Plan-based Action and Activity Control for Everyday Manipulation

Michael Beetz and the IAS Group

Intelligent Autonomous Systems Technische Universität München

ICRA Workshop Motion Planning for Physical Robots Shanghai, May 2011

Intelligent Autonomous Systems

Naturalistic Actions

Action Specification

Robotic Roommates Making Pancakes

Our Vision:

Cognitive robots that

- autonomously perform human-scale everyday manipulation tasks and
- extend their repertoire of such by acquiring new skills using information resources intended for human use.

Naturalistic Actions

Action Specification

Robotic roommates making "Weisswürste"

Understanding by building

Shopping & cleaning up

1. shopping with basket

2. clean up according to organizational principles

Motion Planning for Physical Robots

Everyday Manipulation

Making "Weisswürste"

1. putting "Weisswürste" into pot

2. fishing "Weisswürste"

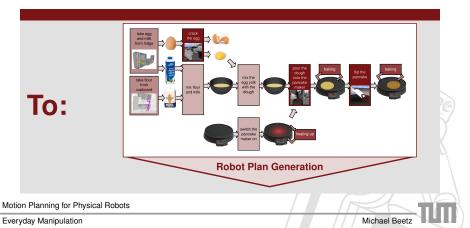
Michael Beetz

3. cutting bread

Research Questions

- how is it possible that we as humans get instructions such as
 - make pancake using a pancake mix
 - flip the pancake
 - push the spatula under the pancake
 - and perform the intended tasks in the appropriate way?
- What are computational models that enable robots to perform such naturalistic action specifications?

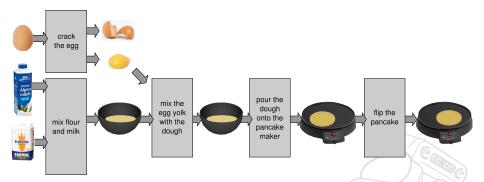
Motion Planning for Physical Robots



Naturalistic Actions

Action Specification

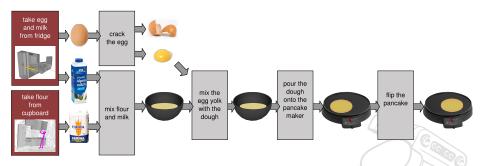
Everyday Manipulation Activities



Naturalistic Actions

Action Specification

Inferring required objects

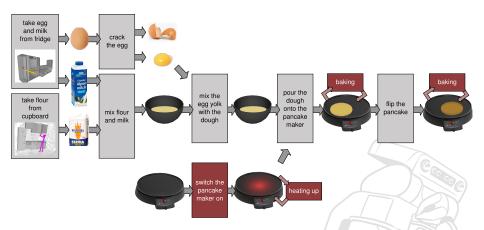

- Predict intermediate objects: Projection of action effects
- Make sure they can be recognized: Download object models

Motion Planning for Physical Robots

Naturalistic Actions

Action Specification

Inferring where objects can be found

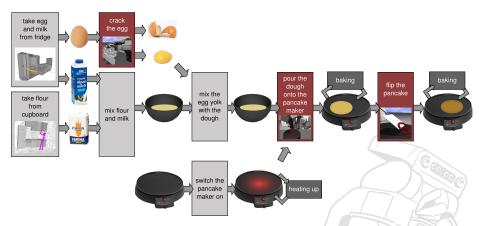

- Infer where to look for objects: Semantic environment models
- Add actions to fetch them: Articulation models and observations of humans

Motion Planning for Physical Robots

Naturalistic Actions

Action Specification

\searrow Planning with processes


- Check if results are correct: Action effect axioms
- Add required actions: Planning with actions and processes

Motion Planning for Physical Robots

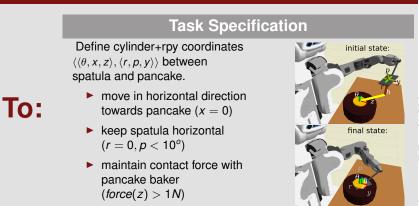
Naturalistic Actions

Action Specification

Simulation for parameterizing actions

 Choose action parameters: Physically simulate action effects

Motion Planning for Physical Robots


Everyday Manipulation

Naturalistic Actions

Action Specification

Everyday Manipulation Actions

From: "push the spatula under the pancake"

Motion Planning for Physical Robots

Everyday Manipulation

Naturalistic Actions

Action Specification

3 Layer Architectures

Abstract (symbolic) layer

"push the spatula under the pancake"

Low-level control

controllers, dynamic motion primitives, motion plans, ...

