flow. Many studies in pedestrian dy-
namics and psychology literature have suggested that the
pedestrian movement varies based on based on the crowd
density or the Fundamental Diagram [7], [19], [40]. As a
result it is hard to model all these pedestrian interactions and
movements using a single or uniform motion model.

Main Results: We present a hybrid motion model for
online pedestrian tracking in medium to high-density crowd
videos. Our work builds on prior research on simulation
models in pedestrian dynamics, robotics, and computer
graphics. Specifically, our hybrid model combines discrete



Fig. 2: The left image highlights the tracked trajectories based on discrete motion models. The image on the right demonstrates
the use of a hybrid motion model, using the continuum method for a cluster of pedestrians as well as discrete motion models
for individuals. These clusters are computed in realtime based on frame coherence and pedestrian flow. The hybrid motion
model can improve the tracking accuracy in these dense scenarios by 7-12% over prior methods.

(microscopic) and continuum (macroscopic) models. The
discrete model is used to predict the local interactions
and collision-avoidance behaviors of each pedestrian. The
continuum method is used to model the flow of homogeneous
clusters within a crowd. Our primary contributions include:

• We cluster pedestrians in a crowd based on different
characteristics including their positions, velocity, inter-
pedestrian distance, orientations, etc.

• We model the trajectory of each large cluster of pedes-
trians using a continuum flow model.

• We model the motion of small clusters and individual
pedestrians using an adaptive microscopic multi-agent
algorithm.

• We combine these discrete and continuum models with
particle filters, enabling us to track the pedestrians at
interactive rates.

Our algorithm can track tens of pedestrians in medium- to
high-density crowds at realtime rates (i.e. more than 25fps)
on a multi-core PC and can achieve accuracy of ~65-80%
on moderately dense crowd videos. We also compare the
accuracy and runtime performance of our hybrid motion-
prior algorithm with prior techniques.

The rest of the paper is organized as follows. Section II
reviews related work in tracking and motion models. Section
III introduces our notation and terminology, and gives an
overview of our hybrid motion model. We describe the
overall tracking algorithm in Section IV and highlight its
performance on different benchmarks in Section V.

II. RELATED WORK

In this section, we briefly review some prior work on
pedestrian tracking. Multi-pedestrian tracking has attracted a
lot of attention in recent years, and many offline and online
tracking algorithms have been proposed [11], [37], [39]. In
this section, we limit our discussion to the use of motion
models in online and realtime tracking algorithms.

The problem of modeling pedestrian behaviors and trajec-
tories has received significant attention in various disciplines

and a number of motion models have been proposed. These
include discrete and continuum models. In discrete models,
pedestrian agents regard other pedestrians as moving obsta-
cles and try to compute a trajectory that avoids collisions
with all other obstacles in the environment (including other
pedestrians). Many discrete motion models represent each
individual or pedestrian in a crowd as particles (or as 2D
circles in a plane) to model the interactions. These include
models based on simple interaction rules [32], repulsive
forces [16] and velocity-based optimization algorithms [20],
[31], [35]. Other recently-developed discrete approaches are
based on cognitive models [9], affordance [12], short-term
planning using a discrete approach [2], linear trajectory
avoidance (LTA) [29], or perceptual models [28].

In continuum methods, agents are clustered, and the den-
sity and velocity field of each cluster is computed by accu-
mulating the individual agents’ positions and velocities [15],
[18]. Treuille et al. [34] used a global approach based on
continuum theory for the flow of pedestrians. Narain et al.
[27] used a dual representation that uses discrete agents
as well as a continuous formulation based on a variational
constraint.

There has been considerable work on improved motion
models to increase the accuracy of these trackers [4]–[6],
[25] but these approaches only use discrete motion models
and and may not be able to accurately capture continuum
crowd flows.

III. OUR APPROACH

In this section, we give an overview of our approach. We
also introduce the notation and terminology used in the paper.

