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Abstract— We present a novel real-time algorithm to predict the
path of pedestrians in cluttered environments. Our approach
makes no assumption about pedestrian motion or crowd density,
and is useful for short-term as well as long-term prediction.
We interactively learn the characteristics of pedestrian motion
and movement patterns from 2D trajectories using Bayesian
inference. These include local movement patterns corresponding
to the current and preferred velocities and global characteristics
such as entry points and movement features. Our approach
involves no precomputation and we demonstrate the real-time
performance of our prediction algorithm on sparse and noisy
trajectory data extracted from dense indoor and outdoor crowd
videos. The combination of local and global movement patterns
can improve the accuracy of long-term prediction by 12-18%
over prior methods in high-density videos.

I. INTRODUCTION

The problems of video-based pedestrian detection and path
prediction have received considerable attention in robotics,
intelligent vehicles, and video surveillance. As mobile robots
are increasingly used for service tasks, it is important for
these robots to perceive the intent and trajectory of hu-
mans for collaborative collision avoidance. In the context of
(semi)autonomous driving, it is important to compute precise
estimates of the current and future positions of each pedes-
trian with respect to the moving vehicle for collision-free
navigation. In computer vision and multimedia applications,
pedestrian movement detection and prediction is used for
detecting abnormal activities or behaviors.

Pedestrian path prediction from videos or other sensor data
is regarded as a challenging problem. In general, pedes-
trians have varying behaviors and can change their speed
to avoid collisions with the obstacles in the scene and
other pedestrians. In high density or crowded scenarios, the
pairwise interactions between the pedestrians tend to increase
significantly. As a result, the highly dynamic nature of
pedestrian movement makes it hard to estimate their current
or future positions. Furthermore, many applications need
real-time prediction capabilities to estimate the positions of
large number of pedestrians in a short time.

Some of the commonly used algorithms for predicting the
path of pedestrians are based on tracking filters. These
include Kalman filter, particle filter, and their variants. Other
approaches are based on hidden Markov models. Many
of these trackers also use motion models for pedestrian
movement to improve the prediction accuracy. The simplest
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Fig. 1: Improved Prediction We demonstrate the im-
proved accuracy of our pedestrian path prediction algorithm
(GLMP) over prior real-time prediction algorithms (BRVO,
Const Vel, Const Accel) and compare them with the ground
truth. We observe upto 18% improvement in accuracy.

motion models are based on constant velocity or constant
acceleration assumptions [7]. Other algorithms are based on
sophisticated motion models based on social forces [12],
reciprocal velocity obstacles [28], dynamic social behaviors
[24], etc. to model pairwise interactions between the pedestri-
ans, or combine Bayesian statistical inference with velocity-
space reasoning [14] for computing individualized motion
model for each pedestrian. In practice, all these methods only
capture local interactions and movements, which are mostly
useful for short-term deviations from goal-directed paths.
However, they may not work well in dense situations where
the pedestrians make frequent stops or long-term predictions.

Main Results: In this paper, we present a novel algorithm
to learn pedestrian local and global movement patterns
from sparse 2D pedestrian trajectory data using Bayesian
Inference. Our approach is general, makes no assumption
about pedestrian movement or density, and performs no pre-
computation. We use the trajectory data information over a
sequence of frames to predict the future pedestrian states
using Ensemble Kalman Filters (EnKF) and Expectation
Maximization (EM). The state information is used to com-
pute movement-flow information of individual pedestrians
and coherent pedestrian clusters using a mixture of motion
models. The global movement features are combined with
local motion patterns computed using Bayesian reciprocal
velocity obstacles to compute the predicted state of each
pedestrian. The combination of Global and Local Movement
Patterns (i.e. GLMP) corresponds to computing dynamically
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Fig. 2: We highlight various components of our real pedestrian path prediction algorithm. Our approach computes both local
and global movement patterns using Bayesian inference from 2D trajectory data and combines them to improve prediction
accuracy.

varying individualized motion model for each pedestrian.
Overall, our approach offers the following benefits:

• Our algorithm is general and can compute global and
local movement patterns in real-time with no prior
learning.

