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ABSTRACT

We present a trajectory extraction and behavior-learning algorithm
for data-driven crowd simulation. Our formulation is based on in-
crementally learning pedestrian motion models and behaviors from
crowd videos. We combine this learned crowd-simulation model
with an online tracker based on particle filtering to compute accu-
rate, smooth pedestrian trajectories. We refine this motion model
using an optimization technique to estimate the agents’ simula-
tion parameters. We highlight the benefits of our approach for im-
proved data-driven crowd simulation, including crowd replication
from videos and merging the behavior of pedestrians from multiple
videos. We highlight our algorithm’s performance in various test
scenarios containing tens of human-like agents.

Keywords: crowd simulation, data-driven, multiple-people track-
ing

1 INTRODUCTION

Realistic simulation of crowd behavior has many real-world appli-
cations, and as a result has been the subject of extensive research.
In computer games and animations, realistic crowd simulation en-
hances the user’s experience and perception. In applications like
safety analysis and surveillance, crowd simulation offers a model
for better understanding of behavior in crowded situations, and al-
lows researchers to model the effects of changes to the situation or
environment on crowd behaviors. The overall goal is to model the
dynamics and the variety of crowd behaviors: to represent how and
when crowd behavior changes.

In general, it is challenging to simulate realistic crowd behav-
iors.While researchers in various fields like psychology and other
social sciences have been studying and observing human behavior
for decades, behavior is still not fully understood nor predictable.
This is in part because human behaviors are governed by multiple
factors. Often, designers or animators take account of the multi-
ple behavioral factors manually, generating scene-specific behavior
rules such as events, trajectories, or interactions by hand–a tedious
and time-consuming process. In addition, the use of current sim-
ulation models (e.g. for local collision avoidance and navigation)
involve considerable tweaking or variations of simulation parame-
ters to generate the desired behaviors or trajectories. As the number
of agents and number of scenarios increase, so do the diversity of
behaviors and the number of interactions in crowds; this increase
in complexity makes the hand-adjustment process practically not
viable.

Instead of using an explicit crowd-simulation model and be-
havior rules, data-driven crowd simulation algorithms use exam-
ples generated using crowd videos or motion capture data [15, 14].
Once sufficient data on real-world crowd trajectories or behavior
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Figure 1: (a) Pedestrian tracking using a simple particle filter and
motion model. Yellow trajectories indicate some of the problems
with prior tracking results, e.g. missing or incorrect tracks (b)
Tracking using our algorithms with improved accuracy and smooth
trajectories. (c) Rendering of the pedestrian trajectories from our
data-driven crowd simulation system

data has been collected (including data on various styles of gesture,
crowd formations, and interactions between agents), these data-
driven methods can handle various scenarios without excessive hu-
man intervention.

One of the challenges with data-driven methods is related to col-
lecting the trajectory or behavior data from videos or other sen-
sor data. Advances in real-world capturing technology have re-
sulted in large databases of crowd videos (e.g. YouTube). However,
most data-driven crowd simulation systems require manual tracking
and/or annotation of environments (e.g. obstacles) and behaviors.
These techniques are time consuming, limited to small group inter-
actions, and not scalable to a large number of crowd videos. Fur-
thermore, they are limited to simple scenarios in terms of number
of agents or crowd density.

Main Results: We present a trajectory-extraction and behavior-
learning algorithm for a data-driven crowd simulation system. The
tracking and behavior results can be used to generate trajectories
for one or more pedestrians in the simulated environment. Fur-
thermore, we can combine the trajectories extracted from two or
more different videos to generate mixed data-driven crowd simula-
tion.Our algorithm uses the first few frames to automatically learn
the best parameters for each pedestrian, then to dynamically com-
pute a motion model to generate smooth and accurate trajectory for
each pedestrian.

