

ICRA 2011, Shanghai 09. May 2011

Humanoid Grasping and Manipulation in the Real World

T. Asfour, N. Vahrenkamp, M. Przybylski, M. Do and R. Dillmann Humanoids and Intelligence Systems Lab (Prof. Dillmann)

INSTITUTE FOR ANTHROPOMATICS, DEPARTMENT OF INFORMATICS

http://his.anthropomatik.kit.edu

http://his.anthropomatik.kit.edu/english/65.php

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

www.kit.edu

Three key questions

- Grasping and manipulation in human-centered and open-ended environments
- Learning through observation of humans and imitation of human actions
- Interaction and natural communication

© SFB 588, Karlsruhe

Interactive tasks in the Robo-KITchen

- Object recognition and localization
- Vision-based grasping
- Hybrid position/force control
- Vision-based selflocalisation
- Collision-free navigation
- Combining force and vision for opening and closing door tasks
- Learning new objects, persons and words
- Audio-visual user tracking and localization
- Multimodal humanrobot dialogs
- Speech recognition for continuous speech

[Humanoids 2006, IROS 2006, IROS 2007, RAS 2008, Humanoids 2008, Humanoids 2009]

Bimanual grasping and manipulation

- Stereovision for object recognition and localization
- Visual Servoing for dual-hand grasping
- Zero-force control for teaching of grasp poses

Humanoids 2009

Loosely coupled dual-arm tasks

Tightly coupled dual-arm tasks

Humanoid grasping and manipulation in the real world

In this workshop:

Given world knowledge for grasp and motion planning

Mobile manipulation workshop on Friday:

Autonomous knowledge acquisition

Outline of the talk

Motion planning

- IK-RRT: Integrated IK-solving and motion planning
- Grasp-RRT: Integrated grasp and motion planning
- Execution using visual Servoing on humanoid robot

Grasp planning

- Medial axis planner
- Grid of medial planner

Outline of the talk

Motion planning

- IK-RRT: Integrated IK-solving and motion planning
- Grasp-RRT: Integrated grasp and motion planning
- Execution using visual Servoing on humanoid robot

Grasp planning

- Medial axis planner
- Grid of medial planner

IK-RRT: Integrated IK-Solving and Motion Planning

RRT-based algorithm

Integrates the three main tasks needed to grasp an object:

- Select a feasible grasp
- Solve the IK-problem
- Create a collision-free motion
- Can be used for high-dimensional planning problems
 - Single arm or bimanual tasks: grasping, re-grasping, hand over
 - Efficient IK-solvers needed

IK-RRT: Overview

IK-RRT: Example – Re-grasping

Grasp-RRT: Integrated Grasp and Motion Planning

Uni-directional RRT-based algorithm

Initialization:

- object pose: p_{obj}
- start configuration: q_{start}

Algorithm:

- Build up RRT from q_{start}
- Find a feasible grasp:
 - 1. Select a RRT node
 - 2. Store workspace position p_i
 - 3. Move hand toward object
 - 4. Evaluate grasp quality

Algorithm 1: $GraspRRT(q_{start}, p_{obj})$ 1 $RRT.AddConfiguration(q_{start});$ 2 while (!TimeOut()) do3 ExtendRandomly(RRT);4 if $(rand() < p_{SearchGraspPose})$ then5 $n_{grasp} \leftarrow ApproachTrajectory(RRT, p_{obj});$ 6 if $(ScoreGrasp(n_{grasp}) > score_{min})$ then7 return BuildSolution(Grasp);8 end9 end

Grasp-RRT: Integrated Grasp and Motion Planning

Uni-directional RRT-based algorithm

Initialization:

- object pose: p_{obj}
- start configuration: q_{start}

Algorithm:

- Build up RRT from q_{start}
- Find a feasible grasp:
 - 1. Select a RRT node
 - 2. Store workspace position p_i for every q_i
 - 3. Move hand toward object
 - 4. Evaluate grasp quality

Algorithm 1: $GraspRRT(q_{start}, p_{obj})$ 1 $RRT.AddConfiguration(q_{start});$ 2 while (!TimeOut()) do ExtendRandomly(*RRT*); 3 if $(rand() < p_{SearchGraspPose})$ then 4 $n_{grasp} \leftarrow ApproachTrajectory(RRT, p_{obj});$ 5 if $(ScoreGrasp(n_{arasp}) > score_{min})$ then 6 **return** *BuildSolution(Grasp)*; 7 end 8 9 end approach direction

KIT - Institute for Anthropomatics Humanoids and Intelligence Systems Laboratory

Karlsruhe Institute of Technology

Grasp-RRT: Evaluation

Comparison: IK-RRT <-> Grasp-RRT

Sensor-based execution of grasping motions

KIT - Institute for Anthropomatics Humanoids and Intelligence Systems Laboratory

A Parameter-free Algorithm for Exact Motion Planning

- Based on Rapidly-exploring Dense Trees (BiRDT)
- Discrete collision detection (DCD) for efficient planning
- Guaranteeing collision-free results with Continuous Collision
 Detection
- Probabilistically complete

[Vahrenkamp, Kaiser, Asfour, Dillmann, ICRA 2011]

Session: TuA1

Outline of the talk

Motion planning

- IK-RRT: Integrated IK-solving and motion planning
- Grasp-RRT: Integrated grasp and motion planning
- Execution using visual Servoing on humanoid robot

Grasp planning

- Medial axis planner
- Grid of medial planner

Grasp planning

Object representation is very important!

