

Planning Humanoid Multi-Contact Dynamic Motion using Optimization Techniques

Abderrahmane KHEDDAR

with Karim BOUYARMANE, Adrien ESCANDE, Sébastien LENGAGNE, Sylvain MIOSSEC, Eiichi YOSHIDA

CNRS-AIST Joint Robotics Laboratory (JRL), UMI3218/CRT, Tsukuba, Japan CNRS-UM2 LIRMM, Interactive Digital Humans group, Montpellier, France <u>kheddar@lirmm.fr</u>

私達は、あなたと共にいます

Summary

- Contact support planner
 - Problem
 - Main components
 - Experiments on HRP-2
- Unifying locomotion and manipulation
 - Main extensions
 - Simulations
- Dynamic motion generation between stances
 - Whole-body dynamic optimization
 - Experiments on HRP-2

Summary

- Contact support planner
 - Problem
 - Main components
 - Experiments on HRP-2
- Unifying locomotion and manipulation
 - Main extensions
 - Simulations
- Dynamic motion generation between stances
 - Whole-body dynamic optimization
 - Experiments on HRP-2

Example

Escande, Kheddar, Miossec IEEE/RSJ IROS 2006

Cumbersome environments

Contact Planning for Acyclic Motion with Tasks Constraints

Escande, Kheddar, Miossec IEEE/RSJ IROS 2009 (video session)

Posture generator: concept

Posture Generator: criterion

If Q is non empty it usually contains an infinity of points

 \rightarrow use of a minimization criterion $\min obj(\mathbf{q})$

PG implementation

Tasks in PG

$$g_i(\mathbf{q}) = 0 \quad \forall \ T_i$$
$$h_i(\mathbf{q}) \le 0 \quad \forall \ T_i$$

can be used in a more general way

to express *tasks* not related to planning

- Orientation of a body
- looking at a target (including a new contact)
- keeping visual features in the field of view

• . .

It amounts to restraint Q to *smaller* sub-manifolds

Example of task

$$\mathcal{T}_{glass} = \begin{cases} \mathbf{n}(\mathbf{q}).\mathbf{i} = 0\\ \mathbf{n}(\mathbf{q}).\mathbf{j} = 0\\ -\mathbf{n}(\mathbf{q}).\mathbf{k} < 0 \end{cases}$$

Idea: having *n* collinear to *k* with the same direction

Escande, Kheddar, Miossec, Garsault, **ISER**, 2008 Escande, Kheddar, IEEE/RSJ **IROS** 2009 Escande, Kheddar, Chapter 6 in Humanoid Motion Planning, K. Harada, E. Yoshida and K. Yokoi (Eds), Springer, STAR series, pp. 161–180, 2010

Interactive PG

Summary

- Contact support planner
 - Problem
 - Main components
 - Experiments on HRP-2
- Unifying locomotion and manipulation
 - Main extensions
 - Simulations
- Dynamic motion generation between stances
 - Whole-body dynamic optimization
 - Experiments on HRP-2

Extension of contact planning toward merging manipulation and locomotion

Generalized PG

- Unifies manipulation and locomotion
 - No distinctions
- Unifies objects, robots, agents
 - Only goals are specified
- Functional extensions
 - Bilateral contacts (e.g. grasps)
 - Deformable bodies

Bouyarmane, Kheddar, IEEE/RSJ Humanoids, 2010

Bouyarmane, Kheddar, Multi-contact stances planning for multiple agents, *IEEE ICRA*, 2011 Session ThA212.3 Room 5H 10:35-10:50

Summary

- Contact support planner
 - Problem
 - Main components
 - Experiments on HRP-2
- Unifying locomotion and manipulation
 - Main extensions
 - Simulations
- Dynamic motion generation between stances
 - Whole-body dynamic optimization
 - Experiments on HRP-2

Motion generation

Main ideas

- MPC on simplified models
 - All variants of Kajita et al.'s PG
- Operational task-based prioritized control
 - E.g. Sentis, Park, Khatib, IEEE TRO 2010
 - E.g. Saab et al. Session ThA211.5 Room 5F 11:05-11:20
- Closed-loop QP-based control
 - Computer Graphics communities (all variants)
- Whole-dynamic optimization
 - This talk
- Possibly others
 - E.g. learning techniques, etc.

