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ABSTRACT
In this paper, we present a new trajectory planning algo-
rithm for virtual humans. Our approach focuses on implicit
cooperation between multiple virtual agents in order to share
the work of avoiding collisions with each other. Specifically,
we extend recent work on multi-robot planning to better
model how humans avoid collisions by introducing new pa-
rameters that model human traits, such as reaction time
and biomechanical limitations. We validate this new model
based on data of real humans walking captured by the Lo-
canthrope project [12]. We also show how our model extends
to complex scenarios with multiple agents interacting with
each other and avoiding nearby obstacles.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent
systems

General Terms
Algorithms, Experimentation, Verification, Performance

Keywords
Human Motion, Collision Avoidance, Virtual Agents, Simu-
lation, Robotics

1. INTRODUCTION
Intelligent virtual agents are frequently used in computer

animation, virtual worlds, games, AI and human-computer
interaction systems. One of the main challenges in these
applications is to develop realistic models that treat each
virtual agent as an autonomous, graphically embodied agent
that is able to interact intelligently with human users, other
virtual agents and the environment.

In this paper, we address the problem of computing a
collision-free path for each virtual agent in a complex envi-
ronment that consists of many virtual agents and both static
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and dynamic obstacles. We assume that each agent is mov-
ing towards a specific goal position, but do allow these goal
positions can change dynamically in the environment.

In practice, moving through a complex environment in a
natural manner is a difficult task for any agent. This prob-
lem becomes more challenging when there are other virtual
agents also moving through the same environment. More-
over, we need decentralized solutions that can scale well with
the complexity of the environment and the number of agents.

Main Results: We pose this problem of virtual agents
avoiding each other and the nearby obstacles as a geometric
optimization problem and incorporate the appropriate con-
straints to compute a collision-free and plausible solution.
Our approach builds upon an earlier collision avoidance tech-
nique, ORCA, which is used for multi-robot navigation and
collision avoidance [18]. While ORCA is provably sound
from a theoretical formulation, it does not take into account
many aspects and characteristics of human motion and how
they move naturally in complex environments. We present
a new, efficient optimization technique that can better gen-
erate plausible human paths.

Our algorithm explicitly models a human’s reaction and
observation time, as well as kinodynamic constraints. We
validate our model against data of real humans avoiding
collisions with each other (collected from the Locanthrope
project [12]). We demonstrate the performance of our model
in different situations with many virtual agents.

The rest of our paper is organized as follows. Section 2
overviews prior work on collision-free navigation and mod-
eling of human motion. Section 3 provides a brief summary
of ORCA and other multi-robot navigation technique used
in our approach. In Section 4 we describe RCAP, our pro-
posed extension to ORCA, and also describe the experimen-
tal setup used to validate our model. Section 5 highlights
the performance of our algorithm on different datasets.

2. RELATED WORK
Several techniques have been proposed to model behav-

iors of individual agents, groups and heterogeneous crowds.
The recently published surveys [17, 10] provide excellent
overviews. Some of the widely used methods are based on
the seminal work of Reynolds which features boids and steer-
ing approaches [13] and the social force model proposed by
Helbing [5]. There is also extensive literature on multi-agent
navigation and collision avoidance in robotics.

2.1 Multi-robot navigation
Planning paths for multiple agents is a well studied prob-



lem in robotics with a long history. For more detail, please
refer to [6, 7]. Some of the simplest approaches model a
multi-robot system as one aggregate robot, The number of
degrees-of-freedom of the aggregate robot are obtained by
adding the degrees of freedom of the individual robot. In
this formulation, classical robot motion planning techniques
can be applied to the system as a whole [6, 7]. Such ap-
proaches are know as centralized planners, and have the
benefit of being able to exploit the wealth of effective single-
robot planning techniques.

However, centralized planners may not be able to accu-
rately model how humans navigate while avoiding collisions.
Centralized planners assume one entity is making decisions
for all the participants involved and may not be appropriate
for modeling inter-agent behavior.