- Two new methods for grasp planning
 - based on Medial Axis (IROS 2010)
 - based on grid of medial spheres (submitted to IROS 2011)

Grasp planning based on Medial Axis

KIT Karlsruhe Institute of Technology

- How to increase efficiency of grasp planning by testing only geometrically meaningful "natural looking" grasps?
- Solution:
 - Exploit local symmetries of object geometry
 - Medial axis as object representation
- Medial axis [Blum67]
 - Shape approximation by inscribing spheres of maximal diameter
 - Inscribed spheres have to touch the geometric shape from the inside at two or more points
- Medial axis = Union of all inscribed spheres' centers
- Medial axis = topological skeleton of an object

H. Blum, Models for the Perception of Speech and Visual Form. Cambridge, Massachusetts: MIT Press, 1967, A transformation for extracting new descriptors of shape, pp. 362–380.

Algorithm

- 1. Sample of the object's surface
- 2. Compute the medial axis
- 3. Analysis of slices of the medial axis
 - Minimum Spanning Tree (MST)
 - Clustering
 - Convex hull
- 4. Generate candidate grasps using a set of heuristics
- 5. Test grasp stability

Heuristics for Candidate Grasp Generation (1)

Heuristics and resulting grasps

- Approach branching vertices of Minimum Spanning Tree (MST)
- Align hand's roll angle to symmetry planes

- Approach spikes of a star
- Align hand's roll angle to symmetry planes

Heuristics for Candidate Grasp Generation (2)

Medial axis Slice structure

Heuristics and resulting grasps

- Approach circle/symmetry axis from various directions
- Align hand's roll angle to symmetry axis

 Objects with opening: Approach rim of the object

Heuristics for Candidate Grasp Generation (3)

Medial axis

Heuristics and resulting grasps

• Complex objects: Combine heuristics presented before

Results: Grasp Quality (Force Closure)

- Blue spheres: stable grasps
- Red spheres: unstable grasps
- Sphere position: Wrist position of hand during grasp
- Sphere diameter: measure for stability (Biggest spheres = most stable grasps)

Efficiency of the grasp planner

- Comparison with planner based on surface normals [Berenson07]
 - Number of generated grasp candidates
 - Percentage of stable grasps
- Medial axis-based planner is more efficient
 - Notable: results for relatively big objects (bread box, salad bowl)

	MA-based planner		Surface normals planner	
Objects	Candidates	Stable	Candidates	Stable
Bread box	632	86.2%	13440	15.5%
Prismatic box	1344	90.7%	8512	36.0%
Salt can	2144	96.9%	7904	45.7%
Detergent	1996	65.9%	12672	26.2%
Spray	1304	55.1%	11200	21.2%
Cup	1428	59.5%	6688	37.0%
Pitcher	1124	47.0%	15504	25.9%
Salad bowl	504	68.5%	13648	4.5%

Grid of medial spheres grasp planner

- Based on the medial axis transform
- In addition: efficient access to spheres in local neighborhood (via grid index computation):

$$\begin{pmatrix} i_x \\ i_y \\ i_z \end{pmatrix} = \begin{pmatrix} \lfloor n_x(x - x_{min})/(x_{max} - x_{min}) \rfloor \\ \lfloor n_y(y - y_{min})/(y_{max} - y_{min}) \rfloor \\ \lfloor n_z(z - z_{min})/(z_{max} - z_{min}) \rfloor \end{pmatrix}$$

- Attributes of each sphere:
 - Center
 - Radius
 - Points where the sphere touches the object's surface
 - Object angle: maximum angle included by the sphere's center and two surface points touched by the sphere.
 - Example:
 - Blue spheres: object angle ~180°
 - Red spheres: object angle ~90°

Selecting spheres for grasp planning

- Which spheres are important for grasp planning?
- Rough structure (occupied volume) vs. surface details of the object
- Goals:
 - Exploit local symmetry planes / axes for grasp planning
 - Generate grasps with two opposed virtual fingers
- Main parameters:
 - Object angle
 - Sphere radius
- Grasp planning:
 - Consider only spheres with object angle >= 120°
 - This removes edges and corners of the object
 - Symmetry planes and axes are preserved