A. Overview

We compute large, homogeneous clusters of pedestrians.
We use continuum techniques to model the flow of pedestri-
ans in large clusters. The motion for the rest of pedestrians
is modeled using discrete, microscopic models. We use an
optimization technique to compute the pedestrian model of
each discrete agent. Similarly, we compute the flow of every



cluster based on continuum crowd behaviors [18]. Finally,
we combine these motion model predictions with standard
particle filter-based trackers.

Fig. 3: Our Crowd Tracking Algorithm: We start with an
initial set of trajectories and compute the pedestrian clusters.
Based on the cluster size, we compute either the best discrete
motion model or the combined motion flow of the cluster.
We combine the predictions from the discrete and continuum
models and integrate them with particle filter-based trackers.
We also use the positions computed by the tracker for
computing the clusters and discrete motion models for future
frames.

B. Notation and Terminology

We use the following notations in our paper:

• S represents the state (position and velocity) of an
arbitrary pedestrian as computed by the overall tracker.

• X represents the state (position and velocity) of an
arbitrary pedestrian inside a motion model.

• Y represents the state (position and velocity) of an
arbitrary pedestrian in a cluster C.

• fn represents the nth discrete motion model from
a collection of motion models (as explained later in
section IV).

• m represents the “best configured” motion model from
the mixture of motion models {f1, f2, ...}.

• bold fonts are used to represent values for all the
pedestrians in the crowd; for example S represents the
states (positions and velocities) of all pedestrians as
computed by the tracker.

• subscripts are used to indicate time; for example mt rep-
resents the “best configured” motion model at timestep
t, and St−k:t represents all states of all agents for all
successive timesteps between t− k and t, as computed
by the tracker.

We use an optimization scheme to compute the “best”
motion model for each pedestrian. This computed motion
model can be used as follows: Xt+1 = mt(Xt) or Xt+1 =
mt(Xt) to compute the motion of one arbitrary pedestrian
or all pedestrians, respectively.

Data Representation: We use two different pedestrian data
representations. The first keeps track of the state (position
and velocity) of each pedestrian for the last k timesteps
or frames. These are referred to as the k-states of each
pedestrian. These k-states are initialized by pre-computing
the states from the first k timesteps. The k-states are updated
at each timestep by maintaining a queue data structure
for each agent: removing the agents’ state from the oldest
frame and adding the latest tracker-estimated state. In our
formulation, we define a ‘cluster’ as a group of pedestrians
that are close and share similar characteristics like walking
speed, orientation. We also keep track of cluster density and
the flow of different pedestrian formations in the crowd.
Depending on the cluster size, we choose between modeling
the motion of a pedestrian using a discrete motion model
or a continuum model (Pedestrian Flow). In the case of a
continuum model, we also represent the clusters along with
the associated pedestrians.

The discrete (microscopic) model is chosen by selecting
the best motion model from the known multi-agent pedes-
trian motion models, including Boids [32], RVO [35], Social
forces [16], etc. This microscopic mixture motion model is
then used to compute the best motion model for the agents
during each frame. First, we compute the optimal motion
parameters of every discrete motion model to best match the
recent k-states data and select the model that best matches a
specific metric. Second, we use the “best optimized" motion
model to make a prediction on the agents’ next state.

Pedestrian Flow is a flow vector of a cluster (see Section
IV (a)),and computed using the clusters’ average flow using
a bottom-up approach. This “flow” captures the movement
of the pedestrians in a certain direction.

C. Particle Filters for Tracking

Although we could use any online tracker which requires
a motion-prior model, we chose particle filters as our un-
derlying tracking algorithm. The particle filter is a para-
metric method that solves non-Gaussian and non-linear state
estimation problems [3]. Particle filters are frequently used
for object tracking, since they can recover from lost tracks
and occlusions. The particle tracker’s tracking uncertainty
is represented in a Markovian manner: it considers only
information from present and past frames. The motion priors
are used to estimate the next state of each agent. This
tracker also employs a confidence estimation scheme that
dynamically computes the number of particles for each agent;
this confidence estimation allows the particle filter to balance
runtime cost with accuracy.