There are many benefits and possible applications of our ap-
proach. Our tracking algorithm results in improved accuracy; it
reduces the number of id switches and lost tracks and and generates
good trajectories that can be used for data-driven simulation. More-



Figure 2: An overview of our Data-Driven Crowd Simulation System. We have a three-stage pipeline. We begin with a selection of crowd
videos from the pool of crowd videos available. Next we feed this into our tracking pipeline. We iteratively learn the motion model parameters
and use them to improve the tracking. The feedback is bidirectional; the simulation model is re-trained after a fixed number of frames. We
iteratively compare prior pedestrian state history (pedestrian position, velocity) and prior tracker inputs to refine parameters and generate
smooth trajectories. Lastly, our learned behavior and the model’s resulting trajectories are used as input to our application layer, where we
use them to replicate the crowd behaviors seen in individual source videos, or to mix agent trajectories from multiple crowd videos.

over, the trajectories our approach generates are smooth and can be
directly used in simulated environments. Our method automatically
replicates real-world crowd trajectories and behaviors, producing
crowd motion similar to that observed in real-world videos. Ad-
ditionally, our method allows for easy mixing of multiple tracking
results, which allows for modeling of more complex scenarios. We
demonstrate the performance of our approach using a database of
multiple outdoor crowd videos with tens of agents.

The rest of the paper is organized as follows. Section 2 reviews
related work in data-driven crowd simulation and tracking. Section
3 introduces our notation and terminology and gives an overview
of our approach. We give a general overview of our tracking and
learning algorithm in Section 4 and highlight some of its applica-
tions using real-world videos in Section 5.

2 RELATED WORK

In this section, we give a brief overview of the prior work on data-
driven crowd simulation and pedestrian tracking.

2.1 Data-driven Crowd Simulation
Many techniques have been proposed that attempt to fit motion-
model parameters to a given real-world video, and that attempt to
evaluate how closely they replicated the original data. Lerner et
al. [16] use density-based measures, Guy et al. [9] use entropy-
based measure for similarity, Berseth et al. [7] use performance
criteria such as minimizing time and effort, Wolinski et al. [30]
use optimization techniques to find good parameters for different
motion models. Musse et al. [19] suggest a method to learn the
intentions from tracked data. They build a desired velocity field
extrapolated from low density tracking data. Patil et al. [20] use
flow field extracted from an input video or from a sketch to direct
the virtual crowds. Li et al. [17] propose a method to populate a
virtual scene with crowds by copying and pasting small pieces of
real-world data: extracted trajectories from motion-capture data of
tens of people interacting with each other in a lab environment.

Although dealing with different applications, Zhang et al. [34]
use Extended Kalman Filtering based tracking of real humans and
overlay several simulated virtual agents in the video. Ren et al. [21]
present a path-planning algorithm for virtual agents inserted in the
real-world video by computing a density field from real crowd.

Instead of using real-world data to learn parameters for the mo-
tion models, another stream of data-driven crowd simulation tech-
niques use collection of behavior examples, such as motion capture

or manually extracted trajectories. These techniques usually require
pre-processing in order to collect, analyze, and build the motion
database. Lerner et al. [15] build a database of examples from man-
ually extracted trajectories and query the trajectory segment of each
pedestrian during the simulation time. Lee et al. [14] propose a
method to simulate group behaviors from manually extracted tra-
jectories and manually annotated behavior examples. Ju et al. [10]
further extend the technique by building a formation model from
tracked and synthesized trajectory data and using this model to syn-
thesize virtual crowd motion.

More recently, methods have been introduced that target the sim-
ulation of large-scale crowds. Kapadia et al. [11] propose a data
structure for databases that store sequences of motion. Sun et
al. [26] propose learning main and background characters in a pre-
processing stage; they use different simulation level of details based
on the classification. Torrens et al. [27] present a machine learning
scheme to train movement behavior using a combination of month-
long observed movement data (manually drawn by a trained person)
and synthetic data from agent-based simulation.

Our method can be used with these data-driven methods to re-
place the burden of manual tracking. Our method can also be used
as a standalone application which directly uses real-world crowd
data without building database of examples.