Decentralized approaches plan for each robot individually
or in a distributed manner. Generally, they work by adjust-
ing a robot’s velocity to move it along its path towards the
goal, and away from other robots and obstacles [11, 15, 16].
Other decentralized schemes are also possible, such as co-
ordination graphs [8] or incremental planning [14] to ensure
that there are no collisions along the robot’s paths.

2.2 Multi-robot Collision Avoidance
One form of multi-robot navigation involves moving a

robot as directly as possible towards it immediate goal, while
avoiding any collisions with obstacles and other robots as
they arise. The concept of Velocity Obstacles [3] provides
an appropriate means to implement such a strategy, but fails
when the obstacles that a robot is avoiding actively reacts
to avoid that robot as well, e.g. in the case of humans avoid-
ing other humans. Reciprocal Velocity Obstacles (RVO) [19]
provides an extension that works for multiple agents avoid-
ing each other, and ORCA [18] extends this concept further
to any number of robots using geometric optimization.

2.3 Modeling of Human Motion
There have been many attempts to characterize how hu-

man move both numerically and algorithmically. For exam-
ple [1] proposes a model which produces human-like paths
using a numerical optimization based approach. Human mo-
tion is also studied at a lower level, such as where people
place their feet and how their gaits can be characterized
[20]. A good general survey of this topic can be found in
[2]. Previous work which also models pedestrian behavior in
avoiding collision include [9, 12].

3. COLLISION AVOIDANCE
In this section, we give a brief overview of the ORCA

algorithm that our model builds on. See [18] for more detail.

3.1 Problem Definition
ORCA provides an efficient solution to the n-body col-

lision avoidance problem in a distributed manner. The n-
body collision avoidance problem involves n virtual agents
sharing the same environment, each with their own current
position, radius, and velocity (which are all publicly known),
and a desired goal velocity (an internal variable). For sim-
plicity, we represent each agent as a circular shape in 2D,
though our approach can be easily extended to handle any
3D convex shape. The problem is to compute a new velocity
for each agent at every step of the simulation such that none
of the resulting trajectories will collide. ORCA solves this

problem in O(n) running time for each agent, where n is the
number of nearby agents

The table below gives a description of the 6 variables we
use to represent an agent (table 1). These variables taken
together, completely determine the unique state of any agent
in the simulation.

Symbol State Description
ra External Agent A’s radius
pa External Agent A’s position
vA External Current velocity
vmax

A Internal Maximum velocity

vpref
A Internal Desired (goal) velocity

Table 1: State variables for each agent

3.2 Velocity Obstacles
ORCA is built on the concept of velocity obstacles (VO) [3].

Formally, VOs are defined as follows. Let D(p, r) denote an
open disc of radius r centered at p:

D(p, r) = {q | ‖q− p‖ < r}, (1)

then, given a time horizon τ for which we wish to avoid
colliding with any obstacles:

V Oτ
A|B = {v | ∃t ∈ [0, τ ] :: tv ∈ D(pB − pA, rA + rB)} (2)

The geometric interpretation of VO is shown in Figure 1.
Drawn in velocity space, where the graph’s origin corre-
sponds to a velocity of 0 (standing still), the x-axis cor-
responds to the x-component of the velocity, and the y-axis
the y component of velocity, a V Oτ has the shape of a trun-
cated cone. Intuitively, this can be thought of as all the
velocities which move an agent A towards obstacle B.

If the obstacle B was moving with respect to A, the apex
of the V O would be shifted to lie at the relative velocity
vB − vA.

(a) 2 Agents A & B (b) V Oτ
A|B

Figure 1: (a) Shows the two agents A and B, which
are stationary relative to each other. (b) The VO in A’s
velocity space induced by B. This is the set of all of A’s
velocities which would collide with B within τ seconds.