IV. ALGORITHM

In this section we give details of the various stages of our
algorithm (shown in Figure 3). Our hybrid motion model



consists of two parts: the discrete, or microscopic, model
and the continuum model. Both these models return a future
pedestrian state. Here are the basic components of our
approach:

1) Computing Pedestrian Clusters: Our algorithm iden-
tifies pedestrian clusters based on a bottom-up hierarchical
clustering approach. We initially assign each pedestrian to
a separate cluster, one consisting of a single pedestrian.
We then merge these clusters by analyzing their relative
velocities and their geometric proximity, which is a function
of the Euclidean distance between the clusters, the speed of
each agent, and their motion. In our experiments, we found
that a bottom-up approach is more efficient than a top-down
approach for crowds composed of small clusters.

We improve on the group-expand procedure of [26] by
including many additional crowd features for clustering the
pedestrians. A connectivity graph is constructed [14] among
the pedestrians and we measure the graph density based on
intra-cluster proximity.

We compute a cluster graph for each cluster. For any
cluster l ≥ 1, the vertices of the connectivity graph CGl

correspond to the pedestrians in the cluster. There is an edge
between vertex ni and nj if and only if pedestrian i and
pedestrian j are together for some period of time and their
velocities are close to each other. The density of this graph
helps us define intra-cluster proximity as follows. Let el be
the total number of edges in CGl and êl+1 be the minimal
number of edges desired in CGl+1 after including pedestrian
pi in CGl. A pedestrian i can be added to an existing cluster
of size l if and only if it is connected with at least half
of the existing pedestrians in the cluster, i.e., the degree of

ni ≥ d
l

2
e. We then have êl+1 = el + d

l

2
e. By definition,

e1 = ê1 = 0. For l ≥ 1, given the basis condition that
ê2 = 1 and ê3 = 2, we derive

êl =


(
l

2

2

) when l is even,

l − 1

2
(1 +

l − 1

2
) when l is odd.

(1)

Two clusters CGm and CGn satisfy the intra-cluster
proximity criterion if and only if

em+n ≥ (êm+n + em − êm + en − ên) (2)

2) Microscopic Representation: For each individual
pedestrian, we compute the motion model that best fits
its position as tracked over recent frames. In essence, our
approach chooses the "best" discrete motion model from a
fixed set of choices. In this case, the “best” motion model
is the one that most accurately matches agents’ immediately
past states, as per a given error metric.This is different from
most models, which are based on specific rules and ideas;
a model based on a single idea cannot take into account
different pedestrian interactions(such as intermediate goal
locations, intrinsic behaviors, and local interactions with
other pedestrians and obstacles in the scene). For the sake of

simplicity, in this section we will refer to ‘discrete motion
models’ simply as ‘motion models’.

This “best” motion model is determined by an optimiza-
tion framework, which automatically finds the motion model
parameters that minimize an error metric. Wolinski et al.
[36] designed an optimization framework for evaluating
crowd motion models that computes the optimal motion
model parameters in an offline manner for a single homoge-
neous simulation model. Instead we use a realtime approach,
compute the optimal motion model every few frames and
choose the optimal pedestrian parameters (e.g. size, velocity,
or force) for that motion model. This computation can be
performed at realtime rates.

A motion model is defined as an algorithm f which starts
with a collection of agent states Xt and derives new states
Xt+1 for these agents. It represents their motion over a
timestep towards the agents’ immediate goals G:

Xt+1 = f(Xt,G,P), (3)

where P denotes the individual pedestrian parameters.
Our mixture motion model can include any generic dis-

crete motion model that can be represented as Equation (3),
but in our system we have currently used the following
discrete, microscopic motion models -

• Reciprocal Velocity Obstacles [35]: This is a local
collision-avoidance and navigation algorithm. Given
each agent’s state at a certain timestep, it computes a
collision-free state for the next timestep.

• Boids Model [32]: It computes appropriate forces be-
tween the agents. When the predicted distance between
the agents becomes too low, a separation force is
computed and added to an attraction force that is pulling
each agent towards its goal.

• Social Forces Model [16]: This uses attractive and re-
pulsive forces for each agent. The interactions between
the pedestrians are modeled using repulsive forces and
attraction forces are applied on each agent towards their
goal positions.