2.2 Pedestrian Tracking
In this section, we briefly review some prior work on the use of mo-
tion models in pedestrian tracking, which has been extensively stud-
ied in computer vision and image processing. We refer the reader
to some excellent surveys [31, 8, 32].

At a broad level, pedestrian tracking algorithms can be classified
as either online or offline trackers. Online trackers use only the
present or previous frames for realtime tracking. Zhang et al. [33]
propose an approach that uses non-adaptive random projections to
model the structure of the image feature space of objects, and Tyagi
et al. [28] describe a technique to track pedestrians using multiple
cameras. Offline trackers, which use data from future frames as
well as current and past data [24, 22], are not useful for interactive
applications since they require future-state information.

Many tracking algorithms use different pedestrian motion fea-
tures; these algorithms are especially useful in crowded scenes,
where pedestrians often display similar motion patterns. Song et
al. [25] propose an approach that clusters pedestrian trajectories
based on the assumption that “persons only appear/disappear at en-



try/exit.” Ali et al. [1] present a floor-field based method to de-
termine the probability of motion in densely crowded scenes. Ro-
driguez et al. [23] learn about crowd motion patterns by extract-
ing global video features from a large collection of public crowd
videos. Kratz et al. [13] and Zhao et al. [36] track pedestrians using
local motion patterns in dense-crowd videos. While here has been
work on using motion models [5, 4, 3, 18] for tracking, the qual-
ity (especially the smoothness) of the trajectories is not well suited
for data-driven crowd simulation. These methods, all well-suited
for modeling motion in dense crowds with few distinct motion pat-
terns, may not work in heterogeneous crowds.

3 OVERVIEW

We present a new data-driven technique that can be used to generate
crowd simulations based on real-world videos. Our method is built
on top of an improved multiple-people tracker. We integrate online
smoothing technique with our tracking algorithm so that we can
directly use the trajectories for interactive applications (e.g. games,
virtual environments) or animations.

One of our goals is to design a pedestrian tracking algorithm that
can be directly used for data-driven simulation of dense crowds.
Manual tracking has traditionally been used to extract pedestrian
trajectories, from which behavior models can be generated. But
manual tracking becomes increasingly difficult as the scenario
grows more complex (as in the case of large-scale crowds). Au-
tomatic tracking could be a good alternative solution, but has not so
far been plausible, since the automatic trackers cannot meet the ac-
curacy and quality demands of data-driven crowd simulation. Be-
cause of the probabilistic basis of most pedestrian tracking algo-
rithms, human-agent detection is consistently noisy and hence the
trajectories computed by current algorithms also tend to be noisy,
inaccurate and can have issues with agent orientations (see Figure
4). This leads to incorrect or low-fidelity simulation or rendering
of resulting agents in interactive applications. Even state-of-the-art
multiple-people trackers can give low accuracy in crowded scenes;
seemingly small problems, such as occlusion or changes in illumi-
nation, cause large problems in tracking, such as ID switches (when
a tracker erroneously targets another pedestrian) or loss of the track-
ing target. Even though pedestrian tracking is well studied, there are
many challenging issues that arise due to the following reasons: re-
stricted visibility due to inter-pedestrian occlusion (one pedestrian
blocking another), changes in lighting and pedestrian appearance,
and the difficulty of modeling human behavior or the intent of each
pedestrian.

We present an improved algorithm that uses recent work in
crowd simulation models [29, 30] as the underlying motion prior.
This results in improved accuracy and smoother trajectories for
data-driven crowd simulation.

3.1 Crowd Simulation Models

In Figure 2, we highlight how the motion model is used to extract
the trajectory of each moving pedestrian (Section 4.1). Further-
more, we use the results of prior tracked positions to adaptively
learn and refine the simulation parameters (Section 4.2). Once we
learn the motion model parameters, we refine our motion-model
framework to better match the trajectory of each pedestrian. Us-
ing optimization techniques, our approach uses the tracker data to
compute and then predict agent trajectories, and finally smooths the
trajectory output.

3.2 Notation and Terminology

We use the following notation in the rest of the paper:

• S represents the state (position and velocity) of an arbitrary
pedestrian as computed by the tracker.