Why motion optimization

- Benefits
 - Minimization of a criteria
 - Same method whatever the motion
 - Easy inclusion of all constraints (actuator limitations, joint limits, stability, collision)
 - Necessary for high performance motions, highly constrained motions
- Drawbacks
 - Off-line (solution: motions database)
 - Does not solve control problem (possibility : stochastic optimization)

Motion optimization problem

System model

$$u = A(q)\ddot{q} + H(q,\dot{q}) - J(q)^T F_c$$

- General problem
 - Look for a motion q(t) or control u(t) t in [0...t_f]
 - Criteria to minimize f(q(t),u(t))
 - Constraints to satisfy c(q(t),u(t))</=0 t in [0...t_f]
 - Problem to solve

 $\min_{q(t) \text{ or } u(t)} f(q(t), u(t))$ $c(q(t), u(t)) \leq = 0$

How to solve optimization pb?

- Solving method (first implementations)
 - Discretization
 - Of parameters q(t) = q(p,t) (ex.: B-Splines)
 - Of constraints at times t_i : $c(q(t_i)) </=0$ $i \in [0...N]$
 - System control u(t) computed with inverse dynamic model
 - Problem to solve

 $\min_{p} f\left(q(p,t), u\left(q(p,t)\right)\right) \\
c\left(q(p,t_{i}), u\left(q(p,t_{i})\right)\right) \leq 0 \quad i \in [1...N]$

 Resolution with a nonlinear optimization algorithm

Implementation on HRP-2

General architecture of the program

Optimal Motion Generation

- Optimal motion problematic
 - Minimization of any criteria
 - Energy consumption
 - Time, jerk, etc.
 - Constraints
 - Actuators' torque, max speeds, Joint limits...
 - Collision and Auto-collision
 - Unilateral contact, stability
- Output
 - High performance desired motion with constraint satisfaction
- Tool
 - Development of a software framework
 - A unified constraint definition

Miossec, Yokoi, Kheddar, *Development of software for motion optimization of robots-Application to the kick motion of the HRP-2 robot*, **IEEE ROBIO**, 2006

Extreme tasks

- Dynamic transition from one feasible posture to another under joint torque limitation
- Combining two different motions
 - accelerating an object upward
 - sliding the body into under the object

Dynamic Lifting by Whole Body Motion of Humanoid Robots

Hitoshi Arisumi, Sylvain Miossec, Jean-Rémy Chardonnet, and Kazuhito Yokoi

AIST/CNRS-JRL, Japan

IROS2008 September, 22-26, 2008, Nice, France

Arisumi, Chardonnet, Kheddar, Yokoi, IEEE ICRA07 Arisumi et al., IEEE/RSJ IROS08

Problem

Theoretical

- Difficult to find a compromise between the number of trajectory control points (optimization variables) and sampling time
- Difficult to keep a uniformed sampling when the final time is an optimization variable
- No guarantee of constraints satisfaction between time samples
 - Optimization using interval analysis (Lengagne et al.)
 - Guarantee of constraint satisfaction
 - Computationally heavy

Multi-contact optimization

- Whole-body model (incl. dynamics)
- Motion local planning
- Play trajectories in pseudo-closed-loop

- if the solutions fits within critical time
 - Use in closed-loop scheme

Latest approach

Lengagne, Mathieu, Kheddar, Yoshida, **HUMANOIDS**, 2010 Lengagne, Mathieu, Kheddar, Yoshida, **IROS**, 2010

Video: HRP-2

CNRS-AIST JRL (Joint Robotics Laboratory), UMI3218,CRT

Generation of Dynamic Multi-Contact Motions

(Kicking, stepping, sitting and walking motions)

Sébastien Lengagne Abderrahmane Kheddar Eiichi Yoshida

National Institute of Advanced Industrial Science and Technology AIST

Reported by the **NEW SCIENTIST** and **REUTERS Press** Agency

Other videos: HRP-2

CNRS-AIST JRL (Joint Robotics Laboratory), UMI3218, CRT

Improving Optimization Performances For Multi-Contact Motion Generations

putting away motion
 2-throwing motion
 walking on a platform motion
 4- effects of the choc absorber

Sébastien Lengagne Abderrahmane Kheddar Eiichi Yoshida

HRP-2 as a physical manikin

What else?

- Impact
- Multi-contact stabilizer
- Collision avoidance
- Faster solvers
- Flexibility of the ankle

Conclusion

- Some further extensions
 - Complex deformable environments
 - Sliding contacts
 - Taking support on movable objects (difficult)
 - Taking into account uncertainties (very difficult)
 - Haptic cover (close the loop)