• We can robustly handle sparse and noisy trajectory data
generated using current online pedestrian trackers.

• We observe upto 18% increase in prediction accuracy
as compared to prior real-time methods that are based
on simple filters or only local movement patterns.

We highlight the performance of GLMP to predict the posi-
tions of pedestrians using trajectory data extracted from a va-
riety of video datasets consisting of 30-400 pedestrians. Our
approach can predict the positions of tens of pedestrians in
around 40-50 milliseconds over long-intervals. Furthermore,
we demonstrate its benefits over prior real-time prediction
algorithms.

The rest of our paper is organized as follows. Section II gives
a brief overview of prior work in pedestrian path prediction,
tracking, and motion models. We present our movement
flow learning algorithm in Section III and use that for path
prediction. We highlight its performance on different crowd
video datasets in Section IV and compare its performance
with prior methods.

II. RELATED WORK

In this section, we give a brief overview of prior work on
motion models and pedestrian path prediction.

A. Pedestrian-Tracking with Motion Models

Prior work in pedestrian tracking [6], [15] attempts to im-
prove tracking accuracy by making simple assumptions about
pedestrian movement, such as constant velocity and constant
acceleration. In recent years, long-term motion models and
pairwise interaction rules have been combined with tracking

to improve the accuracy. Liao et al. [18] extract a Voronoi
graph from the environment and predict people’s motion
along the edges. Many techniques have been proposed for
short-term prediction using motion models. Luber et al. [19]
apply Helbing’s social force model to track people using a
Kalman-filter based tracker. Mehran et al. [21] also apply
the social force model to detect people’s abnormal behaviors
from video. Pellegrini et al. [24] use an energy function
to build up a goal-directed short-term collision-avoidance
motion model. Bera et al. [4], [5], [2] use reciprocal velocity
obstacles and hybrid motion models to improve the accuracy
of pedestrian tracking.

B. Path Prediction and Robot Navigation

Robots navigating in complex, noisy, dynamic environments
have prompted the development of other forms of trajectory
prediction. Fulgenzi et al. [10] use a probabilistic velocity-
obstacle approach combined with the dynamic occupancy
grid; this method assumes constant linear velocity motion
of the obstacles. DuToit et al. [8] present a robot planning
framework that takes into account pedestrians’ anticipated
future location information to reduce the uncertainty of the
predicted belief states. Other techniques use potential-based
approaches for robot path planning in dynamic environments
[25]. Some methods learn the trajectories from collected data.
Ziebart et al. [30] use pedestrian trajectories collected in the
environment for prediction using Hidden Markov Models.
Bennewitz et al. [1] apply Expectation Maximization clus-
tering to learn typical motion patterns from pedestrian trajec-
tories, before using Hidden Markov Models to predict future
pedestrian motion. Henry et al. [13] use reinforced learning
from example traces, estimating pedestrian density and flow
with a Gaussian process. Kretzschmar et al. [16] consider
pedestrian trajectories as a mixture probability distribution
of a discrete as well as a continuous distribution and then
use Hamiltonian Markov chain Monte Carlo sampling for
prediction. Kuderer et al. [17] use maximum entropy based
learning to learn pedestrian trajectories and use a hierarchical



optimization scheme to predict future trajectories. Many of
these methods involve a priori learning, and may not work
in new or unknown environments.

Trautman et al. [27] have developed a probabilistic predictive
model of cooperative collision avoidance and goal-oriented
behavior for robot navigation in dense crowds. Guzzi et al.
[11] present a distributed method for multi-robot human like
local navigation. Variations of the Bayesian filters for pedes-
trian path prediction have been studied in [26], [22]. Some
of these methods are not suitable for real-time applications
or may not work well for dense crowds.