More importantly, anytime A chooses a velocity which is
outside of V Oτ

A|B , agent A is guaranteed not to collide with
the obstacle B for at least τ seconds. The above guaran-
tee holds assuming B does not change it’s velocity over the
course of those τ seconds. If B is another intelligent agent
and not an obstacle following a predefined trajectory, this



assumption becomes incorrect. If A and B are on a colli-
sion course, we know B in fact will change its velocity (in
an attempt to avoid colliding with A!). If two agents use
a strictly V O based means to avoid each other, they would
end up constantly oscillating between overcorrect for the
collision and under-correcting for it [19].

3.2.1 Reciprocal Collision Avoidance
Berg et al. [19] introduced the notion of reciprocity into

multi-agent planning. Instead of trying to avoid the entire
collision, if A knows B is a responsive agent, A will perform
half the work in terms of avoiding the collision with the faith
that B will similarly do the other half of the collision avoid-
ance work. Assuming both agents involved are following the
same basic strategy, this method is provably oscillation-free
and collision-free [18].

3.3 Optimization Formulation
The ORCA algorithm provides an Optimal Reciprocal

Collision Avoidance between the agents. It performs this by
creating linear constraints that ensure every agent’s new ve-
locity will be outside the V Oτ of every other agent’s new ve-
locity [18]. This is in contrast to previous techniques which
assigns new velocities to the agents that are outside the V Os
generated by the other agent’s old velocities.

Figure 2: Constructing the set of ORCA allowed ve-
locities. vopt is the agent’s current velocity. ORCA
forces agents to chose new velocities which avoid at
least half the collision u. In RCAP, only agents whose
T

B|A
sight < T − Tobs generate ORCA constraints.

The algorithm generates linear constraints which guar-
antee reciprocal collision avoidance, we define u to be the
smallest change required in the relative velocity of A and B
to avert the collision between themselves. Assuming agents
A and B are traveling at vopt

A and vopt
B respectively, u can

be geometrically interpreted as the vector going from the
current relative velocity (vopt

B −vopt
A ) to the closest point on

the V Oτ boundary (see Figure 2). Specifically,

u = ( arg min
v∈∂V Oτ

A|B

‖v − (vopt
A − vopt

B )‖)− (vopt
A − vopt

B ). (3)

If the agents are implicitly “sharing responsibility” for the
collision, each needs to change their velocity by (at least)
1
2u expecting the other agent to take care of the other half.
Therefore, the set of velocities permitted by ORCA for agent
A is the half-plane starting at point vopt

A and facing away
from V Oτ

A|B . The normal of the half-plane is chosen to be
n, the normal of the closest point on V Oτ

A|B , to maximize

allowed velocities near vopt
A . More formally, the set of ORCA

allowed velocities for A is:

ORCAτ
A|B = {v | (v − (vopt

A +
1
2
u)) · n ≥ 0}. (4)

ORCAτ
B|A for B is defined symmetrically (see Figure 2).

3.3.1 Multi-agent Collision Avoidance
If agent A is avoiding collisions with multiple agents, its al-

lowed velocities are simply the intersection of the ORCAτ
A|Bs

generated by each other agent B. If this set is empty, a least
bad velocity can be chose as discussed in [18].

ORCAτ
A = D(0, vmax

A ) ∩
\

B "=A

ORCAτ
A|B . (5)

Note that this definition also includes the maximum speed
constraint on the agent A of vmax

A .
Each ORCAτ

A|B corresponds to a linear constraint on A’s
velocity. The task of picking a new velocity closest to A’s de-
sired velocity vperf

A subject to the linear ORCA constraints
can be solved efficiently using linear programming.

By always choosing a new ORCA allowed velocity as close
as possible to vperf

A for each agent, agents will move in an
optimal, theoretically sound, and efficient manner.

4. RECIPROCAL COLLISION AVOIDANCE
FOR PEDESTRIANS (RCAP)

In this section we extend the collision avoidance algo-
rithm, ORCA, by taking into account some characteristics
of human motion. We first describe our new additions, then
our experimental validation using trajectories traveled by
real humans.