Formally, at any timestep t, we define the agents’ (k+1)-
states (as computed by the tracker) St−k:t:

St−k:t =

t⋃
i=t−k

Si. (4)

Similarly, a motion model’s corresponding computed
agents’ states f(St−k:t,P) can be defined as:

f(St−k:t,P) =

t⋃
i=t−k

f(Xi,G,P), (5)

initialized with Xt−k = St−k and G = St.
At timestep t, considering the agents’ k-states St−k:t,

computed states f(St−k:t,P) and a user-defined error metric
error(), our algorithm computes:

Popt,f
t = argmin

P
error(f(St−k:t,P),St−k:t), (6)



where Popt,f
t is the parameter set which, at timestep t, results

in the closest match between the states computed by the
motion algorithm f and the agents’ k-states.

For several motion algorithms {f1, f2, ...}, we can com-
pute the algorithm which best matches the agents’ k-states
St−k:t at timestep t:

mt = foptt = argmin
f

error(f(St−k:t,P
opt,f
t ),St−k:t),

(7)

and consequently, the best (as per the error in the error()
metric itself) prediction for the agents’ next state obtainable
from the motion algorithms for timestep t+ 1 is:

Xt+1 = mt(St). (8)

Fig. 4: Our Macroscopic Model Algorithm/ Mixture of Mo-
tion Models: The symbols used in this figure are explained
in Section III-B. We use the trajectory computed over prior
k frames, expressed as a succession of states, to compute
the new motion model; we use our mixture motion model
to compute next states using a particle filter based on an
optimization framework. The confidence estimation module
adapts the number of particles used in our system to optimize
computational overhead.

In total we tested three global optimization approaches:
Greedy algorithm, Simulated Annealing, and Genetic Algo-
rithm to optimize our pedestrian parameters P to best-fit
prior tracker output. In our final results we use the genetic
algorithm as the underlying optimization technique, because
it offers the best compromise between the optimization
results and runtime performance; efficiency is especially
important since our goal is realtime pedestrian tracking.
Genetic algorithms seek to overcome the problem of local
minima in optimization. This is accomplished by keeping

a pool of parameter sets and, during each iteration of
the optimization process, creating a new pool of potential
solutions by combining and modifying these parameter sets.

During each iteration, our algorithm evaluates and ranks
all possible parameter sets (i.e. solutions). If a few iterations
of the algorithm offer no improvement, the overall algorithm
terminates. Otherwise, individual parameter values in each
solution have a probability of being iterated. If so, this
iteration has a probability of either being a crossover or a
mutation. If it is a crossover, a value from the corresponding
parameter from a better-ranked solution is selected; if it
is a mutation, a new value is sampled from a probability
distribution.

An error metric is also needed to compute the term in
Equation (6). In our case, we’ve chosen a metric that simply
computes the average 2-norm between the observed agent
positions and the tracker-computed positions. This metric is
well adapted to our formulation as the number of considered
past frames, k, is relatively small (around 10). This means
that it is difficult for the simulated agents to stray too far from
the observed trajectories and the metric can be effectively
used to compare the observed and computed trajectories.
Formally, this error metric is defined at timestep t as follows:

t∑
i=t−k

‖Si −Xi‖. (9)

3) Continuum Representation: After estimating every
cluster, we calculate the flow per cluster based on Hughes et
al. [18] continuum crowd behavior. To derive the equations
that govern the pedestrian flow, we need to combine the
unsteady continuity equation [18] with the following three
hypotheses that govern the pedestrian motion:

• The speed at which pedestrians walk is determined by
the density of surrounding pedestrians.

• Pedestrians have a common sense of the task of reaching
their common destination, such that any two individuals
at different locations having the same potential would
see no advantage to exchanging places

• Pedestrians seek to minimize their estimated travel
time (start position to destination time) but change
this behavior this behavior to avoid extreme densities.
This tempering is assumed to be separable, such that
pedestrians minimize the product of their travel time as
a function of density.