• X represents the state (position and velocity) of an arbitrary
pedestrian inside a crowd motion model.

• m represents the “configured” motion model, and is computed
using our approach.

• bold fonts are used to represent values for all the pedestrians
in the crowd; for example S represents the states (positions
and velocities) of all pedestrians as computed by the tracker

• subscripts are used to indicate time; for example mt repre-
sents the “configured” motion model at timestep t, and St−k:t
represents all states of all agents for all successive timesteps
between t− k and t, as computed by the tracker.

The configured motion model can be specified as follows:
Xt+1 = mt(Xt) or Xt+1 = mt(Xt) to compute the motion of one
arbitrary pedestrian or all pedestrians, respectively.

Data Representation Our algorithm keeps track of the state (i.e.
position and velocity) of each pedestrian for the last k timesteps or
frames. These are referred to as the k-states of each pedestrian.
These k-states are initialized by pre-computing the states from the
first k timesteps. The k-states are updated at each timestep by re-
moving the agents’ state from the oldest frame and adding the latest
tracker-estimated state.

Motion Model is one of several independent simulation mod-
els widely used for pedestrian modeling in crowds: In our current
system, we choose RVO [29] which is a motion model for local col-
lision avoidance and navigation. We use the motion model to com-
pute the parameters that most closely resemble each agent’s past
frames. Based on an optimization approach, we first “configure”
the motion model to best match the recent k-state data; we then use
the configured motion model to make a prediction of the agent’s
next state.

The tracker is a particle-filter based tracker which uses the mo-
tion prior, obtained from the configured motion models, to estimate
the agents’ next state. This tracker also uses a confidence estimation
stage [4] that dynamically computes the number of particles.

4 MULTI-PERSON TRACKING AND LEARNING

In this section, we give an overview of our tracking and parameter
learning algorithms.

4.1 Tracking Algorithm
Though any online tracker which requires a motion-prior system
can be used, we use particle filters as our underlying tracking al-
gorithm. The particle filter is a parametric method which solves
non-Gaussian and non-linear state estimation problems [2]. Particle
filters are frequently used in object tracking, since they can recover
from lost tracks and occlusions. The particle tracker’s tracking un-
certainty is represented in a Markovian manner by only considering
information from present and past frames.

In our formulation, we use the configured motion model mt , as
well as the error Qt , in the prediction that this motion model has
generated. Additionally, the observations of our tracker can be rep-
resented by a function h() that projects the state Xt to a previously
computed state St . We denote the error between the observed states
and the ground truth as Rt . We can now phrase them formally in
terms of a standard particle filter as below:

St+1 = mt(Xt)+Qt , (1)
St = h(Xt)+Rt . (2)

Particle filtering is a Monte Carlo approximation to the optimal
Bayesian filter, which monitors the posterior probability of a first-
order Markov process:

p(Xt |St−k:t) =

α p(St |Xt)
∫

Xt−1

p(Xt |Xt−1)p(Xt−1|St−k:t−1)dXt−1,
(3)



where Xt is the process state at time t, St is the observation, St−k:t
is all of the observations through time t, p(Xt |Xt−1) is the pro-
cess dynamical distribution, p(St ,Xt) is the observation likelihood
distribution, and α is the normalization factor. Since the integral
does not have a closed-form solution in most cases, particle fil-
tering approximates the integration using a set of weighted sam-
ples X (i)

t ,π
(i)
t i=1,...,n, where X (i)

t is an instantiation of the process

state (known as a particle), and π
(i)
t ’s are the corresponding particle

weights. With this representation, the Monte Carlo approximation
to the Bayesian filtering equation is

p(Xt |St−k:t)≈ α p(St |Xt)
n

∑
i=1

π
(i)
t−1 p(X (i)

t )p(X (i)
t−1), (4)

where n refers to the number of particles.
In our formulation, we use the motion model, mt , to infer dy-

namic transition, p(Xt |Xt−1), for particle filtering.