4.1 Modeling Human Motion
As described in section 3, the ORCA algorithm correctly

solves the n-body collision avoidance problem, in an efficient
and robust manner. While it is theoretically sound, as a
model for humans navigating around each other it misses two
key aspects. First, humans take time to react to collisions
[12], whereas the ORCA model responds to the collisions
instantaneously. Second, even when a human decides how
to avoid a collision, he is subject to physical constraints as
to how quickly he can adopt his new velocity [1]. All of this
decision making happens as the humans are still steadily
walking towards their goals.

4.1.1 Response and Observation Time
Unlike the ORCA framework, when two humans first see

each other it takes time for them to understand and evalu-
ate what is going on in terms of the relative motion. This
time includes visually processing the appearance of the other
agent, recognizing that this agent is walking towards them,
deciding that their trajectories pass too close to each other,
and calculating a new velocity that will avoid the collision.

We model this behavior by introducing a new parameter
Tobs which corresponds to this time required for observation
and reaction. Assuming an agent spotted a new neighbor
at time Tsight, and that the current simulation is at time T
this new neighbor would not be considered as an obstacle
(and contribute to the motion) until

T > Tsight + Tobs. (6)

When agent A is avoiding multiple other agents, each other
agent B will have a unique time that A first saw that agent.



We denote this time as T B|A
sight. This allows us to modify our

original ORCA equation (equation 5) to include the obser-
vation time effect:

ORCAτ
A =

\

B "=A

{ORCAτ
A|B : T B|A

sight < T − Tobs}. (7)

While our simulations used a universal Tobs for all agents,
one could very naturally use a different observation time
parameter for each different virtual human.

4.1.2 Kinodynamic Constraints
Kinodynamic Constraints are constraints on an agent’s

allowed velocites and accelerations [7]. By introducing Tobs

we provided a way to model the mental limitations of hu-
mans, but there are also physical, kinodynamic constrains
on how humans can move. The original ORCA formulation
included a term vmax which models the fact that agents have
a maximum possible speed. While this is an key first-order
effect, human also have other important constraints on their
motion. An important higher-order effect is the fact that hu-
mans can’t simply chose any new velocity instantaneously.
There are physical limits to how fast a person can come to
a stop, or accelerate from a resting position to a desired
velocity, or switch from heading left to heading right, etc.

To model these physical constraints, we introduce a sec-
ond parameter amax. This parameter captures the maximum
rate that an agent can change its velocity. If the computed
new velocity (vcomputed) requires more acceleration than al-
lowed by amax the new velocity will be clamped to be within
the allowable range by the following equation, where∆ T is
amount of time which has passed since the last timestep,
and∆ v = vcomputed − vold :

vnew = vold + amax∆T
∆v
‖∆v‖ (8)

4.1.3 Personal Space
When passing each other, real humans do not brush shoul-

ders, which is what a precise mathematical solution would
tend to produce. In practice, the humans instead give each
other a wider affordance, a concept commonly referred to
as personal space (see Figure 3). This personal space pro-
vides a buffer of comfort between people, and gives room for
them to swing their legs and arms. Rather than planning
around an agents physical extent, we instead use the agents
personal space for planning. This sets the agent’s radius, r.

Figure 3: Comparison of a tight oval bounds on the
physical space (blue oval) to the larger personal space
which is used for planning (dashed circle).

4.1.4 Algorithm Overview
The following pseudocode gives an overview of the entire

RCAP algorithm. T is the current time in the simulation.
ClampVelocity() implements equation 8.

LinearProgramming(goal, constraints) computes the
point closest to goal which does not violate the constraints.