Motion Planning for Physical Robots

Naturalistic Actions

Action Specification

3 Layer Architectures

Abstract (symbolic) layer

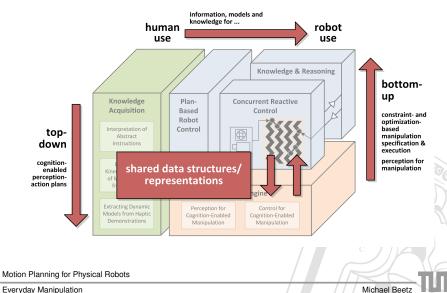
"push the spatula under the pancake"

Plan execution layer

bridges between high- and lowlevel control

Low-level control

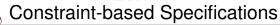
controllers, dynamic motion primitives, motion plans, ...


Motion Planning for Physical Robots

Naturalistic Actions

Action Specification

Shared Representation


- How to specify actions?
- How to get what is meant from what is specified?
- How to execute what is meant?

Motion Planning for Physical Robots

Naturalistic Actions

Action Specification

(perform (an action

...

(attribute/constraint₁ value₁)

(attribute/constraint, value,)

vague specification	effective specification
push the spatula under	push the spatula under the pancake such that
the pancake	○ you can lift the pancake safely,
	 o don't damage the pancake, and
	\circ don't push the pancake off the oven

Motion Planning for Physical Robots

Naturalistic Actions

Action Specification

Naturalistic Action Specifications

What is meant

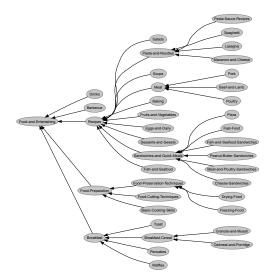
what is specified	
push the spatula under the pancake	
flip the pancake care- fully	
put the pancake mix down	
take the spatula	
	c ^c c)
on Planning for Physical Robots	

Naturalistic Actions

Action Specification

Naturalistic Action Specifications

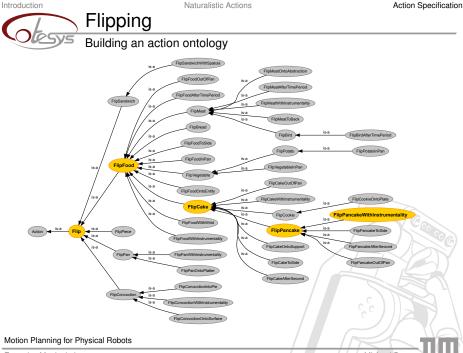
What is meant


what is specified	what is meant
push the spatula under the pancake	 push the spatula under the pancake such that o you can lift the pancake safely, o don't damage the pancake, and o don't push the pancake off the oven
flip the pancake care- fully	flip the pancake such that • undesired side effects are avoided and • the robot stops if they might happen
put the pancake mix down	put the pancake mix down where • it is visible and reachable when needed and • it does not hinder the overall activity
take the spatula	take the • handle of the spatula • such that you can perform precision control of the blade of the spatula
Motion Planning for Physical Robots	

Naturalistic Actions

Action Specification

Building an action library

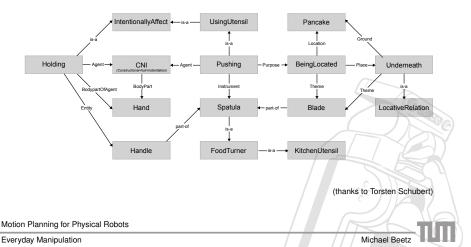

Mining instructions from wikiHow.com

- 273 Categories
- 8786 NL-Plans
- >130,000 sentences
- ≈53,000 relevant instructions
- ► ≈100 relevant action verbs
- most important: adding sth (> 7,900), Picking/Placing (> 4,900)
- top 15 action verbs more than 50% of actions

Motion Planning for Physical Robots

Everyday Manipulation

Everyday Manipulation

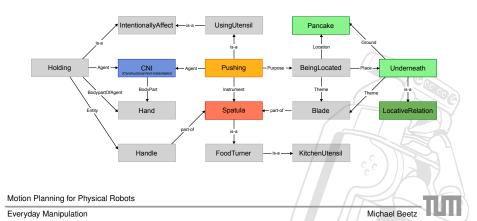

Naturalistic Actions

Action Specification

The semantic core of action verbs

Action Specification

Semantic Core: Set of inter- and intraconceptual relations that constitute an abstract event type, assigning a semantic role to each entity that is affected by an action verb.