4.1.1 Motion Model

The simple motion models assume that agents will ignore any in-
teractions with other pedestrians, and will instead follow “constant-
speed” or “constant-acceleration” paths to their immediate desti-
nations. However, the accuracy of this assumption decreases as
crowd density in the environment increases (e.g. to 2-4 pedestrians
per square meter). More sophisticated pedestrian motion models,
such as RVO and Social Forces, can better model these interactions
among pedestrians; they are formulated either in terms of attrac-
tive/repulsive forces or collision-avoidance constraints. In our ap-
proach we use RVO as the underlying motion model, as it can be
more accurate for dense scenarios. Specifically, we use the ORCA
algorithm [29] and the following parameters P and their initial val-
ues.

RVO Parameters min max mean
comfort speed (m/s) 1 2 1.5
neighbor distance (m) 2 20 11
radius (m) 0.2 0.8 0.5
agent time horizon (s) 0.1 5 2
obstacle time horizon (s) 0.1 5 2

Given each agent’s state at a certain timestep, RVO computes
a collision-free state for the next timestep. Each agent is repre-
sented as a 2D circle in the plane, and the parameters (used for
optimization) for each agent consist of the representative circle’s
radius, maximum speed, neighbor distance, and time horizon (only
future collisions within this time horizon are considered for local
interactions).

Let Vpre f be the preferred velocity for a pedestrian that is based
on the immediate goal location. The RVO formulation takes into
account the position and velocity of each neighboring pedestrian to
compute the new velocity. The velocity of the neighbors is used to
formulate the ORCA constraints for local collision avoidance [29].
The computation of the new velocity is solved using linear pro-
gramming for each pedestrian. If an agent’s preferred velocity is
not allowed due to the ORCA constraints, that agent chooses the
closest velocity that lies in the feasible region:

VRVO = argmax
V /∈ORCA

‖V −Vpre f ‖. (5)

More details and mathematical formulations of the ORCA con-
straints are given in [29].

Formally, at any timestep t, we define the agents’ (k+1)-states
(as computed by the tracker) St−k:t :

St−k:t =
t⋃

i=t−k

Si. (6)

Similarly, a motion model’s corresponding computed agents’
states f (St−k:t ,P) can be defined as:

f (St−k:t ,P) =
t⋃

i=t−k

f (Xi,G,P), (7)

which are initialized with Xt−k = St−k and G = St , where f returns
the states obtained with the admissible velocity that is closest to the
preferred velocity.

At timestep t, considering the agents’ k-states St−k:t , computed
states f (St−k:t ,P) and a user-defined error metric error(), our algo-
rithm computes:

Popt, f
t = argmin

P
error( f (St−k:t ,P),St−k:t), (8)

where Popt, f
t is the parameter set which, at timestep t, results in the

closest match between the states computed by the motion algorithm
f and the agents’ k-states.

Consequently, the best (as per the error in the error() metric it-
self) prediction for the agents’ next state is obtained from the un-
configured motion model for timestep t +1 is:

Xt+1 = m(St). (9)

In our case, we have chosen an error metric that simply com-
putes the average 2-norm between the observed agent positions and
the tracker-computed positions. This metric is well adapted to our
problem, as the number of considered past frames k is relatively
small (around 10). We analyze the impact of larger values of k on
the accuracy and running time in Section 4.1.1. This means that it is
difficult for the simulated agents to stray too far from the observed
trajectories, so this metric can be effectively used to compare the
observed and computed trajectories. Formally, this metric is de-
fined at timestep t as follows:

error =
t

∑
i=t−k

‖Si−Xi‖. (10)

4.2 Incremental Parameter Learning
Motion models usually have several parameters that can be tuned in
order to change the agents’ behaviors. We assume that each param-
eter can have a different value for each pedestrian. By changing the
value of these parameters, we get some variation in the resulting tra-
jectory prediction algorithm. We use P to denote all the parameters
of all the pedestrians. In our formulation, we denote the resulting
parameterized motion model as

Xt+1 = f (Xt ,G,P). (11)

Bera et al. [6] had done an extensive study on different optimiza-
tion techniques but in this paper we use genetic algorithm as the
underlying parameter-learning technique, as this algorithm offers
the best compromise between learning results and speed.

pop← initialize(P) while true do
selection(pop) if termination(P, I) then

stop
end
pop← reproduction(pop)

end



• initialize(P): RVO parameters P (refer table in Section 4.1.1)
are randomly initialized in accordance with the mean distri-
bution for each parameter.