Algorithm 1: The RCAP Algorithm

Input: Agent A, List of neighbors B
Output: vnew - A new velocity for A

ORCAτ
A ← ∅;1

foreach B ∈ B do2

if T > T B|A
sight + Tobs then3

ORCAτ
A ← ORCAτ

A ∩ORCAτ
A|B4

vcomputed ←LinearProgramming(vpref ,ORCAτ
A);5

vnew ← ClampVelocity(vcomputed, vold,a
max)6

The RCAP algorithm fits into a general loop of updating
the simulation (algorithm 2). Neighbors(A) returns of all
the agents nearby to A, and if it is the first time a new a
agent B was seen by A then T B|A

sight will be updated.

Algorithm 2: Simulation Update

Input: AgentList a list of agents to simulate,∆ T
simulation timestep

T ← 0;1

while Simulation is running do2

foreach A ∈ AgentList do3

B ←Neighbors(A);4

vA
new ←RCAP(A,B);5

va ← vnew;6

pa ← pa + ∆Tva;7

T ← T + ∆T ;8

4.2 Experiment Set-up
To characterize the accuracy of our model, we compare the

trajectory computed by our algorithm against high-quality,
motion captured data of two people crossing paths with each
other. This data, originally captured as part of the Lo-
cantrope project was retrieved from the project website1.
In the experiment, two people start at random corners of a
15m x 15m room. The two participants can initially not see
each other, due to the presence of 5m long occluding walls,
which serve as obstacles. Using synchronized computers, the
two participants are simultaneously directed to walk to the
opposite corner of the room. After a few meters, the par-
ticipants will have moved passed the occluding barriers and
be able to see each other. At this point we say the partic-
ipants have reached the interaction area and will need to
respond to each other and avoid collisions. The participants
continue walking until they reach the opposite corner. This
experimental setup is summarized in Figure 4.

We matched this experiment as closely as possible using
our simulation framework driven by the RCAP model. Our
virtual agents were initialized with the same positions and
velocities that the real humans had as they entered the inter-
action area. Our virtual agents were given a goal position of
the spot in corner that the the real humans stopped at, and
a desired speed of the average of the real human’s walking
speed. From these initial conditions we let the simulation
proceed, using timesteps of 8.3ms (120Hz).

1http://www.irisa.fr/bunraku/Julien.Pettre/dataset1.html



Figure 4: The experimental set-up. Two people (red
circles) are placed in a 15 m x 15 m lab, and equipped
with tracking equipment. They start at randomly se-
lected corners, initially unable to see each other due to
5 m long barriers (blue rectangles). The people are then
simultaneously asked to walk to the opposite corner. A
few meters into their path they see another person doing
likewise, and react to avoid colliding. (Drawn to Scale)

We used data from 474 different runs of this experiment
collected across 5 different days. There is a large amount
of variety in the initial conditions. Each time the humans
entered the interaction area they do so at different position,
with a different velocity, have different average speeds, and
walk towards different spots in the opposite corner. All these
differences provide a variety of scenarios to compare the tra-
jectories of virtual humans with their real counterparts.

5. RESULTS
In this section, we describe our results in terms of a numer-

ical comparison between our simulation method, and data
collected from real humans walking. We also show larger,
more complicated simulations, highlighting the paths of our
virtual humans and the simulation’s computation time.

5.1 Comparison to Real Humans
We initialized runs of the simulation as described in sec-

tion 4.2. The constants Tobs, amax, and r were obtained
numerically by trying to minimize the difference between
the real and virtual agent. The constants were tuned by
matching runs from approximately 20% of the dataset. The
statistics are then collected from the remaining 80%. The
values used for the RCAP constants are shows in Table 2.

Symbol Value Description
Tobs .79s Observation Time
amax .09 m

s2 Maximum Acceleration
r .38m (15”) Personal Space (radius)

Table 2: Table of RCAP constants.

5.1.1 Biomechanical Analysis
As humans move in the environment, they expend energy

and turn chemical potential energy stored in their body into
the physical kinetic energy of motion. Humans have been
shown to walk at speeds which minimizes the amount of en-
ergy spent walking [20]. Given an agent’s weight, velocities,
and path taken, it is possible to calculate how much much
energy the agent must have spent walking along that path.