III. REAL-TIME PEDESTRIAN PATH PREDICTION

In this section, we present our real-time algorithm that learns
movement flows from real-world pedestrian 2D trajectories
that are extracted from video. Our approach involves no pre-
computation or learning, and can be combined with real-time
pedestrian trackers.

Fig. 2 gives an overview of our approach, including com-
putation of movement flows and using them for pedestrian
prediction. The input to our method consists of a live
or streaming crowd video. We extract the initial set of
trajectories using an online particle-filter based pedestrian
tracker. These trajectories are time-series observations of
the positions of each pedestrian in the crowd. The various
components used in our algorithm are shown in the figure
and explained below. The output is the predicted state of
each agent that is based on learning the local and global
pedestrian motion patterns.

A. Pedestrian State Estimation

We first define specific terminology used in the paper. We
use the term pedestrian to refer to independent individuals or
agents in a crowd. We use the notion of state to specify the
trajectory characteristics of each pedestrian. We assume that
the output of the tracker corresponds to discrete 2D positions.
Therefore, our state vector, represented using the symbol x ∈
R6, consists of components that describe the pedestrian’s
movements on a 2D plane:

x = [p vc vpref ]T, (1)

where p is the pedestrian’s position, vc is its current velocity,
and vpref is the preferred velocity on a 2D plane. The
preferred velocity corresponds to the predicted velocity that a
pedestrian would take to achieve its intermediate goal if there
were no other pedestrians or obstacles in the scene. We use
the symbol S to denote the current state of the environment,
which corresponds to the state of all other pedestrians and
the current position of the obstacles in the scene. The state
of the crowd, which consists of individual pedestrians, is a
union of the set of each pedestrian’s state X =

⋃
i xi, where

subscript i denotes the ith pedestrian.

The trajectories extracted from a real-world video tend to
be noisy and may have incomplete tracks [9]; thus, we use

Fig. 4: Global vs Local Movement Patterns The blue
trajectories indicate prior tracked data. The red dots indicate
local predicted patterns retrieved from learning macro and
microscopic simulation models, The shaded (green-blue)
path represent the global movement patterns learned from
the path data in that cluster

Bayesian-inference technique to compensate for any errors
and to compute the state of each pedestrian [14]. At each time
step, the observation of a pedestrian computed by a tracking
algorithm corresponds to the position of each pedestrian on
the 2D plane, denoted as zt ∈ R2. The observation function
h() provides zt of each pedestrian’s true state x̂t with sensor
error r ∈ R2, which is assumed to follow a zero-mean
Gaussian distribution with covariance Σr:

zt = h(x̂t) + r, r ∼ N (0,Σr). (2)

h() is the tracking sensor output.

We use the notion of a state-transition model f() which is an
approximation of true real-world pedestrian dynamics with
prediction error q ∈ R6, which is represented as a zero-mean
Gaussian distribution with covariance Σq:

xt+1 = f(xt) + q, q ∼ N (0,Σq). (3)

We can use any local navigation algorithm or motion model
for function f(), which computes the local collision-free
paths for the pedestrians in the scene. More details are
given below. Our algorithm uses an Ensemble Kalman Filter
(EnKF) and Expectation Maximization (EM) with the ob-
servation model h() and the state transition model f() to
estimate the most likely state x of each pedestrian [14].
In particular, EnKF predicts the next state based on the
transition model and the covariance matrix Σq and updates
them whenever a new observation is available. The EM
step computes Σq to maximize the likelihood of the state
estimation.

Pedestrian Clusters Our approach is targeted towards com-
puting the movement flows of pedestrians in dense settings.
It is not uncommon for some nearby pedestrians to have
similar flows. As a result, we compute clusters of pedestrians
in a crowd based their positions, velocity, inter-pedestrian
distance, orientations, etc. In particular, we use a bottom-up
hierarchical clustering approach, as they tend to work better
for small clusters. Initially, we assign each pedestrian to a



Fig. 3: Prediction Outputs We test our approach on a variety of crowd datasets with varying density. Our approach had a
benefit of upto 18% better prediction at a 5 second time horizon for some high-density datasets. Yellow lines represent past
tracked trajectories whereas the red dots represent predicted motion.

separate cluster that consists of a single pedestrian. Next,
we merge these clusters based on computing the distance
between various features highlighted above.