• selection(): Pedestrians are matched using Equation ( 10) and
divided into 3 groups (Best, Middle and Worst) depending on
how well they match the input trajectory.

• termination(P, I): The algorithm is terminated if there is very
little or no improvement in the optimization value after I iter-
ations.

• reproduction(): based on which group it belongs to, a param-
eter set is attributed three probabilities: α , β and γ . For each
parameter of this individual, α decides if the value is changed
or not, β decides if the value is changed by crossover or mu-
tation and, finally, γ decides which type of mutation is done.

• crossover: a crossover is performed by copying a value from
an individual belonging to the Best group.

• mutation: a mutation is performed by picking a new value at
random based on either the base distribution or the current real
distribution of an individual from the Best group (according
to γ).

At each iteration, this algorithm evaluates and ranks all possible
parameter sets (solutions). If there is no significant improvement
after a certain number of iterations, the process is terminated.

4.3 Smooth Trajectories
Most pedestrian-tracking algorithms are probabilistic. As a result,
they are inherently noisy, and can generate noisy trajectories (see
Fig. 4). However, our method uses an improved crowd motion
motion for local interaction, navigation and collision-free motion,
and the underlying smoothness of RVO-based motion model en-
sures that the agents exhibit no oscillatory behaviors. And unlike
prior RVO-based tracking approach [4], our method also uses an
optimization scheme to incrementally learn the pedestrian param-
eters and use them to refine the trajectories, which also results in
smoother trajectories than do prior methods. (see Fig. 4).

Figure 3: Our online trajectory-smoothing pipeline. We compare a
short history of previous and the present pedestrian computed and
simulated states; after normalizing the difference, we compare it
with a threshold value. If the difference is high, we compute new
parameters using the optimization algorithm, then re-compute the
state.

5 RESULTS

In this section we apply our tracking and parameter-learning al-
gorithms for data-driven crowd simulation. We demonstrate their
performance for crowd replication as well as a few applications.

5.1 Applications
We use our improved tracking algorithm for two applications:
crowd replication and mixing crowd streams.

5.1.1 Crowd Replication
One important application of data-driven crowd simulation is crowd
replication. The goal is to faithfully reproduce real human crowd
trajectories or movements using virtual characters in a simulation.

Figure 6: Mixing Crowd Streams: The agents on the brown (left)
and blue (central) floors exhibit varied behaviors, generated from
different videos. The final mixed video (green floor) has behaviors
combined from both the video streams. Pedestrians marked with
brown are from the left video, and those marked blue are from the
central video. The overall mixing algorithm uses the two sets of ex-
tracted trajectories and performs local collision avoidance between
them.

Crowd replication is used extensively in movies and games, but in
almost all cases, the pedestrian trajectories are either drawn manu-
ally or the tracked data is subject to extensive post-production work
to make it usable.

Some of the problems which beset pedestrian-tracking algo-
rithms include trajectory noise, incorrect pedestrian orientation
(pedestrian orientation is computed using past states but due to
noise, this computation can be incorrect leading to frequent orien-
tation changes), and ID switches; our algorithm produces smooth
trajectories (which also resolves orientation issues), and displays
fewer ID switches and higher accuracy overall.

We feed the smooth trajectories from our pipeline to Golaem, a
commercially available crowd-rendering platform.