This calculation can be preformed for both the real and vir-
tual humans, which gives us a means to determine if our
virtual agents choose similarly efficient paths as compared
to real humans.

Assuming a weight of 70 Kg, over the course of all the runs,
the average real human consumed 1,838 joules (J) walking
to his or her goal (standard deviation 332 J). During the
same runs, our virtual agents consumed 1,835 J (s.d. 326
J). On any given run, the average difference between the
energy consumed by real and virtual humans was only 23 J.

5.1.2 Collision Response
As can been seen in Figures 5, 6(a) and 6(b), RCAP

agents go through 3 distinct phases when avoiding collisions.
The first phase is the observation phase, which lasts a lit-
tle under a second. Here the agents move along at their
preferred velocities, without correctly responding to the col-
lision. Secondly is the reaction phase, where the agents have
determined an appropriate velocity and take a second or two
to achieve it (depending on how far it is from the observa-
tion phase velocity). Finally, there is the maintenance phase
where the agents maintain their collision-free velocities.

Participants in the experiment often showed a similar means
of response to a collision. People would at first not correctly
react to the collision, then slowly adopt a correct velocity,
and finally maintain velocities which were generally on col-
lision free trajectories. This is in stark contrast to ORCA
agents, who instantaneously take and maintain a collision
free velocity.

There is little change in velocity when there is no immi-
nent collision to avoid (Figure 6(c)).
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Figure 5: Graph of how the projected closest point be-
tween two agent’s trajectories changes over time. Blue
Line: Two real people initially start on a colliding path (if
unchanged, their centers would be only .1m apart). As
the experiment progresses the people eventually sort out
the collision and adopt velocities which will have their
centers pass .7m apart, more than far enough to avoid a
collision (at least .5m). Green Line: An RCAP simulation
initialized with the above conditions. Red Dashed Line:
An ORCA simulation initialized with the above condi-
tions. RCAP does a significantly better job of matching
how humans respond to collisions than ORCA.

5.1.3 Path Similarity
Beyond just the manner and pacing of collision response,

the absolute paths taken by real humans and virtual hu-
mans are very similar. Figure 7 shows a run of the simula-
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Figure 6: Closest Approach Graphs for 3 different runs. In (c) the people’s desired velocities do not lead to a collision
course, the real and virtual agents both chose to maintain their desired velocities, instead of changing them.

tion (shown in red) overlaid with the paths that the actual
humans took. On average, the simulated and real humans
were only 0.168m apart at any time.

Figure 7: A comparison of paths Real Humans vs Vir-
tual Humans. Agents are displayed as circles with their
goal for this simulation run show in Xs. The redline
shows the path that the simulated humans took, and the
black line shows the path of the humans.

Figure 8 shows more paths from different initial conditions
for the humans (and agents). Even in just these 3 runs, the 6
participants invoke a variety of different techniques to avoid
collisions with each other including slowing down, speeding
up, veering left or right, and keeping the same path while
the other person adjusts. Despite this variety, the virtual
agents are still able to track the real humans very closely.

Figure 8: Comparisons of paths Real Humans vs Vir-
tual Humans from two additional runs. Black lines: Real
humans’ paths Red lines: Virtual Agents’ paths

5.2 Simulations
To demonstrate our method on more than two agents,

and on agents in novel situations and with obstacles we ran
simulations driven by our RCAP model.

5.2.1 Avoidance Near Obstacles
The first simulation shows how the presence of an obstacle

affects the paths of the agents. Line obstacles can be incor-
porated easily into the RCAP framework by simply defining
an additional linear constraint forbidding agents from mov-
ing towards the obstacle fast enough to reach it in time τ .