Our approach is based on group-expand procedure [20] and
we include many pedestrian movement related features to
compute the clusters. We compute a connectivity graph
among the pedestrians and measure the graph density based
on intra-cluster proximity [5]. Eventually, we use a macro-
scopic model to estimate the movement of each cluster and
use this model to predict their global movement.

B. Global Movement Pattern

A key aspect of our approach is to compute global move-
ment patterns that can be used to predict the state of each
pedestrian. These movement patterns describe the trajectory-
level motion or behavior at a certain position at time frame t.
The patterns include the movement of the pedestrian during
the past w frames, which we call time window, and the
intended direction of the movement (preferred velocity) at
this position.

In our formulation, we represent each movement feature
vector as a six-dimensional vector:

b = [p vavg vpref ]T , (4)

where p, vavg, and vpref are each two-dimensional vectors
representing the current position, average velocity during
past w frames, and estimated preferred velocity computed as
part of state estimation, respectively. vavg can be computed
from (pt − pt−w)/w ∗ dt, where dt is the time step.

We use the notion of average velocity over the last w frames
as that provides a better estimate of pedestrian movement.
In a dense setting, some pedestrians may suddenly stop
or change their local directions as they interact with other
pedestrians. As a result, the duration of the time window, w,
is set based on the characteristics of a scene. If we use small
time windows, the movement flows will be able to capture
the details in dynamically changing scenes. On the other
hand, larger time windows tend to smooth out abrupt changes
in pedestrian motion and are more suitable for scenes that
have little change in pedestrians’ movement.

At every w steps, we compute the new trajectory features for
each pedestrian in the scene, using Equation 4. Moreover,
we group the similar features and find K most common
trajectory patterns, which we call global movement patterns.
We use recently observed behavior features to learn the time-
varying movement flow. This set of K global movement
patterns B = {B1, B2, ..., BK} is computed as follows:

argmin
B

K∑
k=1

∑
bi∈Bk

dist(bi, µk), (5)

where bi is a movement feature vector, µk is a centroid of
each flow movement pattern, and dist(bi, µk) is a distance
measure between the arguments. In our case, the distance
between two feature vectors is computed as

dist(bi, bj) = c1 ‖pi − pj‖
+ c2

∥∥(pi − vavg
i w dt)− (pj − vavg

j w dt)
∥∥

+ c3

∥∥∥(pi + vpref
i w dt)− (pj − vpref

j w dt)
∥∥∥ , (6)

which corresponds to the weighted sum of the distance
among three points: current positions, previous positions and
estimated future positions that are extrapolated using vpref ,
c1, c2, and c3 as the weight values. Comparing the distance
between the positions rather than mixing the points and the
vectors eliminates the need to normalize or standardize the
data. We use the movement feature of the cluster to compute
the predicted state at time t, Sg

t .

C. Local Movement Pattern

During each frame, some of the pedestrians are modeled
as discrete agents, while the clusters are treated using
macroscopic techniques. Based on the observations and state
information, we estimate the motion model for these discrete
agents and pedestrian clusters. For each individual pedestrian
represented as a discrete agent, we compute the motion
model that best fits its position as tracked over recent frames
i.e. we compute the features per-agent and predict motion
patterns locally. We choose the “best” local motion model
from a fixed set of choices. The common choices are based
on social forces, reciprocal velocity obstacles or Boids. In our
case, the “best” motion model is the one that most accurately
matches the immediate past states based on a given error



metric. This “best” motion model is computed using a local
optimization algorithm [3], which automatically finds the
motion model parameters that minimize that error metric.