5.1.2 Mixing Crowd Streams
Another application is to combine the pedestrian trajectories ex-
tracted from two or more different videos. Each video may only
capture some aspects of crowd behavior, and we want to combine
them for an application. In this case, our mixing algorithm takes as
input the smooth trajectories extracted by our algorithm from two
videos (those shown on the left and middle figures in Fig. 6). The
mixing algorithm [35] uses the two sets of extracted trajectories and
performs a simple local collision avoidance between them.

5.2 Analysis
We first show a quantitative and qualitative analysis of our method
on four different real crowd videos (See Fig. 8). We highlight the
application to crowd replication (See Fig. 5) using the extracted tra-
jectories. Finally, we show mixing trajectories from multiple videos
and creating more complex scenarios (See Fig. 7).



Figure 4: Noisy vs. Smooth trajectories: The red trajectories were tracked using LIN (constant velocity) as the motion model and the blue
trajectories are results from prior tracking algorithm using RVO [4]. We display the improved trajectories extracted by our algorithm in green,
which are smoother. Our motion model iteratively refines pedestrian behavior and produces smooth trajectories. The blue circles highlight
the improvement using our method. (For clarity, these trajectories are just a cropped section of the entire scene.)

Figure 5: Replicated Crowds. We improve the quality of the rendered crowd behaviors by adding an online smoothing step to the tracker. (a)
to (d) show the replicated crowds rendered directly using the tracking results without any pre-processing; these correspond to each benchmark
video.

(a) Pedestrian trajectories extracted from two different videos

(b) Mixed trajectories
Figure 7: Mixing trajectories from multiple input videos. We can use multiple videos as inputs to a single, more complex scenario. In the
left two videos of (a), pedestrians move in an image-space from bottom to top or from top to bottom. In the right two videos of (a), pedestrians
move in a uniform direction: right to left in a slightly tilted way in the image-space. There are, therefore, three different main directions of
pedestrian movements. (b) Using these trajectories with agent-based simulation methods, we can generate crowds with these three different
flows, while still achieving local collision avoidance between the agents.



(a) Crossing (b) Manko28 (c) Dawei (d) Manko
Figure 8: Comparison of improved tracking (our method, above) to prior methods based on particle filter + LIN (below). We compare
the quality of the extracted trajectories on four different real crowd videos. As compared to prior methods, our approach results in smoother
trajectories and improved accuracy for each benchmark. Our method runs at interactive rates (24-26fps)

Dataset Characteristics Density Agents
Crossing BV, PO, IC Medium 34
Dawei BV, PO, IC, CO Medium 72
Manko BV, PO, IC, CO High 81
Manko28 BV, PO, IC Low 16

Table 1: We highlight the number of human-like agents and many
other characteristics of crowds in these video datasets. In partic-
ular, handling partial or complete occlusion can be challenging for
manual or automatic trajectory computation algorithms. We use the
following abbreviations about the underlying scene: Background
Variations(BV), Partial Occlusion(PO), Complete Occlusion(CO),
Illumination Changes(IC)

We tested these algorithms on an Intel c©Haswell, Coreri7-
4771 Processor (8 Cores) with an 8MB Cache, 3.90 GHz and
Intel c©HD Graphics 4600. Our algorithm is implemented in C++,
and some components use OpenMP and OpenCL to exploit multi-
ple cores. We adopted an agent-level parallelism: individual pedes-
trian computations are distributed across the CPU cores (except for
the motion-model computations, where pedestrian behavior is in-
terlinked and tasks are highly sequential).

5.2.1 Quantitative Comparison

We use the CLEAR MOT [12] evaluation metrics to analyze the
performance of our crowd-tracking algorithms. We use the MOTP
and the MOTA metrics. MOTP evaluates the alignment of tracks
with the ground truth while MOTA produces a score based on the
amount of false positives, missed detections, and identity switches.
These metrics are considered standard for evaluation for detection
and tracking algorithms in computer vision.