When two virtual agents pass each other without a wall
nearby, they chose reciprocating paths, sharing the burden
of collision avoidance (Figure 9(a)). However, when a wall
is present too close to an agent, reciprocation will be impos-
sible. Here, the agent with free space to respond automat-
ically adapts and eventually takes the entire responsibility
for avoiding the collision (Figure 9(b)).

(a) No Wall

(b) Wall

Figure 9: Time-lapse diagram of agent positions. (a)
Two agents exchange positions. The agents reciprocate,
each taking half the responsibility. (b) A wall prevents
the green agent from turning away from the collision.
The red agent automatically accommodates, eventually
taking full responsibility for avoiding the collision.

5.2.2 Small Groups
The algorithm presented for RACP in Section 4 can ac-

commodate more than just two agents. Figure 10 shows a
time-lapse picture from a simulation with 5 agents. Each
agent is trying to get across the circle to the other side from
where it started. Agents are able to negotiate around each
other, without collisions, while maintaining the smooth gen-
tle curving paths shown in the two agent runs.

Larger simulations are also possible. To test performance,
we ran a simulation of thousands of agents exiting an office



Figure 10: Time-lapse diagram of a 5 agent simulation.
Agents follow smooth, simple, curved paths similar to
those from the trials with humans. No agents collide.

environment. A snapshot from this simulation is shown in
Figure 11. This large simulation still ran at realtime rates.

Figure 11: Snapshot from a simulation of 1,000 people
evacuating an office environment.

6. ANALYSIS AND COMPARISONS
In this section, we analyze our approach’s performance

and provide a qualitative comparison with other collision
avoidance techniques.

6.1 Path Analysis
RCAP performs extremely well in its ability to match

human-like paths. In the majority of cases, the difference
between trajectories traveled by the real and virtual agents
is rather low. In fact, the trajectories of the virtual agent
and the real human physically overlap 94.9% of the time (the
distance between paths is less than the physical radius).

We also use the biomechanical comparison (section 5.1.1)
to “quantify” the naturalness of the paths. The amount of
energy consumed during walking is an indirect measurement
of how efficient the simulated walking was. Using this mea-
surement, our virtual humans choose paths that are practi-
cally equally efficient as the real humans do – the maximum
difference in energy consumed is about 1% of actual energy
consumed and 0.1% when averaged out over all the runs.
The efficiency of human motion in avoiding collisions is well
captured by our model for these benchmarks.

The other comparison used to analyze how human-like the
motion is, is the collision response graphs from Section 5.1.2.
Figures 5 and 6 show the clear improvement that RCAP has
over ORCA in modeling how the humans respond to colli-

sions. The response of ORCA agents was sudden and im-
mediate, thus making it a poor method for modeling human
motion. The three-stage response of RCAP agents provides
a fairly good match for human response. The most signifi-
cant deviation from real humans comes in the maintenance
phase, as real humans continue to have slight changes in their
velocity during the maintenance phase rather than keeping
it constant. Also, different people have different notions of
personal space, while our default simulation setting uses the
same value (0.38 m) for everyone. This implies that some
agents will pass each other a little too far apart and some a
little too close. Varying this value for different agents would
produce much more accurate responses and can be done per
scenario or per agent.

Beyond reacting correctly when there is a collision, cor-
rectly choosing not to react when there is no collision is
also important. The RCAP model can also properly handle
this case. One example is shown in Figure 6(c). Here the
two people start with collision-free velocities. Real humans
would realize that they were not in danger of colliding and
maintain about the same velocity. RCAP agents correctly
reproduce this behavior.

6.2 Simulation Analysis

6.2.1 Behavioral Analysis
Our virtual agent simulations produced smooth, natural

motion. Multiple agents were able to navigate around each
other successfully, and could cope with the presence of ob-
stacles while avoiding each other. We were also able to suc-
cessfully use the model to drive crowd simulations, demon-
strating its capability to handle 1,000s of agents and still
produce smooth, collision-free motion.