Analyzing an object's symmetry properties Estimate symmetry properties of sphere centers in each sphere's local neighborhood Principal Component Analysis: **Directions of eigenvectors** $\rho_{ev} = \frac{\lambda_2}{\lambda_1}$ Ratio of eigenvalues Classification of spheres: $\rho_{ev} \le \rho_{axis}$ On local symmetry axis On local symmetry plane $\rho_{axis} \leq \rho_{ev} \leq \rho_{plane}$ At the rim Inside the plane $\rho_{ev} > \rho_{plane}$

Generating candidate grasps

- Symmetry axis
 - Hand approach directions perpendicular to local symmetry axes
- Rim of symmetry plane
 - Hand approach directions perpendicular to local symmetry planes

Candidate grasps: some examples

Advantages: Hand size vs. Object size

- Respect maximum sphere diameter graspable by the robot hand
- Optional: do not generate grasps for "small" spheres

- For big objects, the algorithm finds many grasps at the handles
 - Simply due to geometric considerations, as the hollow bodies are too big to grasp
 - No semantic knowledge (task dependency) necessary

Advantages: Surface details

- How to deal with surface details?
- Solution: discard "small" spheres
- Planner considers only rough geometry of the object.

Humanoids and Intelligence Systems Laboratory

Results

		ARMAR-III hand		Barrett hand	
	Objects	scale 1.0	scale 0.5	scale 1.0	scale 0.5
	1 Female doll	71.3%	54.6%	53.13%	37.9%
Ł	41 Glasses	93.9%	7.8%	73.7%	10.7%
σ	81 Ant	94.4%	71.1%	61.3%	45.7%
Ξ	101 Chair	89.6%	49.2%	73.9%	72.2%
	125 Octopus	53.7%	55.2%	26.9%	44.7%
S	141 Table	91.9%	92.5%	94.6%	85.0%
	161 Teddy	100.0%	83.3%	86.7%	51.2%
ă	225 Fish	76.5%	83.3%	68.4%	81.1%
_	245 Bird	75.0%	68.3%	75.0%	65.6%
Ð	290 Monster	70.5%	64.7%	67.8%	38.2%
Ĕ	305 Bust	50.0%	70.0%	100.0%	92.9%
\mathbf{O}	361 Vase	76.8%	65.3%	69.6%	55.1%
	379 Tea kettle	78.9%	63.2%	75.7%	31.3%
	390 Giraffe	85.5%	68.3%	71.4%	56.0%

ects
<u>i</u> qo
Real

Objects	ARMAR_III hand	Barrett hand
00jeets	ARMAR-III IIalid	Darrett Hallu
1001 Clown	63.5%	61.2%
1002 Elefant	75.3%	76.0%
1003 Owl	78.0%	68.2%
1004 Spheric fish	59.0%	78.3%
1005 Lawn gnome	53.1%	57.7%
1006 Heart	89.0%	77.0%
1008 Dog	63.7%	69.2%
1009 Sitting cat	64.9%	59.5%
1010 Lying cat	80.7%	80.7%
1012 Moon	58.9%	64.4%
1013 Mushroom	80.0%	55.5%
1014 Turtle	57.1%	70.3%
1015 Seal (Seehund)	73.5%	59.2%
1016 Star	44.4%	66.7%

Experiments:

- Hand models:
 - ARMAR-III
 - Barrett
- Object models:
 - Chen benchmark
 - 100% scaled objects
 - 50% scaled objects
 - Real objects

Results:

Mostly >50% of the generated candidates are force-closure grasps

Summary

- *Grid of medial spheres* object representation:
 - Based on the medial axis transform
 - Volumetric approximation
 - Arbitary level of detail
 - Symmetry properties as part of the object representation

Grasp planning algorithm:

- For arbitrarily shaped objects
- Generates geometrically meaningful candidate grasps
- Further advantages:
 - Hand size and object size considered
 - Grasps on handles simply due to geometric considerations
 - Surface details can be ignored, if necessary
- High yield of force-closure grasps

Karlsruhe Institute of Technology

Thanks

Humanoids Group @ KIT

- Rüdiger Dillmann
- Stefan Ulbrich
- David Gonzalez
- Manfred Kröhnert
- Niko Vahrenkamp
- Julian Schill
- Kai Welke
- Ömer Terlemez
- Alex Bierbaum
- Martin Do
- Markus Przybylski
- Tamim Asfour
- Pedram Azad (not in the picture)
- Paul Holz (not in the picture)
- Ioana Gheta (not in the picture)
- Christian Böge (not in the picture)
- Sebastian Schulz (not in the picture)
- Isabelle Wappler

Thank you ...

... for your attention

Thanks to the funding agencies

German Research Foundation (DFG)

SFB 588 www.sfb588.uni-karlsruhe.de

Deutsche Forschungsgemeinschaft DFG

European Commission

- Xperiencewww.xperience.org
 - GRASP www.grasp-project.eu
- PACO-PLUS
- www.paco-plus.org