A motion model (microscopic or macroscopic) is defined as
an algorithm f (defined in Equation 3) that starts with a
collection of agent states Xt, and computes the new states
Xt+1 for these agents. It represents their motion over a
timestep towards the agents’ immediate goals G:

Xt+1 = f(Xt,G,P), (7)

where P denotes the individual pedestrian parameters. For-
mally, at any timestep t, we define the agents’ (k+1)-states
(as computed by the tracker and state estimation) St−k:t:

St−k:t =

t⋃
i=t−k

Si. (8)

Similarly, the motion model corresponding to computed
agents’ state f(St−k:t,P) can be defined as:

f(St−k:t,P) =

t⋃
i=t−k

f(Xi,G,P), (9)

initialized with Xt−k = St−k and G = St. At timestep
t, considering the agents’ k-states St−k:t, computed states
f(St−k:t,P) and a user-defined error metric error(), our
algorithm computes:

Popt,f
t = argmin

P
error(f(St−k:t,P),St−k:t), (10)

where Popt,f
t is the parameter set which, at timestep t, results

in the closest match between the states computed by the
motion algorithm f and the agents’ k-states.

D. Prediction Output

For every pedestrian, we compute both the global and local
movement patterns separately. In practice, we observed that
for lower density scenarios, local movement patterns are
more useful than global patterns and vice-versa. Our final
predicted state is a weighted average of the individual
predicted states generate from the local and global patterns
as:

Sp
t = (1− w) ∗ Sl

t + w ∗ Sg
t , (11)

where Sp
t is the final predicted state at time t, Sl

t is the
state predicted from the local patterns and the Sg

t is the
state predicted from global patterns or from the movement
flows. As a general rule of thumb, w varies from 0 to 1
and is computed based on the pedestrian density. We use a
larger weight for higher density. In order to perform long-
term predictions (5-6 seconds or even longer), we tend to
increase w as the global movement patterns provide better
estimates for pedestrian position.

Fig. 5: Improved Prediction We demonstrate the im-
proved accuracy of our pedestrian path prediction algorithm
(GLMP) over prior real-time prediction algorithms (BRVO,
Const Vel, Const Accel).

IV. ANALYSIS

In this section, we highlight the prediction results using
GLMP algorithm and compare its performance with prior
method. We have applied it to the 2D trajectories generated
from different crowd videos and compared the prediction
accuracy with the ground truth data, that was also generated
using a pedestrian tracker. The underlying crowd videos
have different pedestrian density corresponding to low (i.e.
less than 1 pedestrian per squared meter), medium (1-
2 pedestrians per squared meter), and high (more than 2
pedestrians per squared meter). We highlight the datasets,
their crowd characteristics, and the prediction accuracy of
different real-time algorithms for short-term and long-term
prediction in Table 1. We also analyze the accuracy of our
appraoch based on varying the pedestrian density (Fig. 7)
and the frame sampling rate (Fig. 8). The performance of the
method with noisy data (i.e sensor noise) is also analyzed.
Finally, we perform a qualitative and quantitative comparison
to other real-time pedestrian path prediction algorithms.

We include comparisons to constant velocity (ConstVeloc-
ity) and constant acceleration (ConstAccel) motion models,
which are widely used for pedestrian tracking and prediction
in robotics and computer vision [7]. We also compare the
accuracy with recent methods that use more sophisticated
motion models (LTA and ATTR) to compute local movement
patterns [24], [29]. Finally, we also compare the accuracy
with the Bayesian reciprocal velocity obstacle (BRVO) al-
gorithm [14] that computes a more individualized motion
model for estimating local movement patterns.

A. Noisy Data

Sensor noise is an important concern in pedestrian prediction
algorithms. In order to evaluate the impact of noise, we add
synthetic noise to the datasets and compare the performance
of GLMP vs. other algorithms on these benchmarks: IITF [4],
ETH and Campus [23] datasets.