6.2.2 Performance Analysis
Computationally, RCAP adds almost no runtime over-

head over ORCA. Our simulations were able to run at the
same high speeds of the original ORCA implementation. A
5, 000-person variant of the office evacuation demo took only
8 ms per timestep to compute the new paths. If higher per-
formance or larger simulations were desired, an implementa-
tion that exploits data-level parallelism and vector process-
ing units would be possible, similar to [4].

6.3 Comparison
As compared to ORCA, RCAP does a far better job mod-

eling how humans respond to each other while navigating
around each other. By explicitly accounting for human traits
and biomechanical limitations, RCAP can closely model how
humans react to various collision conditions.

A discussion of the limitations of previous human collision
avoidance models is given in the paper which introduces the
experimental dataset [12]. With simple approaches based
on applying repulsive forces when agents get too close (such
as the Helbing model [5]), agents poorly match the path
taken by real humans, they react much too late and turn
too quickly and too far.

In Reynold’s steering model, agents check to see if they
are heading towards collision. If so, they turn away a small
amount and check again [13]. This model fits the real-human
data better than Helbing’s but is still limited due to the lack
of implicit cooperation between virtual humans, thus lead-
ing to the agents overacting to collisions. Finally, the RVO



model [19] (which is a predecessor to ORCA), performs well
but suffers from the same fundamental limitations of ORCA
by not explicitly modeling humans’ characteristics and phys-
ical capacities. Such approaches choose good velocities, but
causes the agent’s motion to appear too fast and too sudden.
A numerical comparison of these approaches applied to this
dataset an be found in [12].

6.4 Limitations
There are two main aspects of human motion that our

model does not capture. The first is the high-order effects
common to all human motion. One example is when humans
move on a straight path their center of mass doesn’t move
directly forward, but rather shifts slightly from side-to-side
as humans shift their weight from foot to foot while walking.
This phenomena is completely missed by the RCAP agents,
but can be seen in the paths traced by real humans.

A second limitation comes from how we apply our model
to this dataset. While the paths of our virtual agents gener-
ally match the real-human trajectories on a run-to-run basis
(initial position and velocity, goal position and velocity),
some parameters are tuned over the entire simulation and
kept constant from run to run. In reality, these parameters
represent “variation” from human to human. For example,
different people think at different speeds, react at different
rates, and desire different amounts of personal space. These
variabilities will directly effect Tobs, amax, and r respectively,
which were kept constant in our simulations from run to run.
An artifact of this can bee seen in Figure 6(a), where the
two participants clearly had smaller than average personal
space and came closer to each other than other participants
did. This could easily be modeled by choosing a smaller r.

7. CONCLUSIONS AND FUTURE WORK
In this paper, we present a new technique that extends a

recent multi-robot collision algorithm into a simple yet ef-
fective model for human collision avoidance. Our approach,
RCAP, was successful at capturing the key features of hu-
man collision avoidance. Agents maintained course when
appropriate, and moved to avoid collisions when necessary.
The virtual humans chose paths which were equally efficient
as the paths walked by the real humans, given the same ini-
tial conditions. The computed paths follow the trajectories
traveled by the real humans very closely. Most importantly,
our virtual humans responded to collisions at the same rate
and in the same manner as real humans did.

There are many avenues for future work. Further study
is needed to determine the best shape and position of the
personal planning space. Also, an extension which could
capture some of the higher-order effects mentioned in Sec-
tion 6.4 would be a valuable improvement. We would also
like to analyze how much variability exists from person to
person and within a person from run-to-run in terms of the
agent parameters.

Additionally, we would like to validate our approach against
datasets of larger number of humans avoiding each other and
a greater diversity of paths. We would also like to port our
system to new areas, such as virtual environments, or for
use in predictive tracking of humans in physical environ-
ments. Finally, we would like to better characterize how
virtual agents interact with real humans controlling virtual
avatars, as is commonly found in games.
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