Action Specification

The Semantic Core of Action Verbs

Action Specification

Naturalistic Actions

Action Specification

Clesys

Take the spatula

Automatic completion of action verbs

(perform (an action

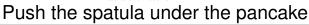
(type grasp) (object (an object-part (part-of spatula) (type handle)))

(desired-effect (and (grasp ?grasp-spec)

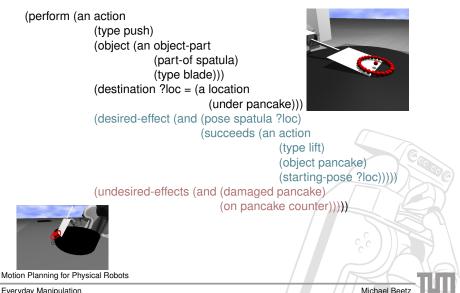
(succeeds (an action

(type precision-control) (object (tip-of blade)) (grasp ?grasp-spec)))))))

probabilistic completion


P(occurs(*ev*), type(*ev*,*type*), bodyPartOfAgent(*ev*,*Part*), entity(*ev*,*what*) Motion PlarIniiQysphtgeaspatyIa under the pancake") tuple with the highest probability:

- type = holding
- bodyPartOfAgent = hand
- entity = handle


Everyday Manipulation

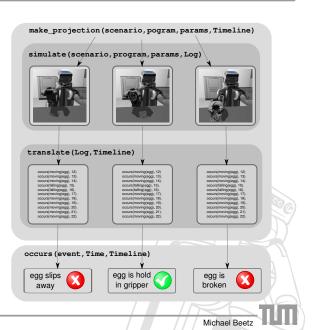
Naturalistic Actions

Action Specification

Consequence-based action parameterization

Naturalistic Actions

Action Specification

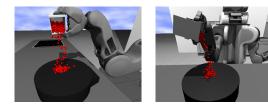

Temporal Projection Process

- make_projection:
 sample parameters
 - simulate: setup simulator run simulation

translate: ground predicates in logged simulations

• evaluate: events/fluents specialized predicates

Motion Planning for Physical Robots



Naturalistic Actions

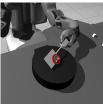
Action Specification

Example: Pouring pancake mix

- Parameters: position, time, angle
- Outcomes: number of particles on pan (spilled on table)

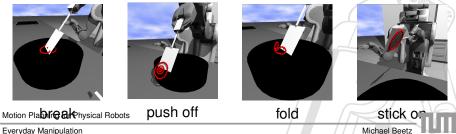
Specialized predicates on particle sets: round/centered

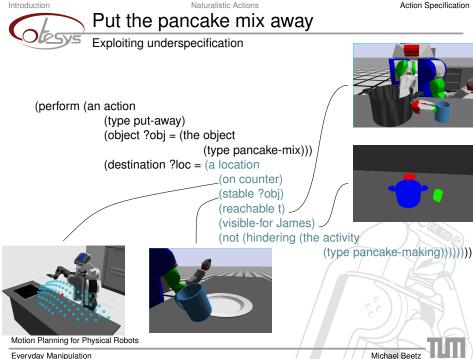
Motion Planning for Physical Robots


Naturalistic Actions

Action Specification

Example: Flipping a pancake


- Parameters: angle of spatula
- Outcomes: turned, not turned



Common failures:

Naturalistic Actions

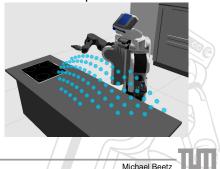
Inference algorithm

setof ?Pose On(Counter, ?Pose) ?Poses ^ member(?P, ?Poses) ^ Pose(Cup, ?P) stable(Cup)

Motion Planning for Physical Robots

Naturalistic Actions

Inference algorithm


Action Specification

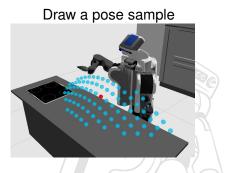
Clesse

setof ?Pose On(Counter, ?Pose) ?Poses \land member(?P, ?Poses) \land Pose(Cup, ?P) \land stable(Cup)

- 1. setof ?Pose On(Counter, ?Pose) ?Poses
- 2. member(?P, ?Poses)
- 3. Pose(Cup, ?P)
- 4. stable(Cup)

Create distribution for sampling poses

Motion Planning for Physical Robots


Naturalistic Actions

Action Specification

Inference algorithm

set of ?Pose On(Counter, ?Pose) ?Poses \land member (?P, ?Poses) \land Pose(Cup, ?P) \land stable (Cup)

- 1. setof ?Pose On(Counter, ?Pose) ?Poses
- 2. member(?P, ?Poses)
- 3. Pose(Cup, ?P)
- 4. stable(Cup)