The above hypotheses lead to the basic governing equa-
tions for the flow of a single pedestrian. These equations
are

−δρ
δt

+
δρg(ρ)f2(ρ)

δϕ

δx
δx

+

δρg(ρ)f2(ρ)
δϕ

δy

δy
= 0, (10)

and
g(ρ)f(ρ) =

1√
(
δϕ

δx
)2 + (

δϕ

δy
)2
, (11)

where ϕ is the remaining travel time, which is a measure
of the instantaneous goal, ρ is the density of the crowd,



f(ρ) is the speed of pedestrians as a function of density,
g(ρ) is a factor related to the preferred velocity at a given
density, and (x, y, t) denotes the horizontal space and time
coordinates. This represents our flow state Yt. Derivation of
these equations and relevant details are given in [17].

4) Tracking: We consider the combination of “best con-
figured” motion model mt and the cluster flow from Yt,
as well as the error Qt in the prediction that this “best
configured” motion model has generated. Our tracker’s ob-
servations can be represented by a function h() that projects
the state Xt or Yt (depending on what motion model was
used) to a previously computed state St. We denote the error
between the observed states and the ground truth as Rt. We
can now phrase them formally in terms of a standard particle
filter as below. In all the equations below Xt can be replaced
Yt.

St+1 = mt(Xt) +Qt, (12)

St = h(Xt) +Rt. (13)

Particle filtering is a Monte Carlo approximation to the
optimal Bayesian filter, which monitors the posterior proba-
bility of a first-order Markov process:

p(Xt|St−k:t) =

αp(St|Xt)

∫
Xt−1

p(Xt|Xt−1)p(Xt−1|St−k:t−1)dXt−1,

(14)
where Xt is the process state at time t; St is the observation;
St−k:t is all of the observations through time t; p(Xt|Xt−1)
is the process dynamical distribution; p(St, Xt) is the ob-
servation likelihood distribution; and α is the normalization
factor. Since the integral does not have a closed form solution
in most cases, particle filtering approximates the integration
using a set of weighted samples X

(i)
t , π

(i)
t i=1,...,n, where

X
(i)
t is an instantiation of the process state, known as a

particle, and π
(i)
t ’s are the corresponding particle weights.

With this representation, the Monte Carlo approximation to
the Bayesian filtering equation is:

p(Xt|St−k:t) ≈ αp(St|Xt)

n∑
i=1

π
(i)
t−1p(X

(i)
t )|p(X(i)

t−1), (15)

where n refers to the number of particles.
In our formulation, we use the motion model to infer

dynamic transition, p(Xt|Xt−1), for particle filtering.

V. RESULTS

In this section, we describe our implementation and high-
light the results on different crowd datasets. We implemented
these algorithms on a Intel©Haswell, Coreri7- 4771 Proces-
sor (8 Cores) with an 8MB Cache, 3.90 GHz and Intel©HD
Graphics 4600. Our approach is implemented in C++, and
some components uses OpenMP and OpenCL for multi-
core implementations. Specifically, we perform agent-level
parallelism: individual pedestrian tracking or cluster tracking

computations are distributed across the CPU cores, except
for motion-model computation, where pedestrian behavior is
inter-linked and the computation is mostly sequential. An
average of 7-8% of the total computation time is spent on
discrete motion-model computations, 4-6% on continuum
model computations (including the cost of computing the
cluster), and the rest is used by the particle filter based
tracker.

A. Evaluation
We use the CLEAR MOT [21] evaluation metrics to

analyze our algorithm’s performance. We use the MOTP
and the MOTA metrics. MOTP evaluates the alignment of
tracks with the ground truth, while MOTA produces a score
based on the number of false positives, missed detections,
and identity switches. These metrics have become standard
for evaluating detection and tracking algorithms, and we refer
the interested reader to [21].

We analyze these metrics across the density groups and
the different motion models (Table III).

B. Tracking Results
We highlight the performance of our algorithm based on

the hybrid model on different benchmarks, comparing the
performance of our algorithm with single, homogeneous
motion model methods: constant velocity model (LIN),
LTA [29], Social Forces [38], Boids [32] and RVO [35]. We
also compare our approach using only a flow-based contin-
uum model [17]. LIN models the velocities of pedestrians
as constant, and is the underlying motion model frequently
used in the standard particle filter. In our implementation,
we replace the state transition process of a standard particle
filtering algorithm with different motion models.