ConstVelocity Kalman Filter BRVO GLMPDataset Challenges Density # Tracked 1 sec 5 secs 1 sec 5 secs 1 sec 5 secs 1 sec 5 secs
NDLS-1 BV, PO, IC High 131 55.3% 32.0% 53.1% 37.9% 56.5% 42.0% 60.2% 51.2%
IITF-1 BV, PO, IC, CO High 167 63.5% 33.4% 63.9% 39.1% 65.3% 41.8% 71.2% 50.5%
IITF-3 BV, PO, IC, CO High 189 61.1% 29.1% 63.6% 31.0% 67.6% 37.5% 68.4% 45.7%
IITF-5 BV, PO, IC, CO High 71 59.2% 28.8% 61.7% 29.1% 62.9% 30.1% 64.6% 40.0%

NPLC-1 BV, PO, IC Medium 79 76.1% 63.9% 78.2% 65.8% 79.9% 69.0% 82.3% 72.5%
NPLC-3 BV, PO, IC, CO Medium 144 77.9% 70.1% 79.1% 71.9% 80.8% 74.4% 84.3% 78.1%
Students BV, IC, PO Medium 65 65.0% 58.2% 66.9% 61.0% 69.1% 63.6% 72.2% 66.8%
Campus BV, IC, PO Medium 78 62.4% 57.1% 63.5% 59.0% 66.4% 59.1% 69.6% 59.5%
seq hotel IC, PO Low 390 74.7% 67.8% 76.7% 68.3% 76.9% 69.2% 79.5% 70.1%

Street IC, PO Low 34 78.1% 70.9% 78.9% 71.0% 81.4% 71.2% 83.8% 72.7%
TABLE I: Crowd Scene Benchmarks: We highlight many attributes of these crowd videos, including density and the number
of tracked pedestrians. We use the following abbreviations about some characteristics of the underlying scene: Background
Variations (BV), Partial Occlusion (PO), Complete Occlusion (CO) and Illumination Changes (IC). We highlight the results
for short-term prediction (1 sec) and long term prediction (5 sec). We notice that our GLMP algorithm results in higher
accuracy for long-term prediction and dense scenarios. More details are given in Section IV(B).

Fig. 6 compares the prediction accuracy of GLMP, constant
velocity, constant acceleration and BRVO, by comparing the
predicted positions to the actual ground truth data extracted
using pedestrian trackers. We use these noise levels, 0.05m,
0.1m, and 0.15m to simulate different sensor variations.
During the prediction step, we assume that no further in-
formation is given when we are predicting the future state,
and our best guess is that the pedestrians move according
to their preferred velocity computed using the movement
patterns. For GLMP, the pedestrian’s movement direction
changes when there is any interaction with obstacles or
other pedestrians as observed based on local and global
movement patterns. Fig. 7 shows the fraction of correctly
predicted paths within varying accuracy thresholds. At an
accuracy threshold of 0.5m, GLMP has higher accuracy
than BRVO and offers considerable benefits over constant
velocity, constant acceleration models even with little noise.
As the noise increases, the benefit in prediction accuracy
using GLMP also increases.

B. Long-term Prediction Accuracy

Being able to predict a trajectory over a longer time-horizon
is important for service robots and autonomous vehicles.
Our approach is able to perform long-term prediction (5-
6 seconds) with much higher accuracy than prior methods
(see Table 1).

We use a simple prediction metric to evaluate the accuracy of
both, long and short term prediction. A prediction is counted
as “successful” when the estimated mean error between the
prediction result and the ground-truth value at that time
instance is less than 0.8 meter in ground space coordinates.
The average human stride length is about 0.8 meter and we
consider the prediction to be incorrect if the mean error is
more than this value. We define prediction accuracy as the
ratio of the number of “successful” predictions and total
number of tracked pedestrians in the scene. We use our
algorithm for long and short term prediction across a large
number of datasets, highlighted in Table 1.