We begin by analyzing the performance of our tracking algo-
rithm. We use four publicly available crowd videos: Crossing,
Dawei, Manko and Manko28. These videos have medium-density
crowd with varying pedestrian and crowd behaviors. Table 1 high-
lights some of the challenging characteristics with respect to these
videos as well as crowd densities. We analyze the MOTA and
MOTP metrics across the density groups and the different motion
models (Table 2). We also analyze how varying k affects perfor-
mance and accuracy. We see that (Refer Equation 8) as k increases,
it adversely affects our runtime performance with a negligible gain
in accuracy after k = 10.

Crossing Dawei Manko Manko28

LIN MOTP 67.3% 70.1% 71.6% 68.9%
MOTA 48.0% 39.8% 50.1% 47.2%

Our
Approach

MOTP 71.9% 73.1% 77.9% 74.5%
MOTA 51.9% 55.3% 59.0% 57.1%

Table 2: We compare the MOTA and MOTP for the different video
datasets.

k = 5 k = 10 k = 15 k = 20
ST% FPS ST% FPS ST% FPS ST% FPS

Crossing 69.8 30 71.9 27 71.9 19 71.9 8
Dawei 71.8 31 73.1 28 73.2 20 73.2 7
Manko 76.1 29 77.9 26 77.9 18 78.0 7
Manko28 73.8 28 74.5 26 74.6 19 74.6 7

Table 3: We compare the percentage of successful tracks (ST) and
average tracking frames per second (FPS) of our approach at differ-
ent values of k. We find that the most optimal value for k while still
maintaining reatime performance is 10

5.2.2 Qualitative Comparison

We show that our smoothing algorithm results in improved trajec-
tories for data-driven crowd simulation. In Fig. 8, we can see that
the trajectories in the figures in the top row are much smoother than
those denoted by the figures in the bottom row. By adding an online
smoothing step to our tracker, we improve several common render-
ing problems: The noisy trajectories that produce jittery motions
also tend to change the agent orientation, which causes problems for
data-driven crowd simulation and rendering systems. Fig. 5 shows
snapshots of the crowds replicated directly using the tracking re-
sults. In the supplementary video, each agent’s smooth trajectory
motion can be observed.

5.2.3 Complex Scenarios

We can use multiple videos as inputs to a single, more complex
scenario. Fig. 7 shows snapshots of an example mixed-trajectory
scenario. Fig. 7 (a) shows two video inputs from different parts of
a shopping mall, each with a different pedestrian flow. In the left
two video frames, shown in Fig. 8(a), pedestrians move bottom to
top or vice versa. In the right two videos of (a), pedestrians move
uniformly from right to left on a slight diagonal in the image-space.
As results, there are three different main directions of pedestrian
movements. By combining these trajectories with agent-based sim-



ulation methods, we can generate crowds that retain these three dif-
ferent flows and still achieve local collision avoidance between the
agents (See Fig. 7).

6 CONCLUSION, LIMITATIONS AND FUTURE WORK

We present an improved, more accurate pedestrian tracking algo-
rithms for data-driven crowd simulation. Our approach improves
on existing tracking algorithms by integrating with an RVO based
multi-agent motion model; it iteratively learns crowd behavior us-
ing an optimization strategy, which improves the smoothness and
accuracy of the resulting tracker and final simulations. We can thus
simultaneously improve accuracy and produce smoother trajecto-
ries. We demonstrate the benefits of these improvements on real
videos in two applications, crowd replication and crowd mixing.

Our approach has some limitations. For videos without camera
information about perspective transforms, our method does not per-
form well, because those properties must be manually estimated, a
process that is susceptible to errors. Errors in the motion model
computation itself can impact accuracy. In practice, the perfor-
mance of our algorithm can based on various attributes of the video
stream like crowd density, video quality etc.

There are many avenues for future work. We would like to eval-
uate our approach on other crowd scenarios that have different con-
ditions, such as varying density or illumination. Our ultimate goal
is to develop a system that can automatically extract the trajectories
or behaviors from crowd videos such as the free, publicly-available,
and enormous YouTube database. The performance of our approach
can be further improved by exploiting the parallel capabilities of
current systems to maximize data parallelism. Finally, we would
like to explore techniques that can combine data-driven crowd sim-
ulation algorithms with local navigation models.
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