We evaluate on some challenging datasets [6] which are
available publicly and also some standard datasets [30]
from the pedestrian tracking community. These videos were
recorded at 24-30 fps. We manually annotated these videos
and corrected the perspective effect by camera calibration.
We also compare our algorithm’s performance to that of
a baseline mean-shift tracker (Table IV). We show the
number of correctly tracked pedestrians and the number of
ID switches. A track is counted as “successful” when the
estimated mean error between the tracking result and the
ground-truth value is less than 0.8 meter in groundspace; this
value comes from the average human stride length (about 0.8
meter), and we consider the tracking to be incorrect if the
mean error is more than this value. Our method provides 9-
18% higher accuracy over LIN for medium density crowds
(Table IV). We also compare the performance of our hybrid
tracking algorithm with that of a particle filter using only
a discrete motion model and with that of a continuum-only
model (Table II).

C. Benefits of REACH
Our method offers realtime performance on multi-core

desktop PC and has higher accuracy than other state-of-the-
art online-tracking algorithms that use a single, homogeneous
motion algorithm to model the tracking prior.



Dataset Challenges Density Agents
NDLS-1 BV, PO, IC High 131
IITF-1 BV, PO, IC, CO High 167
IITF-3 BV, PO, IC, CO High 189
IITF-5 BV, PO, IC, CO High 71
NPLC-1 BV, PO, IC Medium 79
NPLC-3 BV, PO, IC, CO Medium 144
IITF-2 BV, PO, IC, CO Medium 68

Dataset Challenges Density Agents
IITF-4 BV, PO, IC, CO Medium 116
NDLS-2 BV, PO, IC, CO Low 72
NPLC-2 BV, PO Low 56
seq_hotel IC, PO Low 390
seq_eth BV, IC, PO Low 360
zara01 BV, IC, PO Low 148
zara02 BV, IC, PO Low 204

TABLE I: Crowd Scenes used as Benchmarks. We highlight many attributes of these pedestrian tracking datasets, along with
density and the number of number of pedestrians tracked. We use the following abbreviations about some characteristics
of the underlying scene: Background Variations (BV), Partial Occlusion (PO), Complete Occlusion (CO) and Illumination
Changes (IC)

High Density Medium Density
NDLS-1 IITF-1 IITF-3 IITF-5 NPLC-1 NPLC-3 IITF-2

ST FPS ST FPS ST FPS ST FPS ST FPS ST FPS ST FPS
Discrete (Microscopic) Model Only 60 28 70 29 51 27 68 27 71 28 69 26 40 26

Continuum (Macroscopic) Model Only 55 28 67 29 49 29 62 26 70 29 67 28 32 28
REACH (Our Hybrid Motion Model) 63 27 73 28 57 26 67 26 77 28 71 26 44 26

Medium Density Low Density
IITF-4 NDLS-2 NPLC-2 seq_hotel seq_eth zara01 zara02

ST FPS ST FPS ST FPS ST FPS ST FPS ST FPS ST FPS
Discrete (Microscopic) Model Only 58 27 72 28 75 26 254 29 268 29 61 27 63 29

Continuum (Macroscopic) Model Only 55 27 69 28 71 27 238 29 259 28 59 28 60 26
REACH (Our Hybrid Motion Model) 63 27 79 28 78 26 252 28 267 29 63 27 68 28

TABLE II: We compare the number of successful tracks (ST) and average tracking frames per second (FPS) of three motion
models: only discrete-motion model, only continuum-motion model, and our hybrid motion model. We combine each of
these with adaptive particle filtering.