C. Varying the Pedestrian Density

We use a variation of crowd videos with different densities
(Low, Medium and High) and compare GLMP’s error to that
of BRVO, constant velocity and constant acceleration models
(see Fig. 7). Both the constant velocity and constant accel-
eration models have large variations in error for different
regions of the scenario with varying densities. In contrast, the
GLMP approach performs well across all densities because it
can dynamically adapt the parameters for each agent for each
frame and learn global as well as local motion patterns. We
observe higher accuracy benefits in high density scenarios
due to the computation of global movement patterns.

Fig. 7: Errors for varying Pedestrian Densities (lower is
better). In low-density scenarios, local movement patterns
(e.g BRVO) are able to predict the positions well, but are
more accurate than const. velocity and const. acceleration.
We observe improved accuracy with GLMP, as the pedestrian
density increases.

D. Varying the Sampling Rate

GLMP works very well on data with very low frame-rate,
when the video or data is sampled at large intervals. In
low FPS videos, there is less temporal direct pixel overlap
between frames. In a way, this is also a metric for evaluating
the accuracy of our prediction algorithm. In order to evaluate
the performance, we evaluated the accuracy on the Street,



Fig. 6: Prediction Accuracy vs. Sensor Error (higher is better) We increase the sensor noise (Gaussian) from left to right
and highlight the prediction accuracy across various distance thresholds. The X-axis represents the percentage of correctly
predicted paths within varying accuracy thresholds. In this GLMP results in more accurate predictions, as compared to
BRVO, Constant Velocity, Constant Acceleration. As the sensor noise increases (c), we observe more significant benefit.

seq hotel, seq eth and IITF datasets at varying frame-rates.
Fig. 8 shows the graph of the mean error versus the sampling
interval. The graph in the figure shows that our method
performs very well compared to BRVO, constant velocity and
constant acceleration model across all the sampling rates.

Fig. 8: Error vs Sampling Interval As the sampling interval
increases, the error from Constant Velocity, Constant Accel-
eration and BRVO grows much larger than that from GLMP.

E. Comparison with Prior Methods

We directly compare our results with the prediction results of
LTA [23] and ATTR [29], which report performance numbers
for some of the same benchmarks. Unlike GLMP, both these
methods require offline preprocessing or annotation. We also
compare GLMP with BRVO along with LTA and ATTR
on Street, NDLS, IITF, seq hotel and seq eth datasets, all
sampled every 1.5 seconds, and measure mean prediction
error for every agent in the scene during the entire video
sequence.

The metric used was error reduction comparison, and is
measured as improvement in percentage of error reduction
over the LIN model for different algorithms. The results are
shown in Fig. 9. Our method outperforms LTA and ATTR
with 24-47% error reduction rate across the three different
scenarios. LTA and ATTR use the ground truth destinations

for prediction; LTA+D and ATTR+D use destinations learned
offline, as explained in [29]; ATTR+D uses grouping in-
formation learned offline. Even though GLMP is an online
and real-time method, it shows significant improvement in
prediction accuracy on all the datasets, producing less error
than other approaches.

Fig. 9: Error Reduction Comparison We compare the
improvements of our method, LTA, ATTR and BRVO over LIN
(linear velocity) model. Our method (GLMP) outperforms
LTA, ATTR with 24-47% error reduction rate in all three
different scenarios.

V. LIMITATIONS, CONCLUSIONS, AND FUTURE WORK

We present a novel real-time algorithm for pedestrian path
prediction. The main idea is to learn the local and global
movement patterns using Bayesian inference. Our approach
can handle low as well as high density videos and is useful
for short-term and long-term prediction. We have highlighted
its performance on many benchmarks and demonstrate the
improvements in accuracy over prior real-time algorithms.

Our approach has some limitations. The underlying formu-
lation does not model many other aspects of pedestrian be-
havior, including physiological and psychological pedestrian
traits as well as age, gender or external environmental factors.
The estimation techniques relies on Bayesian inferences



and that may not work well in some cases. In terms of
future work, we would like to overcome these limitations.
Furthermore, we would like to evaluate their performance
with robots, e.g. service robots or autonomous vehicles,
navigating through pedestrians.
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