Motion Planning for Physical Robots

Naturalistic Actions

Action Specification

Inference algorithm

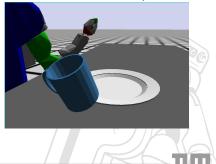
set of ?Pose On(Counter, ?Pose) ?Poses \land member (?P, ?Poses) \land Pose(Cup, ?P) \land stable (Cup)

- 1. setof ?Pose On(Counter, ?Pose) ?Poses
- 2. member(?P, ?Poses)
- 3. Pose(Cup, ?P)
- 4. stable(Cup)

Place the mug

Motion Planning for Physical Robots

Naturalistic Actions


Action Specification

Inference algorithm

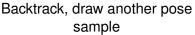
set of ?Pose On(Counter, ?Pose) ?Poses \land member (?P, ?Poses) \land Pose(Cup, ?P) \land stable (Cup)

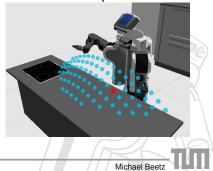
- 1. setof ?Pose On(Counter, ?Pose) ?Poses
- 2. member(?P, ?Poses)
- 3. Pose(Cup, ?P)
- 4. stable(Cup)

Simulate for 50ms, fail!

Michael Beetz

Motion Planning for Physical Robots


Naturalistic Actions


Action Specification

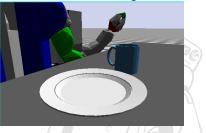
Inference algorithm

set of ?Pose On(Counter, ?Pose) ?Poses \land member (?P, ?Poses) \land Pose(Cup, ?P) \land stable (Cup)

- 1. setof ?Pose On(Counter, ?Pose) ?Poses
- 2. member(?P, ?Poses)
- 3. Pose(Cup, ?P)
- 4. stable(Cup)

Motion Planning for Physical Robots

Naturalistic Actions


Action Specification

Inference algorithm

setof ?Pose On(Counter, ?Pose) ?Poses \land member(?P, ?Poses) \land Pose(Cup, ?P) \land stable(Cup)

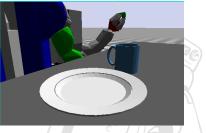
- 1. setof ?Pose On(Counter, ?Pose) ?Poses
- 2. member(?P, ?Poses)
- 3. Pose(Cup, ?P)
- 4. stable(Cup)

Place the mug

Motion Planning for Physical Robots

Everyday Manipulation

Naturalistic Actions


Action Specification

Inference algorithm

set of ?Pose On(Counter, ?Pose) ?Poses \land member (?P, ?Poses) \land Pose(Cup, ?P) \land stable (Cup)

- 1. setof ?Pose On(Counter, ?Pose) ?Poses
- 2. member(?P, ?Poses)
- 3. Pose(Cup, ?P)
- 4. stable(Cup)

Simulate for 50ms, succeed!

Motion Planning for Physical Robots

Everyday Manipulation

Naturalistic Actions

Action Specification

Built-in Predicates of CRAM Reasoning

Stability		
$contact(O_1, O_2)$	Contact between objects	
stable(O)	Stability of object	
Visibility		
visible(P, O)	Object visible from pose P	
$occluding(P, O_1, O_2)$	Object O ₂ occludes object O ₁	
Reachability		
reachable(R, O)	Object O is reachable by robot R	
blockingObjects(R, O, B)	B is the list of objects that "block" O	

Motion Planning for Physical Robots

Naturalistic Actions

Temporal projection

Action Specification

Gesys

(a location ...

(not-hindering (the activity (type (pick-up Cup1)))))

projectPlan(PickUp(Cup1), ?TI) \land bagof(?F, flawsInTimeline(?F), \emptyset)

∜

- 1. Execute plan in projection mode
- 2. Projection generates a timeline
- 3. Match pre-defined flaws on the timeline

Motion Planning for Physical Robots

Naturalistic Actions

Action Specification

Flip the pancake carefully

(perform (an action (type flip) (object (the object (type pancake) (on oven))) (params argmin_{params} P(fail(action(params),sit) execute(action(params),sit), obj-acted-on(pancake), props(sit)) Motion Planning for Physical Robots Michael Beetz Everyday Manipulation

- what is the problem? understanding by building
- take the human instructions as an indication for
 - what information is needed?
 - what not?
- shared representation
 - constraint- and optimization-based action specifications
- predictive decision making

Motion Planning for Physical Robots

Naturalistic Actions

Thank you for your attention

Questions?

PR2 Illustration by Josh Ellingson, Willow Garage

Motion Planning for Physical Robots

Everyday Manipulation