LIN Boids Helbing RVO Continuum Model REACH
LD MD HD LD MD HD LD MD HD LD MD HD LD MD HD LD MD HD

MOTP 64.42% 52.82% 33.21% 67.24% 57.10% 43.14% 70.52% 61.33% 49.88% 72.19% 63.17% 51.31% 70.14% 61.32% 48.20% 73.98% 69.23% 54.29%
MOTA 49.42% 35.3% 31.37% 50.59% 26.42% 40.88% 53.28% 44.19% 33.51% 53.95% 48.81% 35.83% 52.93% 42.32% 31.29% 54.18% 50.16% 38.83%

TABLE III: We compare the MOTA and MOTP values across the density groups and the different motion models (LD is
Low Density, MD is Medium Density and HD is High Density).

High Density Medium Density Low Density
NDLS-1 IITF-1 IITF-3 IITF-5 NPLC-1 NPLC-3 IITF-2 IITF-4 NDLS-2 NPLC-2
ST IS ST IS ST IS ST IS ST IS ST IS ST IS ST IS ST IS ST IS

LIN 53 17 63 27 51 35 59 18 67 15 60 29 36 22 52 36 68 23 69 21
Boids 58 15 66 23 56 33 65 14 73 13 65 26 40 19 52 35 70 22 72 19

Helbing 56 16 66 26 52 33 62 15 74 11 68 23 41 19 59 31 75 18 72 14
LTA 54 17 65 22 51 32 60 17 68 11 62 28 42 18 54 32 69 23 70 20
RVO 57 14 69 20 53 29 64 13 71 10 64 26 42 18 53 32 72 20 74 16

Continuum (Flow-based) 55 19 67 24 49 33 62 17 70 11 67 28 32 18 55 32 69 27 71 20
MeanShift 27 32 31 38 23 52 34 29 39 36 41 31 22 33 39 45 31 28 45 28
REACH 63 12 73 19 57 27 67 10 77 7 71 20 44 16 63 28 79 17 78 14

TABLE IV: We compare the number of successful tracks (ST) and ID switches (IS) of our hybrid motion model with prior
homogeneous motion models - LIN, Boids, Helbing, LTA, RVO, a baseline mean-shift tracker and a continuum (flow-based)
model. Our hybrid motion model provides higher accuracy compared to homogeneous motion models and lesser ID switches.
These crowd datasets are publicly available at http://gamma.cs.unc.edu/RCrowdT/.

VI. LIMITATIONS, CONCLUSIONS, AND FUTURE WORK

We present a realtime algorithm for pedestrian tracking
in moderately-dense crowd videos. Our algorithm includes
a new hybrid motion model that can capture varying pedes-
trian behaviors and interactions. We have demonstrated our
algorithm’s performance on well-known benchmarks and
highlighted the improvements it offers over prior methods.

Our formulation does not, however, take into account
physiological and psychological pedestrian traits. All pedes-
trians are modeled as though they share the same sensi-
tivities and behaviors (including density preferences, age,

and gender) with all other pedestrians in the crowd. Our
algorithm also does not take into account heterogeneous
agent characteristics such as variations in personality, which
also affect overall pedestrian behavior and movement.

As part of future work, we would like to incorporate pedes-
trian personality characteristics and other characteristics from
pedestrian dynamics, such as ‘fundamental diagrams.’. We
would like to parallelize the approach on a GPU to handle
more complex pedestrian datasets in realtime. We would
also like to implement our pedestrian tracker on mobile
platforms and integrate it with various consumer-grade robots
to perform autonomous navigation.



seq_hotel seq_eth zara01 zara02
ST IS ST IS ST IS ST IS

LIN 182 92 187 58 51 27 49 27
Boids 192 78 202 59 52 27 54 26

Helbing 221 73 232 48 54 26 55 25
LTA 238 70 249 42 60 24 62 25
RVO 241 71 258 37 61 22 65 23

Continuum (Flow-based) 238 71 259 36 59 22 60 24
MeanShift 98 171 112 139 32 41 33 39
REACH 252 68 267 34 63 20 68 21

TABLE V: We compare the number of successful tracks (ST) and ID switches (IS) of our mix motion model algorithm
(MMM) with discrete motion models: LIN, Boids, Helbing, LTA, RVO, a baseline mean-shift tracker and only using a
continuum flow-based model with standard datasets - seq_hotel, seq_eth, zara01, zara02 [30].
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